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1 Introduction

It is wellknown that unit in n × n matrix algebras over field of complex
numbers C is defined due to axiom of unit element. This axiom uses matrix
product which is axiomatically defined as an associative and distributive
one [1, 2]. Usually, the unit is taken as diagonal n×n matrix of the standard
form I = diag(1, 1, . . . , 1). However, this specific form of unit matrix does
not follow directly from the axioms of matrix product and unit element.

In this paper, we consider matrix Lie algebras and groups with associative
and distributive matrix product, without assuming that the unit matrix has
the above standard form. The main idea is that the axiom of associative
and distributive matrix product can be realized in different ways implying
accordingly different forms of the unit matrix obeying the axiom of unit
element. Such algebras were first studied and developed by Santilli [3].

In Sec. 2, we study admissible realizations of the axiom of matrix product.
We conjecture that the most general form of the associative and distributive
product of two n × n matrices M and N is of the form MT̂N , where T̂ is
fixed n×n matrix, with the underlying product between M , T̂ , and N being
the standard matrix one. This form of product in algebras was introduced
and studied by Santilli [3], with T̂ being called isotopic element. The axiom
of unit element then implies that the unit matrix Î, corresponding to this
product, is of the form Î = T̂−1, where the inverse matrix T̂−1 is defined due
to Î T̂ = T̂ Î = I. In the particular case of Î = T̂ , the standard unit matrix
and standard matrix product are recovered, Î = I = T̂ . In the general case,
which is of primary interest in the present paper, Î 6= T̂ . We introduce
definition of the dual matrix algebra, which is defined due to the interchange
Î ↔ T̂ . Also, we consider metrics and associated coordinate systems in the
matrix space. We study the conditions of reducing the unit matrix Î to the
standard one, and introduce the notion of generating matrix, which is of
particular relevance for applications in physics.

Throughout the paper, we use notation M×̂N = MT̂N adopted from
ref. [4], to denote an associative and distributive matrix product. Matrix
algebra of n × n matrices over field C equipped with an associative and
distributive matrix product is denoted as M(n,C, ×̂).

In Sec. 3, we study some classical matrix Lie groups and Lie algebras
with the general from of unit, and derive restrictions on the form of unit
matrix Î from definitions of the Lie algebras and associated Lie groups. By
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collecting all the derived restrictions we arrive at the conclusion that the
most simple admissible nonstandard form of unit matrix appears to be of the
form of a positive definite diagonal matrix, Î = diag(q1, q2, . . . , qn), qi > 0,
i=1,. . . ,n. We consider action of the Lie groups on classical linear spaces,
Rn and Cn, and indicate that the associated matrix Lie groups, in which
matrix product is MT̂N and unit is Î, conserve metrics which are, in general,
not conformally equivalent to the Euclidean one. Also, we briefly review
the infinite dimensional case, and indicate the relevance of the unit Î in
mathematical and physical context.

In Sec. 4, we consider in detail SO(3,R, ×̂), SO(2,R, ×̂), SO(1, 1,R, ×̂),
and U(1,C, ×̂) matrix Lie groups and M(2,C, ×̂) matrix Lie algebra, as ex-
amples which are of interest in physics. To construct nontrivial realization
of SO(3,R, ×̂), we use properties of the dual algebra. We establish the re-
lationship between SO(2,R, ×̂) and U(1,C, ×̂), and consider the action of
U(1,C, ×̂) on complex plane C. It is remarkable to note that U(1,C, ×̂)
makes, in general, linear non complex analytic transformation of complex
plane C. This is in confirmation of emphasize made by Santilli [4] that
theory with the nonstandard form of product (and unit) is related to the
standard one by non-unitary transformation. We construct the realization
map which connects GL(n,C, ×̂) to GL(2n,R, ×̂). One of the open problems
is construction of nontrivial realization of the SU(2,C, ×̂) Lie group, to which
we give a detailed approach.

Detailed studies on associative algebras and groups with unit element
different from the standard one, and its applications to physics, were made
by Santilli [3, 4] since 1978; see also Sourlas and Tsagas [5]. We refer the
reader to these papers for review and results of recent development of the
Lie-Santilli algebras. The main motivating idea lying behind the present
paper, as well as some of the results, are due to the recent study presented in
ref. [4]. Particularly, there it has been emphasized that the physical theories
which are based on various types of classical and operator deformations of
the standard ones should be reformulated in order to provide their physical
self-consistency and predictivity by preserving Lie character of the theories.

In the present paper, we develop the approach of ref. [4] giving self-
consistent and detailed consideration of the matrix algebras, with some novel
results being obtained. Particularly, we show that the associative and dis-
tributive product, M×̂N , has a unique representation M×̂N = MT̂N , intro-
duce and use the dual algebra M(n,C, ×̂−1

), analyze the coordinate systems
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in the matrix space and homotopy class of unit, derive restrictions on the
form of unit implied by self-consistent consideration of some classical Lie al-
gebras, establish the relationship between SO(2,R, ×̂) and U(1,R, ×̂), and
the realization map for the case n > 2, and present nontrivial examples of
some Lie groups and algebras with the nonstandard unit.

2 Matrix algebra M(n,C, ×̂)

2.1 The ×̂-product of matrices

The usual matrix algebra M(n,C) consisting of all n× n matrices over field
of complex numbers C is a Lie algebra in respect to commutator

[M, N ] = MN −NM, M, N ∈ M(n,C), (2.1)

where underlying product is the usual product of matrices in the underlying
associative algebra with standard unit I = diag(1, 1, . . . , 1).

In the set of all n × n matrices over field of complex numbers, M(n,C),
we define ×̂-commutator

[M, N ]×̂ = M×̂N −N×̂M, M,N ∈ M(n,C), (2.2)

in respect to the ×̂-product

M×̂N = MT̂N, (2.3)

i.e.

(M×̂N)ij =
n∑

k,l=1

MikT̂
klNlj, (2.4)

where
T̂ = Î−1, T̂ Î = Î T̂ = I, Î ∈ M(n,C), (2.5)

Here, Î is a fixed invertible matrix, which plays the role of (left and right)
unit, instead of the usual unit matrix I, and we assume that in general
Î 6= T̂ . Indeed, it can be immediately checked that Î verifies axiom of the
unit element,

M×̂Î = Î×̂M = M, ∀M ∈ M(n,C). (2.6)
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We denote the set M(n,C) equipped by the unit Î and the associated
×̂-product as M(n,C, ×̂). Evidently, M(n,C, ×̂) is a linear space,

M + N = N + M, (2.7)

M + (N + P ) = (M + N) + P, (2.8)

M + 0 = M, (2.9)

M + (−M) = 0, (2.10)

α(βM) = (αβ)M, (2.11)

α(M + N) = αM + αN, (α + β)M = αM + βM, (2.12)

1 ·M = M, (2.13)

where α and β are complex numbers, and the ×̂-product is associative and
distributive,

(M×̂N)×̂P = M×̂(N×̂P ), (2.14)

M×̂(N + P ) = M×̂N + M×̂P, (M + N)×̂P = M×̂P + N×̂P. (2.15)

Inverse of matrix in the algebra M(n,C, ×̂) is defined as

M−1̂×̂M = M×̂M−1̂ = Î , (2.16)

and multiplication of matrix by complex number α is as usual,

αM = (αmij). (2.17)

This means that M(1,C, ×̂) is assumed to be isomorphic to M(1,C). In one-
dimensional case, the ×̂-product is α×̂β = αT̂β = T̂αβ, where α, β, and
T̂ are complex numbers, so that we can ignore overall fixed non-zero factor
T̂ in all the products. Indeed, there is an isomorphism between C and T̂C
provided by dilation. Nontriviality comes in higher-dimensional cases; see
Secs. 3.2.3 and 4.2 for details. We denote nth power of matrix in M(n,C, ×̂)
by

M n̂ = M×̂M×̂ · · · ×̂M, (n times) (2.18)

and define M 0̂ = Î.
Note that M(n,C, ×̂) is a Lie algebra in respect to the ×̂-commutator.

Indeed, ×̂-commutator (2.2) is skew-symmetric, and Jacobi identity,

[M, [N,P ]×̂]×̂ + [P, [M, N ]×̂]×̂ + [N, [P,M ]×̂]×̂ = 0, (2.19)
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in respect to ×̂-commutator is satisfied. Namely,

[M, [N,P ]×̂]×̂ = M×̂N×̂P −M×̂P ×̂N −N×̂P ×̂M + P ×̂N×̂M,

[P, [M, N ]×̂]×̂ = P ×̂M×̂N − P ×̂N×̂M −M×̂N×̂P + N×̂M×̂P, (2.20)

[N, [P, M ]×̂]×̂ = N×̂P ×̂M −N×̂M×̂P − P ×̂M×̂N + M×̂P ×̂N,

and by summing up these three expressions we obtain identically zero.
In definition of usual Lie algebras sl(n), o(n), and u(n), and associated

Lie groups one uses the following operations with matrices: Trace, Transpose
(M t), and Complex Conjugate (M̄). All these operations, and also Det,
concern matrix elements and their definitions in algebra M(n,C, ×̂) remain
the same as in algebra M(n,C).

We emphasize that both algebras M(n,C) and M(n,C, ×̂) obey the same
set of axioms by construction. So, the product (2.3) is one of the admissible
realizations of abstract definition of the product in matrix algebra accom-
panied by associated realization of the unit element Î. This realization of
product is based on the usual matrix product and can be thought of as the
simplest generalization of it. However, note that M(n,C, ×̂) is not general-
ization of abstract matrix algebra. Instead, M(n,C) and M(n,C, ×̂) are two
different realizations of the abstract matrix algebra, with M(n,C) being a
simplest realization while M(n,C, ×̂) is an example of more general realiza-
tion of it. Perhaps, some other admissible realizations of the matrix product
exist. In general, this means that the axioms of matrix algebra do not fix the
form of matrix product and the form of unit matrix to be only the standard
ones. The aim of this paper is to investigate implications of the form (2.3) of
matrix product assuming that the unit matrix Î is a matrix of general form.

As we will demonstrate in next sections, some severe restrictions on the
form of unit matrix Î naturally arise. Counterparts to the classical Lie groups
associated to M(n,C, ×̂) reveal interesting properties. For example, the as-
sociated orthogonal group conserves the metrics defined by Î, which is, in
general, not conformally equivalent to Euclidean metrics I = (δi

k). Also,
the associated unitary groups make, in general, linear non complex analytic
transformations of complex space.

We conjecture that the product (2.3) is the most general realization of
the abstract associative and distributive product in matrix algebra with unit.
In Appendix A, we sketch the proof.
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2.2 The dual algebra M(n,C, ×̂−1
)

We start by noting that the transformation

ρ0 : X 7→ ÎXÎ, X = M, N, (2.21)

converts the ×̂-commutator

MT̂N −NT̂M (2.22)

to the commutator in respect to Î,

MÎN −NÎM. (2.23)

Indeed, we have

[ρ0(M), ρ0(N)]×̂ = ÎMÎT̂ ÎNÎ − ÎNÎT̂ ÎMÎ (2.24)

= Î(MÎN −NÎM)Î = ρ0(MÎN −NÎM) 6= ρ0[M, N ]×̂,

that means that this is not endomorphism of Lie algebra M(n,C, ×̂). Vice
versa, the transformation ρ′0 : X 7→ T̂XT̂ converts the commutator (2.23)
to the ×̂-commutator.

