Foundations of Hadronic Chemistry
With Applications To New Clean Energies
And Fuels
This monograph is dedicated to

Professor T. Nejat Veziroğlu,
Director,
Clean Energy Research Institute,
University of Miami, Coral Gables, Florida,
and
Editor in Chief,
International Journal of Hydrogen Energy,
Elsevier Science, Oxford, England,

because his commitment to scientific
democracy for qualified inquiries and
his impeccable editorial processing
have permitted the birth of the new
discipline presented in this monograph.
Contents

Preface xiii
Acknowledgments liii

1. INTRODUCTION 1
 1 Axiomatic Consistency of Quantum Chemistry 1
 2 Scope of These Studies 2
 3 Insufficiencies of Quantum Chemistry for Molecular Structures 5
 4 Insufficiency of Quantum Chemistry for Chemical Reactions 11
 5 Insufficiencies of Quantum Chemistry for Biological Structures 12
 6 The Central Topic of Study of This Monograph 14
 7 Catastrophic Inconsistencies of Generalized Nonunitary Theories on Conventional Mathematics 19
 8 Hadronic Mechanics 27
 9 Hadronic Superconductivity 34

2. ELEMENTS OF ISO-, GENO-, AND HYPER-MATHEMATICS AND THEIR ISODUALS 59
 1 Introduction 59
 2 Elements of Isomathematics 61
 2.1 Isounits and Isoproducts 61
 2.2 Isonumbers and Isofields 64
 2.3 Isospaces and Isogeometries 65
 2.4 Isodifferential Calculus 69
 2.5 Isohilbert Spaces 70
 2.6 Isoperturbation Theory 72
 2.7 Isofunctional Analysis 74
Contents ix

3.4 Basic Equations of Operator Isochemistry 134
3.5 Preservation of Quantum Physical Laws 135
3.6 Simple Construction of Operator Isochemistry 139
3.7 Invariance of Operator Isochemistry 142
3.8 Gaussian Screenings as Particular Cases of Isochemistry 143
3.9 Elements of Operator Geno-, Hyper-, and Isodual-Chemistry 144
3.10 Simple Construction of Operator Geno-, Hyper-, and Isodual Chemistry 147
3.11 Invariance of Operator Geno-, Hyper-, and Isodual Chemistry 149
3.12 Classification of Hadronic Chemistry 149

4. ISOCHEMICAL MODEL OF THE HYDROGEN MOLECULE 155

1 Introduction 155
2 Isochemical Model of Molecular Bonds 158
3 The Limit Case of Stable Isoelectronium 168
4 Isochemical Model of the Hydrogen Molecule with Stable Isoelectronium 174
5 Exactly Solvable, Three-Body, Isochemical Model of the Hydrogen Molecule 177
6 Isochemical Model of the Hydrogen Molecule with Unstable Isoelectronium 180
7 Gaussian Approximation of the Isochemical Model of the Hydrogen Molecule as a Four-Body System 183
8 Summary of the Results 188
9 Concluding Remarks 191
Appendix 4.A Isochemical Calculations for the Three-Body \(H_2 \) Molecule 195
Appendix 4.B Isochemical Calculations for the Four-Body \(H_2 \) Molecule 196

5. ISOCHEMICAL MODEL OF THE WATER MOLECULE 205

1 Introduction 205
2 Main Characteristics of Water 211
3 Exactly Solvable Model of the Water Molecule with Stable Isoelectronium 215
4 Gaussian Approximation of the Isochemical Model of the Water Molecule with Unstable Isoelectronium 219
5 The Method 223
6 The Main Results 226
7 Conclusions 228
6. VARIATIONAL CALCULATIONS OF ISOCHEMICAL MOLECULAR MODELS 233
 1 Introduction 233
 2 Aringazin-Kucherenko Study of the Restricted, Three-Body Isochemical Model of the Hydrogen Molecule 234
 3 Aringazin Variational Study of the Four-Body Isochemical Model of the Hydrogen Molecule 239