In general, one can construct some algebra by replacing

Î ↔ T̂ . (2.25)

We call this algebra as a dual to M(n,C, ×̂), and denote it by M(n,C, ×̂−1
).

In the dual algebra, T̂ is a unit matrix while Î is used in the definition of
×̂-product. Accordingly, we call commutator (2.23) as a dual commutator,
which defines Lie algebra dual to the one specified by ×̂-commutator (2.2).

In the case Î = I, the two algebras, M(n,C, ×̂) and M(n,C, ×̂−1
), de-

generate to one algebra, M(n,C), and this is the only way to obey the self-

duality condition, M(n,C, ×̂) ' M(n,C, ×̂−1
), which simply means that

Î = T̂ . Thus, the usual matrix algebra M(n,C) with standard form of unit
is picked up by the self-duality condition. Indeed, Î = T̂ ≡ Î−1 has only one
non-trivial solution, Î = diag(1, 1, . . . , 1), for the unit element.

Also, we note that the transformation

ρ1 : X 7→ ÎXT̂ ≡ ÎXÎ−1 (2.26)
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is an inner automorphism of M(n,C, ×̂) in terms of standard product. In-
deed, this is a homomorphism,

ρ1(M)×̂ρ1(N) = (ÎMT̂ )T̂ (ÎNT̂ ) = Î(M×̂N)T̂ = ρ1(M×̂N), (2.27)

maps Î to Î, and makes one-to-one correspondence, with the inverse trans-
formation

ρ−1
1 : X 7→ T̂XÎ. (2.28)

Transformations ρ1 and ρ−1
1 make one-to-one correspondence between ele-

ment X and its conjugate. It should be emphasized that Î in Eq.(2.26) is
fixed so that ÎXÎ−1 do not, of course, form a class of conjugated elements
for X. Instead, ÎXÎ−1 form a similarity class (Î is fixed, X is arbitrary).

Also, the transformation

ρ2 : X 7→ S×̂X×̂S−1̂ X,S ∈ M(n,C, ×̂), (2.29)

is endomorphism of M(n,C, ×̂),

ρ2(M)×̂ρ2(N) = (S×̂M×̂S−1̂)T̂ (S×̂N×̂S−1̂) (2.30)

= S×̂(MT̂S−1̂T̂ ST̂N)×̂S−1̂ = S×̂(M×̂N)×̂S−1̂ = ρ2(M×̂N),

where we have used the definition (2.16).

2.3 Metrics and coordinates of M(n,C, ×̂)

The ×̂-product (2.3) is a smooth function (polynomial) of matrix elements
of multipliers M and N . We introduce metrics in M(n,C, ×̂) as follows,

|M |2 =
∑
i,j

|mi
k|T̂ k

l |ml
j|. (2.31)

Here, we have denoted M = (mi
k) and T̂ = (T̂ k

l ), and naturally require T̂ to
be a matrix of positive definite form. In the standard case [6], T̂ = I ≡ (δk

l ),
the metrics (2.31) is Euclidean, and simply computed as sum of all squared
matrix elements, |mi

k|2, giving us in the result some real number; for example,
|I|2 = n in M(n,C).

Then, for the metrics (2.31) we have, evidently,

|M + N | ≤ |M |+ |N |, (2.32)
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and also it can be easily proved that

|M×̂N | ≤ |M |×̂|N |. (2.33)

Indeed, we have for the inner product 〈, 〉 with positive definite form T̂

〈x, T̂x〉〈y, T̂ y〉 − 〈x, T̂ y〉2 =
1

2
(〈x, T̂ y〉 − 〈y, T̂ x〉), (2.34)

from which (2.33) follows.
Let us introduce local coordinates in the space of matrices, in the vicinity

of Î,
|M − Î| ≤ 1. (2.35)

Coordinate x(M) of matrix M in M(n,C, ×̂) is defined as

xi
j(M) = mi

j − Î i
j, xi

j(Î) = 0. (2.36)

If we multiply all the matrices, in the vicinity of Î, to T̂ = Î−1 then we can
introduce the following coordinate, y(M), of matrix M :

yi
j(M) = mk

j T̂
i
k − δi

j, yi
j(Î) = 0, (2.37)

which is coordinate of M in the vicinity of I = (δi
j). This coordinate system

can be used for matrices M such that

|M − Î| ≤ |Î|. (2.38)

Thus, we have coordinate system x(M) in the vicinity of Î, which is related
to coordinate system y(M) in the vicinity of I. The two coordinate systems
coincide if Î = I.

In addition to the coordinate system y(M), we can introduce the alter-
native one,

zi
j(M) = T̂ i

km
k
j − δi

j, zi
j(Î) = 0. (2.39)

This coordinate system is not equivalent to y(M) since in general MT̂ 6= T̂M .
The following remarks are in order.
(a) The coordinate system x(M) can be introduced in the vicinity of any

matrix Î.
(b) The coordinate system y(M) can be introduced for any invertible Î.

The procedure of moving the vicinity, x(M) 7→ y(M), described above is
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formal and means that one can introduce coordinate system in the vicinity
of any invertible element of the matrix space which is ”equivalent” in some
sense to the standard coordinate system in the vicinity of I = (δi

j).
(c) The choice of the center of coordinate system is a matter of conve-

nience. Natural preference is made to the usual unit matrix I = (δi
j) as a

center for the coordinate system. However, when one uses Î as unit in the
matrix algebra, as it is the case for M(n,C, ×̂), it becomes natural to choose
Î as a center of coordinate system to have a consistent picture. However,
even in this case one can move the vicinity of Î to the vicinity of I = (δi

j)

by using coordinate system y(M) or z(M) because Î is an invertible matrix,
and T̂ in Eqs.(2.37) and (2.39) is always well defined. Note however that the
center is still Î due to second equation in (2.37).

(d) It is remarkable to note that the sizes of the vicinities are different;
see Eqs.(2.35) and (2.38).

(e) Also, we emphasize here that while the center of coordinate system
in, e.g., Euclidean space Rn is indeed of no importance in accordance to
its homogeneity, the choice of the center in matrix spaces, which are not
in general homogeneous and commutative, is of some importance. This is
reflected partially by the fact that we have two-fold way to rich vicinity of
standard I, namely, coordinate systems y(M) and z(M).

2.4 Homotopy class of unit

Let us specify the form of unit Î by picking up diagonal form

Î = diag(q1, q2, . . . , qn), (2.40)

where parameters qi satisfy the following conditions:

qi ∈ R, qi 6= 0 (i = 1, 2, . . . , n),
∑

qi 6= 0, (2.41)

that is
Î ∈ M(n,R), Det Î 6= 0, Trace Î 6= 0, (2.42)

This specific form of Î obeys the conditions (3.76) requiring that Î should be
real, symmetric, and non-traceless matrix, and the diagonal form of Î appears
to be important in universal definitions of algebras of pseudo-unitary and
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pseudo-orthogonal groups; see Sec. 3.3. Complete list of the requirements on
the form of Î is presented in Sec. 3.4.

The matrix T̂ is then given by

T̂ = diag(1/q1, 1/q2, . . . , 1/qn). (2.43)

The norm of the unit Î defined by (2.31) is

|Î| =
√∑

qi =
√

Trace Î , (2.44)

and not equal to zero due to (2.42). Then, to have real positive norm we
must put

Trace Î > 0. (2.45)

Below, we restrict consideration on the unit Î of the form (2.40), which
defines n-parametric family of algebras M(n,C, ×̂).

We note that in the case
Î → I, (2.46)

if such a limit exists, we recover the original algebra M(n,C). The limit
does not always exists since Î is a deformation of I by n real parameters
q1, q2, . . . , qn, which can have both negative and positive values, whereas Î
should always be invertible by definition. So, Î and I should be homotopically
equivalent, i.e. it must exist a smooth path in space M(n,C) connecting Î
and I. This is possible if and only if qi’s are positive numbers,

qi > 0, i = 1, 2, . . . , n. (2.47)

Indeed, for negative value of some qi, the path should go through the point
qi = 0, in which Î is not an invertible matrix (Det Î = 0 at qi = 0), and T̂
blows up as qi → 0; see Eq.(2.43). Also, condition (2.47) follows from the
requirement that Î must be positive definite matrix; see Eq.(2.31).

So, in general we must restrict consideration to the homotopy class of
matrices to which standard unit matrix I belongs. Thus, the inverse map
I 7→ Î is a smooth deformation, along with n-parametric path in space
M(n,C). The parameterization is given simply by diagonal matrix W =
diag(w1, w2, . . . , wn), with the parameters wi running from 1 to qi.

In view of the conditions (2.41) and (2.47), we can represent the matrix
Î as follows:

Î = diag(1 + r1, 1 + r2, . . . , 1 + rn) ≡ I + R, ri > −1, (2.48)
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where R = diag(r1, r2, . . . , rn).
Whereas I commute with any element of M(n,C), [I, M ] = 0, one ob-

serves that Î does not in general commute with any element of algebra
M(n,C),

[Î , M ] 6= 0, (2.49)

that is, Î is not in the center of M(n,C). However, it is in the center of the
algebra M(n,C, ×̂),

[Î , M ]×̂ = 0, ∀M ∈ M(n,C, ×̂). (2.50)

To see more details on the connection between I and Î and to provide an
example, let us consider usual M(2,C) case,

I =

(
1 0
0 1

)
, (2.51)

and the matrix Î ∈ M(2,C) of the form

Î =

(
q1 0
0 q2

)
, (2.52)

where
q1 6= 1, q2 6= 1, q1 6= q2. (2.53)

We emphasize here that I is unit matrix, and matrix product is an ordinary
one; Î is not unit matrix in M(2,C).

We observe that both matrices are Hermitean,

I† ≡ Ī t = I, Î† = Î , (2.54)

and therefore normal, i.e.,

I†I = II†, Î†Î = Î Î†, (2.55)

and therefore they are simple, i.e. multiplicity of each eigenvalue of the
matrices is equal to its geometrical multiplicity.

While I is unitary matrix in M(2,C),

I†I = I, (2.56)
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the matrix Î is not unitary,

Î†Î = Î Î = diag(q2
1, q

2
2) 6= I. (2.57)

It is remarkable to note, however, that in the algebra M(2,C, ×̂) we have

Î†×̂Î = Î×̂Î = Î , (2.58)

so that Î is unitary matrix in M(2,C, ×̂) while I is not unitary in M(2,C, ×̂).
Matrices I and Î have different spectra and therefore they are not unitary

similar to each other, i.e.,
Î 6= U−1IU, (2.59)

for any unitary matrix U ∈ M(2,C). Moreover, they are not even simply
similar to each other, i.e.,

Î 6= S−1IS, (2.60)

for any matrix S ∈ M(2,C). Indeed, S−1IS = S−1S = I by definition, and
thus this can not be equal to Î. So, vice versa,

I 6= V −1ÎV, (2.61)

for any V ∈ M(2,C) (see Appendix B for strong proof).
The same properties are valid for higher dimensional cases, n > 2.
Let us consider ordinary eigenavlue problem,

(qI −Q)x = 0, (2.62)

where Q ∈ M(n,C). In the case Q is positive definite Hermitean matrix, we
have set of positive real eigenvalues, q1, q2, . . . , qn, so that we can rewrite
the above equation as

(Î −Q)x = 0, (2.63)

where Î = diag(q1, q2, . . . , qn), qi > 0. This means that Q and Î are unitary
similar to each other, Q = UÎU †, and Î is positive definite Hermitean matrix.
We note that it is exactly the matrix we have as a general form of unit in
M(n,C, ×̂); see also Sec. 3.4. Particularly, scalar matrix, Î = λI, corresponds
to fully degenerate spectrum of Q, in which case Q has necessarily the form
Q = λI.
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We call positive definite Hermitean matrix Q satisfying Eq.(2.63) as a
generating matrix for unit Î, Î ∈ M(n,C, ×̂). Clearly, all generating matri-
ces for a given fixed Î are unitary similar to each other, and they are not
necessarily of a diagonal form.

If we relax the condition of diagonality of unit Î (see Sec. 3.4) we can
take generating matrix Q as a unit in algebra M(n,C, ×̂) provided that in
some basis, unitary related to the original one, Q has a diagonal form Î.

3 Lie groups and Lie algebras

3.1 Lie groups

3.1.1 Group GL(n,C, ×̂)

We denote subgroup of M(n,C, ×̂) consisting of matrices obeying the condi-
tion

Det M 6= 0, M ∈ M(n,C, ×̂), (3.1)

as GL(n,C, ×̂).

3.1.2 Unitary group U(n,C, ×̂)

The group U(n,C, ×̂) is a subgroup of GL(n,C, ×̂) defined by the following
unitarity condition:

U×̂Î×̂U † ≡ U×̂U † ≡ UT̂U † = Î , (3.2)

where we have denoted for Hermitean conjugation

U † ≡ Ū t. (3.3)

From the unitarity condition (3.2), it follows that

Det (U×̂U †) ≡ Det (UT̂U †) = (Det T̂ )(Det U)( ¯Det U) (3.4)

= (Det T̂ )|Det U |2 = Det Î ,

that is,
|Det U |2 = (Det Î)2, U ∈ U(n,C, ×̂). (3.5)
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Apart from the usual case, determinant of unitary matrices in M(n,C, ×̂) is
not, in general, equal to ±1.

We define the subgroup SU(n,C, ×̂) by the condition

|Det U | = Det Î , U ∈ SU(n,C, ×̂), (3.6)

i.e., determinant of special unitary matrices in M(n,C, ×̂) is equal to Det Î.

3.1.3 Orthogonal group O(n,R, ×̂)

Accordingly, for orthogonal group O(n,R, ×̂) we have

O×̂Î×̂Ot ≡ O×̂Ot ≡ OT̂Ot = Î , O ∈ O(n,R, ×̂), (3.7)

and for SO(n,R, ×̂) we have additionally,

Det O = Det Î . (3.8)

3.1.4 Group SL(n,C, ×̂)

The subgroup SL(n,C, ×̂) of GL(n,C, ×̂) is defined due to condition

Det M = Det Î , M ∈ SL(n,C, ×̂). (3.9)

Note that for the usual case, Î = I, we have Det Î = 1 while for Î of the
form (2.40) we have

Det Î = q1q2 · · · qn. (3.10)

3.2 Action of the groups on classical linear spaces

3.2.1 Eigenvalue problem

We define natural (left) action of the group GL(n,C, ×̂) on complex space
Cn as

z 7→ M×̂z = MT̂z, M ∈ GL(n,C, ×̂), z ∈ Cn. (3.11)

This definition is consistent with the action of unit Î,

Î×̂z = z, (3.12)
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which we identify with identity transformation of Cn. Also, for two conse-
quential actions, we have

z′ = M×̂z, z′′ = N×̂z′ = N×̂(M×̂z) = (N×̂M)×̂z = Q×̂z, (3.13)

M,N, Q ∈ GL(n,C, ×̂),

that means that this action is consistent with the algebra GL(n,C, ×̂).
The eigenvalue problem is then defined by the following equation:

M×̂z = λz, (3.14)

where λ ∈ C, or, equivalently,

(λÎ −M)×̂z = 0. (3.15)

This equation can be identically rewritten as

(λI −MT̂ )z = 0. (3.16)

Thus, in the algebra M(n,C, ×̂) the characteristic polynomial of the matrix
M is

c(λ) = Det (λI −MT̂ ). (3.17)

3.2.2 Action of unitary group

Let us identify (Hermitean) scalar product in Cn,

〈z1, z2〉C =
n∑

i,j=1

zi
1gij z̄

j
2, (3.18)

where z1,2 ∈ Cn, such that it is conserved by unitary matrix U ∈ U(n,C, ×̂),

〈U×̂z1, U×̂z2〉 = 〈z1, z2〉. (3.19)

We have from this equation

∑
U i

kT̂
k
mzmgij z̄

nT̂ l
nŪ j

l =
∑

zmgmnz̄
n, (3.20)

i.e.
U i

kT̂
k
mgijT̂

l
nŪ j

l = gmn, (3.21)
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or
U×̂g×̂U † = g. (3.22)

So, we put g = Î to achieve consistency with the definition (3.2). Obviously,
this does not mean that Î is conserved by the unitary matrix in the sense
UÎU † = Î. Instead, the matrix

Ũ = UT̂ , (3.23)

with Ũ † = T̂U †, plays such a role, namely, we have from Eq.(3.22)

Ũ ÎŨ † = Î , (3.24)

which is consistent with the definition (3.2).
Note that the scalar product (3.18), with g = Î, is Hermitean since Î is

real symmetric positive definite matrix (Hermitean, Î† = I).

3.2.3 Action of orthogonal group

Similarly, group O(n,C, ×̂) conserves the following scalar product:

〈x1, x2〉R =
n∑

i,j=1

Îijx
i
1x

j
2, (3.25)

where x1,2 ∈ Rn, or explicitly,

〈x1, x2〉R = q1x
1
1x

1
2 + q2x

2
1x

2
2 + · · ·+ qnx

n
1x

n
2 . (3.26)

This scalar product defines Euclidean space Rn having the metrics Î,

〈x, x〉 =
n∑

i=1

qi(x
i)2, (3.27)

i.e. metric tensor is
gij = qiδij. (3.28)

We denote Euclidean space Rn equipped by the metrics (3.28) by Rn
q . The

matrix conserving the above scalar product is

Õ = OT̂ , (3.29)
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i.e.
ÕÎÕt = Î . (3.30)

Note that
〈z, z〉C = 〈x, x〉R, (3.31)

as in the usual case.
In terms of the algebra M(n,C, ×̂), the above unitarity and orthogonality

definitions mean that the matrix Î is an invariant. In terms of the usual alge-
bra M(n,C) and geometry, they mean that the metric tensor T̂ is transformed
to metric tensor Î; see Eqs.(3.2) and (3.7). In the limiting case Î = I = T̂ ,
we have conservation of metric tensor δij. This situation can be readily un-
derstood in terms of duality property (2.25) of algebra M(n,C, ×̂). Namely,
the definitions relate dual spaces, the one equipped by the metric (3.28) and
the other equipped by the metric T̂ ,

gdual
ij =

1

qi

δij, (3.32)

which are simply inverse to each other, and coincide when Î = I = T̂ .
Note that the above space Rn

q with metrics (3.27) can not be obtained
from Euclidean space Rn by dilation, x 7→ λx, except for one-dimensional
case. Instead we have transformation

xi 7→ x̂i = xi/
√

qi, (3.33)

which we call inhomogeneous dilation, x̂ ∈ Rn
q . So the map I 7→ Î does not

correspond in general to any linear conformal transformation of Rn. Only
when q1 = q2 = · · · = qn this is the case. The transformation (3.33) can be
thought of as that it gives the coordinates xi different weights.

Accordingly, using of the general form (2.40) of unit Î assumes, in general,
different weights of the coordinates in contrast to equal weights provided by
the standard unit I.

The equations gijx
ixj = (Det Î)2 and gdual

ij xixj = (Det T̂ )2 define funda-
mental ellipsoids,

q1(x
1)2 + q2(x

2)2 + · · ·+ qn(xn)2 = (q1q2 · · · qn)2, (3.34)
1

q1

(x1)2 +
1

q2

(x2)2 + · · ·+ 1

qn

(xn)2 =
1

(q1q2 · · · qn)2
, (3.35)
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corresponding to Î and T̂ , respectively. They are regular (n−1)-hypersurfaces
in Rn. In usual terms, definitions of the unitarity and orthogonality are such
that corresponding matrices transform the second ellipsoid to the first one.
The sphere

∑
(xi)2 = 1 lies between the ellipsoids, and is a limiting case of

both the ellipsoids.
The following remarks are in order.
(a) In usual geometrical terms, these ellipsoids are not conserving under

the orthogonality group O(n,C, ×̂). So, none of which is a homogeneous
space of this group, and group O(n,C, ×̂) does not act on it transitively in a
usual sense. Indeed, varying matrix O in Eq.(3.7), we observe that they act
on T̂ ÎT̂ = T̂ , which is a fixed matrix, and the result is another fixed matrix
Î. However, in terms of the group O(n,C, ×̂), the ellipsoid (3.34) defined by
Î is conserved due to Eq.(3.7). So this ellipsoid is a homogeneous space of
group O(n,C, ×̂) under the action of this group on it, and every two points
of the ellipsoid can be connected by some O ∈ O(n,C, ×̂) (transitivity).

(b) Also, we see from the above considerations that the matrix of the
form

M̃ = MT̂ (3.36)

is of frequent use. Note that according to Eq.(2.49), we have in general
MT̂ 6= T̂M. We shall see in Sec. 3.3 that matrices of the form MT̂ is also of
use in the Lie algebras. From Eq.(2.37), we see that such matrices correspond
to those described in the vicinity of standard unit I = (δij).

(c) Changing of the definitions of unitarity (3.2) and orthogonality (3.7)
to

U †T̂U = Î , OtT̂O = Î , (3.37)

respectively, yields the same set up as above, with the matrix MT̂ replaced
by T̂M . Note that this corresponds to choosing of the coordinate system
(2.39) instead of (2.37).

3.2.4 Action of pseudo-unitary and pseudo-orthogonal groups

Definitions given in Sec. 3.1 can be extended to the case of pseudo-Euclidean
spaces, with accordingly defined pseudo-unitary group U(m, k,C, ×̂) and
pseudo-orthogonal group O(m, k,R, ×̂).