7. APPLICATION OF HADRONIC CHEMISTRY TO NEW CLEAN ENERGIES AND FUELS 251
 1 Introduction 251
 2 Alarming Environmental Problems Caused by Gasoline and Coal Combustion 254
 3 Alarming Environmental Problems Caused by Natural Gas Combustion 257
 4 Alarming Environmental Problems Caused by Hydrogen Combustion, Fuel Cells and Electric Cars 258
 5 The Need for New, Environmentally Acceptable Primary Sources of Electricity 261
 6 Insufficiencies of Quantum Mechanics, Superconductivity, and Chemistry for the Solution of Current Environmental Problems 262
 7 The New Clean Primary Energies Predicted by Hadronic Mechanics, Superconductivity and Chemistry 263
 8 PlasmaArcFlow Reactor for the Conversion of Liquid Waste into the Clean Burning Magnegas 279
 9 Surpassing by Magnegas Exhaust of EPA Requirements without Catalytic Converter 283
 10 Anomalous Chemical Composition of Magnegas 288
 11 Anomalous Energy Balance of Hadronic Molecular Reactors 291
 12 Concluding Remarks 298
 Appendix 7.A 300

8. THE NEW CHEMICAL SPECIES OF MAGNECULES 303
 1 Introduction 303
 2 The Hypothesis of Magneecules 305
 3 The Five Force Fields Existing in Atoms 308
 4 Magneecules Internal Bonds 310
 5 Production of Magneecules in Gases, Liquids and Solids 316
 6 New Molecules Internal Bonds 322
 7 Main Features of Magneecules to be Detected 324
<table>
<thead>
<tr>
<th>Section</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>8 Necessary Conditions for the Correct Detection of Molecules and Magnecules</td>
<td>326</td>
</tr>
<tr>
<td>8.1 Selection of Analytic Instruments</td>
<td>326</td>
</tr>
<tr>
<td>8.2 Unambiguous Detection of Molecules</td>
<td>328</td>
</tr>
<tr>
<td>8.3 Unambiguous Detection of Magnecules</td>
<td>331</td>
</tr>
<tr>
<td>8.4 Apparent Magnecular Structure of H₃ and O₃</td>
<td>333</td>
</tr>
<tr>
<td>8.5 Need for New Analytic Methods</td>
<td>336</td>
</tr>
<tr>
<td>9 Experimental Evidence of Gas Magnecules</td>
<td>337</td>
</tr>
<tr>
<td>9.1 Conventional Chemical Composition of Magnegas Used in the Tests</td>
<td>337</td>
</tr>
<tr>
<td>9.2 GC-MS/IRD Measurements of Magnegas at the McClellan Air Force Base</td>
<td>338</td>
</tr>
<tr>
<td>9.3 GC-MS/IRD Tests of Magnegas at Pinellas County Forensic Laboratory</td>
<td>341</td>
</tr>
<tr>
<td>9.4 Interpretations of the Results</td>
<td>347</td>
</tr>
<tr>
<td>9.5 Concluding Remarks</td>
<td>352</td>
</tr>
<tr>
<td>10 Experimental Evidence of Liquid Magnecules</td>
<td>354</td>
</tr>
<tr>
<td>10.1 Preparation of Liquid Magnecules used in the Tests</td>
<td>354</td>
</tr>
<tr>
<td>10.2 Photographic Evidence of Magnecules in Liquids</td>
<td>355</td>
</tr>
<tr>
<td>10.3 Spectroscopic Evidence of Liquid Magnecules at the Tekmar-Dohrmann Corporation</td>
<td>358</td>
</tr>
<tr>
<td>10.4 Spectroscopic Evidence of Liquid Magnecules at Florida International University</td>
<td>363</td>
</tr>
<tr>
<td>11 Experimental Verification of Mutated Physical Characteristics</td>
<td>364</td>
</tr>
<tr>
<td>12 Concluding Remarks</td>
<td>375</td>
</tr>
<tr>
<td>Appendix 8.A Aringazin’s Studies on Toroidal Orbits of the Hydrogen Atom under an External Magnetic Field</td>
<td>376</td>
</tr>
<tr>
<td>Index</td>
<td>393</td>
</tr>
</tbody>
</table>