Let us define the metrics
Ĝr = GÎ, (3.38)
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where
G = diag(1, 1, . . . , 1,−1,−1, . . . ,−1) (3.39)

is metrics of pseudo-Euclidean space Rm,k. Then, definitions of pseudo-
unitary group Ur(m, k,C, ×̂) and pseudo-orthogonal group Or(m, k,R, ×̂)
are, respectively,

U×̂Ĝr×̂U † = Ĝr, O×̂Ĝr×̂Ot = Ĝr. (3.40)

These groups conserve the metrics Ĝr. The other possible definition of met-
rics,

Ĝl = ÎG, (3.41)

leads to the definitions of other groups, Ul(m, k,C, ×̂) and Ol(m, k,R, ×̂),

U×̂Ĝl×̂U † = Ĝl, O×̂Ĝl×̂Ot = Ĝl, (3.42)

since in general GÎ 6= ÎG. Also, note that

[Ĝr, Ĝl] = GÎÎG− ÎGGÎ 6= 0 (3.43)

and
[Ĝr, Ĝl]×̂ = GÎG− ÎGT̂GÎ 6= 0. (3.44)

The groups Ul(m, k,C, ×̂) and Ol(m, k,R, ×̂) conserve the metrics Ĝl. Evi-
dently, these definitions of the groups are directly equivalent to that in respect
to (3.38) if and only if pseudo-Minkowskian metrics G and unit Î commute,
GÎ = ÎG, so that Ĝr and Ĝl coincide,

Ĝr = Ĝl = Ĝ, (3.45)

and we can put
U×̂Ĝ×̂U † = Ĝ, O×̂Ĝ×̂Ot = Ĝ, (3.46)

for definitions of pseudo-unitary group U(m, k,C, ×̂) and pseudo-orthogonal
group O(m, k,R, ×̂), respectively. This is the case only for diagonal form of
the unit Î because in general only diagonal matrices commute with pseudo-
Minkowskian metrics G.

Note that due to the inner automorphism (2.26), ρ1 : Ĝr 7→ Ĝl, namely,
Ĝl = ÎĜrT̂ , so that Ĝr and Ĝl are elements conjugated to each other in
GL(n,C, ×̂), and the groups Ur(m, k,C, ×̂) (Or(m, k,R, ×̂)) and Ul(m, k,C, ×̂)
(Ol(m, k,R, ×̂)) are conjugated to each other, as subgroups of GL(n,C, ×̂).
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3.3 Matrix exponent and Lie algebras

Tangent spaces in the vicinity of the unit Î for the above groups are cor-
responding Lie algebras, gl(n,C, ×̂), sl(n,C, ×̂), u(n,C, ×̂), and o(n,R, ×̂),
which are well defined Lie algebras, as in the usual case.

The map from the tangent spaces to the groups is achieved by matrix
exponent. The matrix exponent is defined, as usually, due to its formal
series expansion. In M(n,C, ×̂), we define

êM =
∞∑

n=0

M n̂

n!
, (3.47)

where the n̂-power of matrix M is defined in accord to Eq.(2.18), and we put

ê0 = Î . (3.48)

Explicitly,

êM = Î + M +
1

2!
M×̂M + · · · . (3.49)

This series expansion converges due to Eqs.(2.32) and (2.33). Then, one can
easily prove using Eqs. (3.47) and (3.48) that

êM+N = êM×̂êN , for ×̂-commuting matrices M and N, (3.50)

If M = êX , then exists M−1 = ê−X , (3.51)

êXt

= (êX)t. (3.52)

The above definition of matrix exponent defines local coordinates in the
tangent space of group in the vicinity of unit element Î of the group which
have the following explicit form:

xi
j(M) = (ln M)i

j = (M − Î)i
j − · · · , (3.53)

where M is a group element. This map is one-to-one correspondence in some
vicinity of the point xi

j(M) = 0.

The matrix exponent in M(n,C, ×̂) is simply related to the usual matrix
exponent by

êM = ÎeT̂M , M ∈ GL(n,C, ×̂), (3.54)
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with e0 = I. Indeed, by using power expansion we have

êM = Î+M +
1

2!
MT̂M +· · · = Î(I+T̂M +

1

2!
T̂MT̂M +· · · ) = ÎeT̂M . (3.55)

The following remarks are in order. In fact, we need only in the vicinity
of unit Î when dealing with Lie algebras. In general, matrix exponent is
not one-to-one correspondence when it is extended to the whole group; well
known example is usual SL(2,R).

Note that there is an alternative relation,

êM = eMT̂ Î , (3.56)

between the matrix exponents. This relation is equivalent to (3.55), in the
algebra M(n,C, ×̂). Indeed, let us check that the r.h.s. of (3.54) ×̂-commute
with the r.h.s. of (3.56), in the vicinity of unit,

[eMT̂ Î , ÎeT̂M ]×̂ = eMT̂ ÎeT̂M − ÎeT̂M T̂ eMT̂ Î (3.57)

' (I + MT̂ )Î(I + T̂M)− Î(I + T̂M)T̂ (I + MT̂ )Î

= (I + 2M + MT̂M)− (I + 2M + MT̂M) = 0,

where we have dropped higher order terms.
Using the matrix exponent (3.47) we can prove that if M ∈ SL(n,C, ×̂),

i.e. Det M = Det Î, then algebra sl(n,C, ×̂), as a tangent space of the group
in the vicinity of unit Î, consists of matrices X such that

Trace XT̂ = 0, (3.58)

and vice versa.
Indeed, let Trace XT̂ = 0. For M(t) = êtX we have

M(t1 + t2) = M(t1)×̂M(t2), (3.59)

where we used the fact that M(t1) = êt1X and M(t2) = êt2X ×̂-commute.
Therefore,

Det M(t1 + t2) = Det M(t1)Det T̂Det M(t2). (3.60)

Solution for this equation is given by F (t) ≡ Det M(t) = c1e
c2t, where c1,2

are constants. Evidently, c1 = (Det T̂ )−1 = Det Î. On the other hand,

F (t) = Det êtX = Det (Î + tX + o(t)) = Det (I + tT̂X + o(t))Î (3.61)

= (t Trace XT̂ + o(t))(Det Î).
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So, if Trace XT̂ = 0 then

c2 =
1

c1

dF

dt |t=0
= Trace XT̂ = 0. (3.62)

Thus we have, finally, F (t) = Det Î, i.e. Det M = Det Î. It can be easily
shown that, vice versa, if Det M = Det Î then Trace XT̂ = 0.

Comparing this to the usual relation, Trace X = 0, for sl(n,C) we see
some modification. Let us denote

T̂race M = Trace MT̂ . (3.63)

One can verify that Trace M is not conserved under unitary transformation
while T̂race M does. Indeed, let us make unitary transformation,

M 7→ M ′ = U×̂M×̂U †, (3.64)

where unitary matrix U is given by (3.2). Then,

T̂race M ′ =
∑

M ′
ijT̂

ji =
∑

(UikT̂
kmMmnT̂

nlU †
lj)T̂

ji (3.65)

=
∑

ÎklT̂
kmMmnT̂ nl =

∑
δm
l MmnT̂ nl =

∑
MmnT̂

nm = T̂race M,

where we used the unitarity condition
∑

U †
ljT̂

jiUik = Îlk, and the fact that∑
ÎklT̂

km =
∑

ÎlkT̂
km = δm

l .
Below, we investigate explicitly relations between the groups U(n,C, ×̂),

O(n,R, ×̂) and their tangent spaces.
Let us consider vicinity of the unit Î of the group U(n,C, ×̂). Let U(t) ∈

U(n,C, ×̂) and U(0) = Î, where t is parameter. Then, we have

U(t)×̂U †(t) = Î ,
dU

dt
|t=0 = X, (3.66)

where X belongs to tangent space of U(n,C, ×̂) in the vicinity of Î. Differ-
entiating first equation of (3.66), we have

d

dt
(UT̂U †)|t=0 = [

dU

dt
T̂U † + UT̂

dU †

dt
]|t=0 (3.67)

= XT̂ Î + Î T̂X† = X + X† = 0.
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So, u(n,C, ×̂) consists of the skew-Hermitean matrices,

X = −X†. (3.68)

Similarly, it can be shown that if O ∈ O(n,R, ×̂) is orthogonal matrix
then matrices from the tangent space in the vicinity of unit of this group are
skew-symmetric, and vice versa. Indeed, for X such that

X = −X t, (3.69)

we have
O×̂Ot = êX×̂(êX)t = êX×̂êXt

= êX+Xt

= Î , (3.70)

where we used Eqs.(3.50) and (3.52), and the fact that X and X t are ×̂-
commuting matrices.

For the tangent space elements X of pseudo-unitary group U(m, k,C, ×̂)
and pseudo-orthogonal group O(m, k,C, ×̂), it is an easy exercise to obtain
from Eqs.(3.46) the usual relations,

XG + GX† = 0, XG + GX t = 0, (3.71)

respectively, where G is matrix of pseudo-Euclidean metrics (3.39). For ex-
ample, for the pseudo-unitary group U(m, k,C, ×̂) we have

d

dt
(UT̂ ĜT̂U †)|t=0 = [

dU

dt
T̂ ĜT̂U † + UT̂ ĜT̂

dU †

dt
]|t=0 (3.72)

= X(T̂GÎT̂ )Î + Î(T̂GÎT̂ )X† = XG + GX† = 0,

where we have assumed that the matrices G and Î commute and thus Î is
diagonal matrix; see remark below Eq.(3.46). In general, we have instead of
(3.71),

XT̂GÎ + GX† = 0, XT̂GÎ + GX t = 0, (3.73)

for the groups Ur(m, k,C, ×̂) and Or(m, k,R, ×̂), respectively, where Ĝ =
GÎ ≡ Ĝr, and

XG + ÎGT̂X† = 0, XG + ÎGT̂X t = 0, (3.74)

for the groups Ul(m, k,C, ×̂) and Ol(m, k,R, ×̂), respectively, where Ĝ =
ÎG ≡ Ĝl. The definitions (3.73) and (3.74) can be rewritten in a compact
natural form,

X×̂Ĝ + Ĝ×̂X† = 0, X×̂Ĝ + Ĝ×̂X t = 0, (3.75)
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where Ĝ = Ĝr, or Ĝ = Ĝl.
To prove that the above tangent spaces indeed are Lie algebras one must

show that the following properties hold:

1) If Trace M = 0 and Trace N = 0 then Trace [M, N ]×̂ = 0.

2) If M t = −M and N t = −N then [M, N ]t×̂ = −[M,N ]×̂.

3) If M † = −M and N † = −N then [M, N ]†×̂ = −[M,N ]×̂.

In fact, by this one shows that the spaces sl(n,C, ×̂), o(n,R, ×̂), and
u(n,C, ×̂) are closed in respect to ×̂-commutator.

Note that the unit Î is subject to Trace, Transpose and Complex conju-
gate operations in the above 1)-3). Let us put the following restrictions on
Î:

Trace Î 6= 0, Î t = Î ,
¯̂
I = Î , (3.76)

i.e. Î is real symmetric matrix with non-zero trace. Particularly, the form
(2.40) obeys the requirements (3.76).

Then, it is easy to check that the properties 1)-3) hold for any Î obeying
(3.76). Namely, we have

1) Trace [M, N ]×̂ = Trace MT̂N − Trace NT̂M (3.77)

= Trace MT̂N − Trace MT̂N = 0.

2) [M, N ]t×̂ = (MT̂N)t − (NT̂M)t = N tT̂ tM t −M tT̂ tN t(3.78)

= N tT̂M t −M tT̂N t = NT̂M −MT̂N

= −[M,N ]×̂.

Similarly, for 3).
In the same manner, one can prove that tangent spaces of U(m, k,C, ×̂)

and O(m, k,R, ×̂) are Lie algebras in respect to ×̂-commutator.

3.4 Restrictions on the form of unit

We are now in a position to collect all the restrictions on the form of Î
stemming from consideration made in the present paper.
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1) To have well defined inverse needed to set up ×̂-product, Î must be
non-degenerate; see Sec. 2.1.

2) To define positive norm in space of matrices, it must be matrix of
positive definite symmetric form; see Sec. 2.3.

3) To have positive norm, it must have positive trace; see Sec. 2.3.
4) To be in the homotopy class of I, it must have positive values of the

diagonal elements, for diagonal form of Î; see Sec. 2.4.
5) For consistent definitions of algebras of orthogonal and unitary groups,

it must be symmetric and Hermitean, respectively; see Sec. 3.3.
6) To have conventional definitions of algebras of pseudo-unitary and

pseudo-orthogonal groups, it must commute with the matrix of pseudo-
Euclidean metrics. This means that Î must be of diagonal form since sym-
metricity of Î is not sufficient here; see Sec. 3.3.

All these requirements taken together put strong limitation on the form
of Î, confining us with the choice made in Sec. 2.4. Namely, the family of
possible units consists of diagonal n×n matrices with positive real elements,

Î = diag(q1, q2, . . . , qn), qi > 0. (3.79)

3.5 Infinite dimensional case

Most of the definitions and properties of M(n,C, ×̂) studied in previous sec-
tions can be readily extended to infinite dimensional case, n = ∞. Here, the
unit is, evidently,

Î = diag(q1, q2, . . . , qi, . . . ), Î ∈ M(∞,C, ×̂), (3.80)

and the ×̂-product is as usual; see Eq.(2.3). Further, in the continuous limit
we have the unit

Îp′p = Î(p′)δ(p′ − p), (3.81)

and the product,

(M×̂N)p′p =

∫
dp′′dp′′′ Mp′p′′T̂p′′p′′′Np′′′p, (3.82)

where
T̂p′p = Î−1(p′)δ(p′ − p). (3.83)

26



One of the applications of M(∞,C, ×̂) and its continuous limit, which would
be of interest to investigate is quantum mechanics. It is well known that
quantum mechanical Hermitean operators in any representation can be given
in the form of infinite dimensional matrices.

Considering action of Lie groups on classical spaces, in Sec. 3.2, we have
seen that the coordinates xi are given with different weights

√
qi by the

general form of unit Î, in contrast to equal weights, qi = 1, ascribed to the
coordinates by standard unit I.

Such a property is quite natural in quantum mechanics when one deals
with quantum mechanical ensemble of pure states realized with different
probabilities, i.e. the pure states are given with different weights, and form
mixed state. This formalism concerns von Neumann’s density matrix and
canonical ensembles. Let us see on the standard quantum mechanical defini-
tion of the density matrix,

ρmn =
∑

Pkc̄mkckn, (3.84)

where Pk are the weights, Pk > 0,
∑

Pk = 1, and ckn are amplitudes, and
compare it with the ×̂-product (2.3). We see that the density matrix ρ is
obtained by ×̂-product,

ρ = c̄T̂ c, (3.85)

of the amplitude matrices, where T̂ = diag(P1, P2, . . . , Pk, . . . ). In quantum
mechanics, diagonal elements of the density matrix,

wn = ρnn =
∑

Pk|ckn|2, (3.86)

is density of probability to find observable in state |n〉, in the mixed ensemble.
For example, in coordinate representation,

ρ(x, x′, t) =
∑

k

Pkψ
∗
k(x

′)ψk(x), (3.87)

and
w(x, t) = ρ(x, x, t) =

∑

k

Pk|ψk(x)|2 (3.88)

is density of probability for coordinate x, in the mixed state ensemble.
From the above sketch we see that pure states can be associated to the

standard form of unit while mixed states can be associated to general form
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of unit (3.80), with the identification Pk = 1/qk and normalization condition
Trace T̂ = 1. Then, ψk are seen as components of vector in space R∞q , and

(3.88) is scalar product in R∞q given by the dual metrics g = T̂ ; see Eq.(3.32).
Also, we have many examples of using weight functions in functional

analysis. For example, well known space L2,ρ[a, b] of complex functions is a
Hilbert space if one define scalar product as [7]

〈f, g〉 =

b∫

a

dxρ(x)f(x)ḡ(x), (3.89)

where weight function ρ(x) is real and positive, in the region [a, b]. Suppose
that polynomials pn(x) constitute orthogonal system, i.e.

δmn =

b∫

a

dxρ(x)pm(x)pn(x). (3.90)

Then, up to constant factors, for ρ(x) = 1, a = −1, b = 1 we obtain Legendre
polynomials, for ρ(x) = exp{−x2}, a = −∞, b = +∞ we obtain Chebyshev-
Hermite polynomials, and for ρ(x) = exp{−x}, a = 0, b = +∞ we obtain
Chebyshev-Lagerre polynomials.

The above examples are given just to stress that some elements of infinite
dimensional (discrete or continuous) case of M(n,C, ×̂), where unit is not
necessarily of standard form, are well established in quantum mechanics of
mixed states and in functional analysis. In both the cases, their discrete
finite-dimensional limit leads to consideration of M(n,C, ×̂) equipped by unit
of a general form (3.79).

In finite dimensional case, there is the following example where inhomoge-
neous dilation (3.33) is explicitly used. For system of N point particles with
different masses, in three dimensional Euclidean space we have the following
Lagrangian:

L =
1

2

3N∑
i=1

miẋ
2
i − U(xi), (3.91)

where ~xk = (xk, xk+1, xk+2) are coordinates of the particles, and mk =
mk+1 = mk+2, k = 1, . . . , 3N − 3. Introducing x′i =

√
mixi, one can rewrite
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the above Lagrangian as

L =
1

2

3N∑
i=1

ẋ′
2

i − U(x′i). (3.92)

The same transformation of coordinates can be used in the case of Schrödinger
equation for system of N particles.

4 Examples

4.1 Algebra so(3,R, ×̂) and group SO(3,R, ×̂)

We start our consideration of examples of matrix Lie algebras and groups
with the general form of unit by so(3,R, ×̂).

Let us briefly recall usual so(3,R) algebra. Basic elements of this algebra
are 3× 3 skew-symmetric matrices,

X1 =




0 0 0
0 0 1
0 −1 0


 , X2 =




0 0 −1
0 0 0
1 0 0


 , X3 =




0 1 0
−1 0 0
0 0 0


 .

(4.1)
They satisfy commutation relations, [X1, X2] = X3, [X3, X1] = X2, [X2, X3] =
X1.

One can construct non-skew-symmetric matrices

X̂i = XiÎ , or X̂i = ÎXi, (4.2)

where the unit matrix is

Î = diag(a1, a2, a3), (4.3)

identically satisfying the ×̂-commutation relations,

[X̂1, X̂2]×̂ = X̂3, [X̂3, X̂1]×̂ = X̂2, [X̂2, X̂3]×̂ = X̂1. (4.4)

Indeed, e.g., for the first ×̂-commutator we have

X̂1T̂ X̂2−X̂2T̂ X̂1 = X1Î T̂X2Î−X2Î T̂X1Î = (X1X2−X2X1)Î = X3Î . (4.5)
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However, these X̂i matrices can not be used to construct the group
SO(3,R, ×̂), except for the trivialized case, a1 = a2 = a3, which makes
X̂i’s skew-symmetric. Indeed, only skew-symmetric matrices correspond to
orthogonal group; see Eq.(3.69).

To construct appropriate X̂i’s with general values of the parameters ai,
we proceed as follows. First, we calculate for ordinary Xi’s given by (4.1)
the commutators, XiÎXk − XkÎXi. They are X1ÎX2 − X2ÎX1 = a3X3,
X3ÎX1 − X1ÎX3 = a2X2, and X2ÎX3 − X3ÎX2 = a1X1. Then, we use the
duality property (2.21) of the ×̂-commutator, and see that the matrices X̂i

of the form
X̂i = ÎXiÎ , (4.6)

are skew-symmetric by construction, namely,

X̂1 =




0 0 0
0 0 a2a3

0 −a2a3 0


 , X̂2 =




0 0 −a1a3

0 0 0
a1a3 0 0


 , (4.7)

X̂3 =




0 a1a2 0
−a1a2 0 0

0 0 0


 ,

and satisfy the commutation relations

[X̂1, X̂2]×̂ = a3X̂3, [X̂3, X̂1]×̂ = a2X̂2, [X̂2, X̂3]×̂ = a1X̂1. (4.8)

Corresponding matrix exponents, namely, Ôi(t) = êtX̂i , obtained by use of
Eq.(3.56) are of the following form:

Ô1 =




a1 0 0
0 a2 cos

√
a2a3t

√
a2a3 sin

√
a2a3t

0 −√a2a3 sin
√

a2a3t a3 cos
√

a2a3t


 , (4.9)

Ô2 =




a1 cos
√

a1a3t 0 −√a1a3 sin
√

a1a3t
0 a2 0√

a1a3 sin
√

a1a3t 0 a3 cos
√

a1a3t


 , (4.10)

Ô3 =




a1 cos
√

a1a2t
√

a1a2 sin
√

a1a2t 0
−√a1a2 sin

√
a1a2t a2 cos

√
a1a2t 0

0 0 a3


 . (4.11)
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Simple but tedious algebra shows that these matrices have determinants
equal to Det Î = a1a2a3, and satisfy orthogonality condition (3.7). We can
conclude that linear combinations of these basic elements constitute group
SO(3,R, ×̂).

Action of the Ôi’s on vector r = (x1, x2, x3) is of the form ÔiT̂ r, so we
present the matrices Õi = ÔiT̂ , which are of practical use, below.

Õ1 =




1 0 0

0 cos
√

a2a3t
√

a2/a3 sin
√

a2a3t

0 −
√

a3/a2 sin
√

a2a3t cos
√

a2a3t


 , (4.12)

Õ2 =




cos
√

a1a3t 0 −
√

a1/a3 sin
√

a1a3t
0 1 0√

a3/a1 sin
√

a1a3t 0 cos
√

a1a3t


 , (4.13)

Õ3 =




cos
√

a1a2t
√

a1/a2 sin
√

a1a2t 0

−
√

a2/a1 sin
√

a1a2t cos
√

a1a2t 0
0 0 1


 . (4.14)

4.2 The groups SO(2,R, ×̂) and U(1,C, ×̂)

According to the results of Sec. 4.1, elements of the group SO(2,R, ×̂) are of
the form

Ô =

(
a1 cos

√
a1a2t

√
a1a2 sin

√
a1a2t

−√a1a2 sin
√

a1a2t a2 cos
√

a1a2t

)
. (4.15)

This expression is instead of the matrix of usual rotation of Euclidean plane.
We are interested in the group U(1,C, ×̂), from which, by making it

real, the group O(2,R, ×̂) can be obtained. We recall that in the usual case
elements of U(1) are complex numbers of unit module, eit. The representation
(4.15) can be reproduced by the following realization map.

First, we note that for the 2 × 2 unit matrix Î = diag(a1, a2), we have
Det Î = a1a2, and Det Ô = a1a2 = Det Î, as it should be for special ortho-
gonal matrices. We introduce the complex number

ξ = Det Î exp{i
√

Det Ît}, (4.16)

and the matrix

Ĵ =
√

Det Î

(
0 1
−1 0

)
. (4.17)
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Observe that |ξ| = Det Î, and matrix Ĵ has the following properties:

Det Ĵ = Det Î , J 2̂ ≡ Ĵ T̂ Ĵ = −Î , (4.18)

and does not commute with Î,

Î Ĵ − Ĵ Î =
√

Det Î(a1 − a2)

(
0 1
1 0

)
. (4.19)

However, it ×̂-commute with Î, namely,

Î×̂Ĵ − Ĵ×̂Î = 0. (4.20)

Also, note that particularly, Ô(0) = Î and Ô(π/2) = Ĵ .
Then, it can be verified that the realization map is given by

Ô = r(ξ) ≡ Re ξ(Det T̂ )Î + Im ξ(Det T̂ )Ĵ . (4.21)

Indeed, Re ξ = Det Î cos
√

a1a2t, Im ξ = Det Î sin
√

a1a2t, and multiplying

these by (Det T̂ )Î and (Det T̂ )Ĵ , respectively, we reproduce, after summing
up, the representation (4.15). Note that determinant of the realization map
matrix is

Det r(ξ) = |ξ|, (4.22)

and matrix r ×̂-commute with Ĵ due to Eq.(4.20) that means that Ĵ is indeed
an operator of complex character.

Thus, elements of U(1,C, ×̂) are of the form (4.16), with product of the
complex numbers given trivially by

ξ3 = ξ1×̂ξ2 ≡ ξ1(Det T̂ )ξ2, ξ1,2,3 ∈ U(1,C, ×̂), (4.23)

where Det T̂ = 1/(a1a2) is a real number, and a1 and a2 are fixed positive
real numbers.

Note that the matrix product in SO(2,R, ×̂) is Ô1T̂ Ô2 while in U(1,C, ×̂)
the product is due to the above rule, where Det T̂ is used instead of T̂ . Due
to the realization map (4.21), the groups SO(2,R, ×̂) and U(1,C, ×̂) are
isomorphic to each other.

An important remark here is that in the realization map (4.21) we used
the fact that −Ĵ T̂ Ĵ = Î due to Eq.(4.18). By this, we achieved isomorphism
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between SO(2,R, ×̂) and U(1,C, ×̂). Indeed, one can see from the form
(4.16) of ξ that the group U(1,C, ×̂) is characterized by one independent
parameter, a = Det Î = a1a2, while SO(2,R, ×̂) is characterized by two
independent parameters, a1 and a2. So, if we were used the matrix −Ĵ2 =
Ĵ Ĵ = (Det Î)I as a unit matrix we would obtain SO(2,R, ×̂) characterized
by the only parameter, a, instead of the two parameters, a1 and a2. Namely,
the unit would be of trivialized form a1a2diag(1, 1), and elements of group
SO(2,R, ×̂) would be of form,

Ô =
√

a1a2

(
cos

√
a1a2t sin

√
a1a2t

− sin
√

a1a2t cos
√

a1a2t

)
. (4.24)

Thus, the lesson is that we should use −Ĵ T̂ Ĵ rather than −Ĵ Ĵ to define the
unit matrix in realization map. Certainly, we have some features stemming
from real dimensionality two. See Sec. 4.5 for general consideration of the
realization map, n > 2.

For convenience and to have consistence with general definition (3.9), we
take ξ ∈ U(1,C, ×̂) in the form (4.16). Note that we can replace Det Î by
any real parameter but we are using Det Î to keep explicit correspondence
with SO(2,R, ×̂).

In fact, it does not matter which non-zero value the module of ξ has
because it can be absorbed by appropriate definition of the product (4.23)
and associated realization map (4.21). For example, we can put

ξ =
√

Det Î exp{i
√

Det Ît} provided that Det T̂ in Eqs.(4.23) and (4.21)

is replaced by
√

Det T̂ , obtaining the same result. Moreover, we can put

simply ξ = exp{i
√

Det Ît}, i.e. |ξ| = 1, and, accordingly, delete Det T̂ in
Eqs.(4.23) and (4.21).

This demonstrates the fact that group U(1,C, ×̂) is isomorphic to usual

U(1), up to the factor
√

Det Î in the argument of complex number. This

factor is of importance since
√

Det Î is fixed, and

exp{i
√

Det Ît1} exp{i
√

Det Ît2} = exp{i
√

Det Î(t1 + t2)} (4.25)

is again element of U(1,C, ×̂) for any t1 and t2, while, for example,

exp{i
√

Det Ît1} exp{it2} (4.26)
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is not element of the group for any t1 and t2.
In other words, U(1,C, ×̂) consists of complex numbers ξ with modules

|ξ| = Det Î and arguments Arg ξ dividable to
√

Det Î, i.e. arguments mod-

ulo number
√

Det Î.

4.3 Action of the group U(1,C, ×̂)

Let us consider the action of group U(1,C, ×̂).
While U(1) linearly transforms C equipped by standard metrics |z|2 =

x2 + y2, the group U(1,C, ×̂) must conserve, by definition (3.2), metrics

|z|2̂ = a1x
2 + a2y

2, which is not conformally equivalent to standard metrics
|z|2. In fact, we see that group U(1) ⊂ C and produces motion of C = R2

while group U(1,C, ×̂) ⊂ C and produces, with the action defined by (3.19),
motion of Cq = R2

q, where R2
q is Euclidean (flat) space equipped by the

metrics a1x
2 + a2y

2.
The fact that we can rescale module of ξ ∈ U(1,C, ×̂) to 1 without loss

of generality corresponds to conformal equivalence of metrics a1x
2 +a2y

2 and
b(a1x

2 + a2y
2), where b is a real constant.

We are interested to find out transformation of Cq corresponding to ro-
tation (4.15) of the space R2

q.

Let us consider action of SO(2,R, ×̂) on R2
q. Action of (4.15) on vector

r = (x, y) reads Ô×̂r, namely,

ÔT̂ r =

(
cos

√
a1a2t

√
a1/a2 sin

√
a1a2t

−
√

a2/a1 sin
√

a1a2t cos
√

a1a2t

)(
x
y

)
. (4.27)

The matrix Õ = ÔT̂ has the following particular values:

Õ(0) = I, Õ(π/2) = Ĵ T̂ = (Det T̂ )Î Ĵ . (4.28)

The transformation (4.27) is of linear form,
(

a b
−c a

)(
x
y

)
, (4.29)

where a, b, and c are real parameters. However, linear transformation of
complex space, z 7→ λz, where λ = (a + ib), z = (x + iy) ∈ C, results in

(
a b
−b a

)(
x
y

)
. (4.30)
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Obviously, the use of modified transformation z 7→ λ×̂z = λ(Det T̂ )z does
not yield transformation of the form (4.29) because this causes just additional
dilation by real factor Det T̂ .

So, we are led to consider transformation of the general form, z 7→ F (z, z̄).
Let us consider standard R2 and make the inhomogeneous dilation (3.33) of
its coordinates,

x′ = x/
√

a1, y′ = y/
√

a2. (4.31)

Then, r2 = x2 + y2 becomes

r2 = a1x
′2 + a2y

′2 = r′Îr′ = r′2̂. (4.32)

Since a1,2 > 0 the transformation (4.31) is invertible and well defined. As-
sociated Jacobi matrix is the same as the transformation matrix of (4.31),
namely, (

1/
√

a1 0
0 1/

√
a2

)
= +

√
T̂ (4.33)

and Jacobian is Det T̂ . This transformation obviously provides the map
R2 7→ R2

q due to Eq.(4.32); r = (x, y) ∈ R2, r′ = (x′, y′) ∈ R2
q.

In terms of complex coordinates, using x = (z + z̄)/2, y = (z − z̄)/2i we
obtain from transformation (4.31)

z′ =
z + z̄

2
√

a1

+
z − z̄

2
√

a2

, z̄′ =
z + z̄

2
√

a1

− z − z̄

2
√

a2

, (4.34)

or

z′ = (
1

2
√

a1

+
1

2
√

a2

)z + (
1

2
√

a1

− 1

2
√

a2

)z̄ ≡ f(z, z̄), (4.35)

z̄′ = (
1

2
√

a1

+
1

2
√

a2

)z − (
1

2
√

a1

− 1

2
√

a2

)z̄ = f(z,−z̄). (4.36)

Function f in transformation (4.35) depends on z̄, and thus it is not com-
plex analytic function, ∂f/∂z̄ 6≡ 0, which thus makes non complex analytic
transformation of complex plane C. We write for this case C 7→ Cq, only
for the purpose to be not confused by the usual convention that transfor-
mation of complex plane, C 7→ C, means complex analytic transformation.
Accordingly, we write z′ ∈ Cq.

Function f(z, z̄) is a sum of holomorphic and antiholomorphic functions,
f(z, z̄) = f1(z) + f2(z̄), each of which is a linear function of its argument.
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Below, we make various linear transformations of complex plane C, namely,
C 7→ C, and analyze what kind of transformations they induce in complex
plane Cq, namely, Cq 7→ Cq.

Let us make linear complex analytic transformation of C, namely, z 7→ λz,
and see its image in Cq. We observe from (4.35) that f1(z) becomes λf1(z)
while f2(z̄) remains intact, and thus we have no linear transformation of Cq

which is of the form z′ 7→ λz′. By construction, this describes the action of
group U(1), for |λ| = 1. So, the image of U(1)-action on C is some non-linear
transformation in Cq.

By making linear non complex analytic transformation of C, namely,
z 7→ λ(z + z̄), we readily obtain that the image of this transformation in Cq

is linear complex analytic transformation, z′ 7→ λz′, of Cq. However, this still
does not describe the action of group U(1,C, ×̂).

By making linear non complex analytic transformation of C, namely,
z 7→ λ(z + z̄) + µ(z − z̄), we obtain the image of this transformation in Cq

which is linear non complex analytic transformation of Cq that corresponds
to the action of group U(1,C, ×̂).

Indeed, by choosing complex numbers in the form

λ =
1

2
(
√

a1a + i
√

a2b), µ =
i

2
(
√

a1b− i
√

a2a), (4.37)

where a and b are arbitrary real numbers, and making non complex analytic
transformation of Cq as above,

z′ 7→ λ(z′ + z̄′) + µ(z′ − z̄′), (4.38)

we obtain directly the following associated transformation of R2
q:

(
x′

y′

)
7→

(
a

√
a2/a1b

−
√

a1/a2b a

)(
x′

y′

)
, (4.39)

which is of the desired form (4.29).

4.4 Group SO(1, 1,R, ×̂)

In the usual setting of group SO(1, 1,R), we have the generator of the form

X =

(
0 1
1 0

)
, (4.40)
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and the usual matrix exponent gives us elements of the proper group in the
form

O =

(
cosh φ sinh φ
sinh φ cosh φ

)
. (4.41)

This matrix is pseudo-orthogonal, OGOt = G, where G = diag(1,−1),
and Det O = 1, so that the scalar product xGx = (x0)2 − (x1)2 is con-
served; x0 and x1 are local coordinates of two-dimensional pseudo-Euclidean
(Minkowski) space M2. Also, there is a smooth path from O to I = diag(1, 1).

In the group SO(1, 1,R, ×̂), the unit is Î = diag(a0, a1); T̂ = (Î)−1. The
generator can be chosen here as X̂ = ÎXÎ (see Sec. 4.1),

X̂ = a0a1

(
0 1
1 0

)
, (4.42)

which supplies us, by the help of the matrix exponent êφX = eφXT̂ Î, with
elements of the group having the form (cf. Eq.(4.15))

Ô =

(
a0cosh

√
a0a1φ

√
a0a1sinh

√
a0a1φ√

a0a1sinh
√

a0a1φ a1cosh
√

a0a1φ

)
. (4.43)

This matrix conserves the scalar product

xĜx = a0(x
0)2 − a1(x

1)2, (4.44)

where metrics is

Ĝ = ÎG =

(
a0 0
0 −a1

)
, (4.45)

in the sense that
Ô×̂Ĝ×̂Ôt ≡ ÔT̂ ĜT̂ Ôt = Ĝ. (4.46)

Also, Ô can be continuously connected to the identity transformation Î by
φ → 0. It is instructive to check the above pseudo-orthogonality (4.46), where
T̂ = diag(1/a0, 1/a1) is used for the product, since Ô(ψ)×̂Î×̂Ôt(ψ) 6= Î, as it
might seem; in fact, this is equal to Ô with double angle (!), Ô(ψ)×̂Î×̂Ôt(ψ) =
Ô(2ψ). Moreover, similar (simple but tedious) calculations show that in ad-
dition to Eq.(4.46), we have

ÔŴ ĜŴ Ôt = Ĝ, (4.47)
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where we have denoted

Ŵ = Ĝ−1 =

(
1/a0 0

0 −1/a1

)
. (4.48)

Our comment here is that we can use the pair (Ĝ, Ŵ ) instead of (Î , T̂ ).
Action of the matrix Ô on r = (x0, x1) is ÔT̂ r, namely,

x′0 = x0cosh ψ + x1

√
a0

a1

sinh ψ, x′1 =

√
a1

a0

x0sinh ψ + x1cosh ψ, (4.49)

where we have denoted ψ =
√

a0a1φ, for brevity. At x1 = 0, we have from
Eq.(4.49)

x′1

x′0
=

√
a1

a0

tanh ψ. (4.50)

In the context of special relativity in two dimensions, x0 = ct, the l.h.s. of
Eq.(4.50) is a relative speed, v/c, of the frame of reference (ct, x1) in respect
to the frame of reference (ct′, x′1). Thus,

tanh ψ =

√
a0

a1

v

c
. (4.51)

Inserting this to Eq.(4.49), we obtain by use of trigonometric relations sinh ψ =
tanh ψ/

√
1− (tanh ψ)2 and cosh ψ = 1/

√
1− (tanh ψ)2,

t′ = t
1√

1− β̂2

+ x1a0

a1

v/c2

√
1− β̂2

, x′1 = t
v√

1− β̂2

+ x1 1√
1− β̂2

, (4.52)

where we have denoted

β̂ =

√
a0

a1

v

c
. (4.53)

Since only the ratio a0/a1 is present in Eq.(4.52), we denote

a =

√
a1

a0

(4.54)

and rewrite it in the form

t′ = (t +
v

a2c2
x1)γ̂, x′1 = (x1 + vt)γ̂, (4.55)
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where γ̂-factor

γ̂ =
1√

1− β̂2

. (4.56)

and β̂ = v/(ac).
The following remarks are in order.
(a) We took without proof that the trigonometric relations used above

in the case of metrics diag(a1,−a2) are the same as they are in the case
of standard pseudo-Euclidean metrics diag(1,−1), and note only that the
spaces are flat in both the cases.

(b) Despite the fact that Î depends on two parameters, a0 and a1, and the
generator X̂ depends on the product a1a2, only their ratio (4.54) appeared
in the transformations (4.55).

(c) We see from Eq.(4.55) that the only distinction from the conventional
Lorentz transformations is that the constant c is replaced by ac. This can
be understood as follows. Making inhomogeneous dilation (rescalements) of
the coordinates, x0 7→ x0/

√
a0 and x1 7→ x1/

√
a1 to obtain metrics G from

Ĝ, we change, by this, slope of the isotropic line, x1 = ct to x1 = act.
(d) One can suppose that such properties extend to consideration of action

of the higher dimensional pseudo-orthogonal group, SO(3, 1,R, ×̂), on the
corresponding four-dimensional Minkowski space-time, with three different
coefficients appearing at c in three main space axises, Ox1, Ox2, and Ox3,
of a chosen coordinate system (space anisotropic behavior). Certainly, this
should be checked by a direct consideration.

4.5 Realization map

The realization map constructed in Sec. 4.2 can be extended to higher di-
mensions in the following way.

First, we note that GL(n,C, ×̂) and GL(m,R, ×̂), m = 2n, in general
have the units parameterized by n and 2n parameters, respectively. In the
two-dimensional case it appeared fortunately that−Ĵ 2̂ = Î exactly for special
choice of the parameters. However, this is not the case in higher dimensions,
n > 2, and some reparameterization is needed to match between the param-
eters.
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Indeed, the 2n× 2n matrix Ĵ has the form,

Ĵ =

(
0 Î

−Î 0

)
. (4.57)

where n×n matrix Î = diag(q1, q2, . . . , qn) is unit in GL(n,C, ×̂). Note that
Det Ĵ = (Det Î)2. The corresponding 2n× 2n unit Î2n in GL(2n,R, ×̂) can
be found by squaring the matrix Ĵ with the help of unit matrix Îgen,

Îgen = diag(a1, a2, . . . , a2n), (4.58)

of GL(m,R, ×̂), m = 2n. Namely,

Î2n = −Ĵ×̂Ĵ = −Ĵ T̂genĴ =

(
K1 0
0 K2

)
, (4.59)

where T̂gen = Î−1
gen and

K1 = diag(q2
1/an+1, q

2
2/an+2, . . . , q

2
n/a2n), (4.60)

K2 = diag(q2
1/a1, q

2
2/a2, . . . , q

2
n/an). (4.61)

Then, the unit matrix Î2n depends on 2n independent parameters, with extra
n independent parameters coming from Îgen. The realization map for matrix
M = A + iB, M ∈ GL(n,C, ×̂), is given by

r(M) = Î2nA + ĴB, r(M) ∈ GL(2n,C, ×̂). (4.62)

However, Î2n is not equal to Îgen even if we identify qi = ai, i = 1, . . . , n.
Indeed, in this case we have K1 = diag(a2

1/an+1, a
2
2/an+2, . . . , a

2
n/a2n) and

K2 = diag(a1, a2, . . . , an). Only after the reparameterizing,

a2
i /an+i 7→ an+i, i = 1, . . . , n, (4.63)

we obtain K1 = diag(an+1, an+2, . . . , a2n), and thus achieve the identification
Î2n = Îgen.

Let us consider the case n = 4 for an illustrative purpose. Let GL(2,C, ×̂)
and GL(4,R, ×̂) have the units

Î =

(
q1 0
0 q2

)
, Îgen =




a1 0 0 0
0 a2 0 0
0 0 a3 0
0 0 0 a4


 , (4.64)
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respectively, and T̂gen = Î−1
gen. Then, Ĵ is

Ĵ =




0 0 q1 0
0 0 0 q2

−q1 0 0 0
0 −q2 0 0


 , (4.65)

and unit Î4 = Ĵ T̂genĴ has the form

Î4 =




q2
1/a3 0 0 0
0 q2

2/a4 0 0
0 0 q2

1/a1 0
0 0 0 q2

2/a2


 . (4.66)

Putting q1 = a1, q2 = a2, and reparameterizing, a2
1/a3 7→ a3 and a2

2/a4 7→ a4,
we reproduce Î4 = Îgen.

4.6 Matrix algebra M(2,C, ×̂)

Let us consider M(2,C) matrix algebra consisting of all 2 × 2 matrices over
the field of complex numbers C.

Additive basis of the matrix algebra M(2,C) consists of unit 2×2 matrix
I and matrices σi,

σ1 =

(
i 0
0 −i

)
, σ2 =

(
0 1
−1 0

)
, σ3 =

(
0 i
i 0

)
. (4.67)

This means that the algebra with the basis

{I, σ1, σ2, σ3}, (4.68)

and relations
σiσj + σjσi = −2Iδij, (4.69)

over C, i.e. the universal enveloping algebra of su(2,C), is isomorphic to
M(2,C). Note that the above σ-matrices are traceless and skew-Hermitean
in M(2,C), and are related to usual Pauli matrices by factor i, with labels 1
and 3 interchanged.
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We define new unit matrix Î,

Î =

(
q1 0
0 q2

)
, q1,2 > 0, Î ∈ M(2,C), (4.70)

and the associated ×̂-product between the matrices,

M×̂N = MT̂N, M, N ∈ M(2,C), (4.71)

where

T̂ = Î−1 =

(
1/q1 0

0 1/q2

)
, T̂ ∈ M(2,C). (4.72)

Explicitly,

M×̂N = MT̂N =

(
m11 m12

m21 m22

)(
q−1
1 0
0 q−1

2

)(
n11 n12

n21 n22

)
(4.73)

=

( m11n11

q1
+ m12n21

q2

m11n12

q1
+ m12n22

q2
m21n11

q1
+ m22n21

q2

m21n12

q1
+ m22n22

q2

)
. (4.74)

We would like to construct an additive basis,

{Î , iσ̂1, iσ̂2, iσ̂3}, (4.75)

in terms of which elements of the algebra M(2,C, ×̂) are presented as linear
combinations. Namely,

M = x0Î + x1iσ̂1 + x2iσ̂2 + x3iσ̂3, M ∈ M(2,C, ×̂), (4.76)

where xi are parameters. Note that we are not using ×̂-product to multiply
matrices by parameters (numbers) in Eq.(4.76) because parameters are not
elements of the matrix algebra, and we are not considering action of matrices
on a vector.

The criterium to determine σ̂-matrices is that they, together with unit Î,
must form additive basis in algebra M(2,C, ×̂).

The possible way to have such a basis is that σ̂-matrices must satisfy the
following anticommutation relations, instead of standard (4.69),

σ̂iT̂ σ̂j + σ̂jT̂ σ̂i = 2Îδij, (4.77)
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or, defining ×̂-anticommutator,

{M,N}×̂ = M×̂N + N×̂M = MT̂N + NT̂M, (4.78)

we rewrite the above as
{σ̂i, σ̂j}×̂ = 2Îδij. (4.79)

We have two formal algebraic solutions for these equations,

σ̂i = σiÎ , (4.80)

i.e.

σ̂1 =

(
iq1 0
0 −iq2

)
, σ̂2 =

(
0 q2

−q1 0

)
, σ̂3 =

(
0 iq2

iq1 0

)
, (4.81)

and
σ̂i = Îσi, (4.82)

i.e.

σ̂1 =

(
iq1 0
0 −iq2

)
, σ̂2 =

(
0 q1

−q2 0

)
, σ̂3 =

(
0 iq1

iq2 0

)
. (4.83)

Indeed, we have identically for (4.82)

σ̂iT̂ σ̂j + σ̂jT̂ σ̂i = ÎσiT̂ Îσj + ÎσjT̂ Îσi = Î(σiσj + σjσi) = −Î2δij, (4.84)

and similarly for (4.80).
Note that the relations (4.84) hold for any invertible 2× 2 matrix Î, not

only for those having the above mentioned diagonal form (4.70). This means
that the algebraic solutions (4.80) and (4.82) are formal.

We stress that the spaces M(2,C) and M(2,C, ×̂) are isomorphic to each
other. The difference is that they have different bases, B = {I, σ1, σ2, σ3}
and B̂ = {Î , σ̂1, σ̂2, σ̂3}, respectively, and different definitions of matrix
product. In view of the solutions (4.80) and (4.82), these bases are related
to each other simply by

B̂ = BÎ, (4.85)

and
B̂ = ÎB, (4.86)
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respectively. From this point of view, if one change unit I by some transfor-
mation matrix, the same matrix should be used to change remaining elements
of the basis. This justifies partially the choice of algebraic solutions in the
forms (4.80) and (4.82).

An important note is that in general matrices σ̂i are not skew-Hermitean
and not traceless. However, due to Eq.(3.58), we must have Trace σ̂iT̂ = 0
for matrices (4.80) to meet the condition |Det U | = Det Î for the associated
Lie group. This is indeed trivially the case. The problem of the lack of
skew-Hermiticity concerns algebra su(2,C, ×̂), and is considered in the next
Section.

4.7 Algebra su(2,C, ×̂) and group SU(2,C, ×̂)

Let us find norm of vector,

X = x1iσ̂1 + x2iσ̂2 + x3iσ̂3. (4.87)

in space su(2,C, ×̂). Using Eq.(4.81) and noting from Eq.(4.77) that σ̂2̂
1 =

−Î, σ̂2̂
2 = −Î, and σ̂2̂

3 = −Î, we have (the Killing metrics)

|X|2 = Det X = q1q2(x
2
1 + x2

2 + x2
3) = (Det Î)(x2

1 + x2
2 + x2

3). (4.88)

Transformation
X 7→ u×̂X×̂u−1, u ∈ su(2,C, ×̂), (4.89)

is orthogonal in the sense of the scalar product (4.88), namely,

Det X = Det (u×̂X×̂u−1). (4.90)

Thus, any matrix Z ∈ su(2,C, ×̂) makes linear transformation ad Z =
[Z, X]×̂ of three-dimensional space su(2,C, ×̂).

Metric tensor of space su(2,C, ×̂) due to Eq.(4.88) is, evidently,

δ̂ij = δijDet Î , (4.91)

which is conformally equivalent to the usual Euclidean metrics δij of three-
dimensional Euclidean space R3.

Formally, σ̂-matrices form representation of algebra su(2,C, ×̂). To prove
this we must verify the following commutation relations

[σ̂1, σ̂2]×̂ = 2σ̂3, [σ̂3, σ̂1]×̂ = 2σ̂2, [σ̂2, σ̂3]×̂ = 2σ̂1. (4.92)
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One can easily verify by using (4.80), or (4.82), that these relations trivially
hold.

Note, however, that in general the matrices σ̂i are not skew-Hermitean.
This give us no possibility to construct associated unitary group with their
help.

They become skew-symmetric in the particular case, q1 = q2 = q, that
leads, however, to reduction of Î to scalar matrix

Î = diag(q, q) = qI, (4.93)

and therefore somewhat trivializes the attempt.
Application of the duality method developed for so(3,R, ×̂) in Sec. 4.1 to

the case of su(2,C, ×̂) does not seem provide us with an appropriate algebraic
solution. Some obstacle is made by σ1 matrix, which has a diagonal form
whereas none of Xi’s has a diagonal form. Explicit calculations show that

σ1Îσ2 − σ2Îσ1 = (q1 + q2)σ3, σ1Îσ3 − σ3Îσ1 = −(q1 + q2)σ2, (4.94)

σ2Îσ3 − σ3Îσ2 = q1q2T̂ σ1,

implying that the matrices
σ̂i = ÎσiÎ (4.95)

having explicit skew-Hermitean form,

σ̂1 =

(
iq2

1 0
0 −iq2

2

)
, σ̂2 =

(
0 q1q2

−q1q2 0

)
, σ̂3 =

(
0 iq1q2

iq1q2 0

)
,

(4.96)
satisfy

[σ̂1, σ̂2]×̂ = (q1 + q2)σ̂3, [σ̂1, σ̂3]×̂ = −(q1 + q2)σ̂2, [σ̂2, σ̂3]×̂ = q1q2T̂ σ̂1.
(4.97)

Here, the last equation includes matrix T̂ , and thus is unusual so that these
commutation relations are seemed to be not Lie-algebraic. Also, direct cal-
culations show that ×̂-anticommutators between these σ̂-matrices are of the
form

{σ̂1, σ̂1}×̂ = −2Î3, {σ̂2, σ̂2}×̂ = −2q1q2Î , {σ̂3, σ̂3}×̂ = −2q1q2Î , (4.98)

{σ̂1, σ̂2}×̂ = iq1q2(q1−q2)σ2, {σ̂1, σ̂3}×̂ = iq1q2(q1−q2)σ3, {σ̂2, σ̂3}×̂ = 0.
(4.99)
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We note that some non-zero values appear in Eq.(4.99).
Thus, the problem to construct general solution for σ̂-matrices which

obey appropriate ×̂-anticommutation and/or ×̂-commutation relations, and
are skew-Hermitean, is opened. Note that we have explicit construction for
so(3,R, ×̂) with general values of the parameters ai, i = 1, 2, 3; see Sec. 4.1.
And this is a candidate to the algebra isomorphic to su(2,C, ×̂), with unre-
stricted parameters qi, i = 1, 2. However, we should to note that number of
the parameters ai and qi is different.

Elements of the group SU(2,C, ×̂) can be represented by using the matrix
exponent (see Sec. 3.3),

M = ê
1
2
tiσ̂i , M ∈ SU(2,C, ×̂), (4.100)

where ti are real parameters.
Direct calculations show that for the representations (4.80) and (4.82) we

obtain matrix exponents, which indeed exhibit the property Det M = Det Î,
but they are not unitary. Evidently the latter is a consequence of the fact
that these representations are not skew-Hermitean matrices. In the case of
unit of the form of scalar matrix (4.93), the group SU(2,C, ×̂) is simply
isomorphic to the ordinary group SU(2,C) since q can be absorbed by the
parameters ti.

In the case of the representation (4.96), we have Trace σ̂1T̂ = (q1 − q2),
Trace σ̂2T̂ = 0, Trace σ̂1T̂ = 0, that means that Det M 6= Det Î for M =
ê

1
2
t1σ̂1 , and thus we can not construct group SU(2,C, ×̂) despite the fact that

these σ̂-matrices are skew-Hermitean. Instead, we could construct U(2,C, ×̂)
but only if the ×̂-commutation relations (4.97) are acceptable.

A Appendix A

Distributivity implies that abstract product, f(M, N), is a linear function in
both the matrices, f(M1 +M2, N) = f(M1, N)+f(M2, N), f(M, N1 +N2) =
f(M, N1)+f(M,N2), restricting possible functions f(M, N) by a polynomial
in M and N . Let us define the product in the form

f(M, N) = τ1Mτ2 + τ3Nτ4 + τ5Mτ6Nτ7 + τ8Nτ9Mτ10, (A.1)

where τi are fixed matrices, M, N, τi ∈ M(n,C). Axiom of left and right unit
gives us two equations, f(Î , N) = Î, f(N, Î) = N , which should be solvable
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equations for any N to have the algebra with unit. Namely, for (A.1) we
have

τ1Îτ2 + τ3Nτ4 + τ5Îτ6Nτ7 + τ8Nτ9Îτ10 = N, (A.2)

τ1Nτ2 + τ3Îτ4 + τ5Nτ6Îτ7 + τ8Îτ9Nτ10 = N, (A.3)

from which we see that to satisfy identically the equations each term in the
l.h.s. of them must be considered separately. Namely,

τ1Îτ2 = 0, (A.4)

τ3 = I, τ4 = I, (A.5)

τ5Îτ6 = I, τ7 = I, (A.6)

τ8 = I, τ9Îτ10 = I, (A.7)

τ3Îτ4 = 0, (A.8)

τ1 = I, τ2 = I, (A.9)

τ5 = I, τ6Îτ7 = I, (A.10)

τ8Îτ9 = I, τ10 = I. (A.11)

Therefore, since we assume Î 6= 0 we have τ1 = 0 or τ2 = 0 and τ3 = 0 or
τ4 = 0, that rules out first two terms in (A.1). Note that the same result can
be obtained by using the distributivity condition. Further, we obtain

Î = τ−1
6 , or Î = τ−1

9 , (A.12)

where we have assumed that τ6 and τ9 are invertible matrices. This means
that we are leaved with the following two forms of product,

f(M, N) = Mτ6N or f(M, N) = Nτ9M, (A.13)

which are in essence equivalent to each other.
Putting of the constant terms τ1Îτ2 and τ3Îτ4 to zero is an obvious re-

quirement, while putting of the remaining terms of Eqs.(A.2) and (A.3)
separately equal to N needs some comments. To see more closely on the
above made separation of the terms let us check the associativity condition,
f(f(M,N), P ) = f(M, f(N, P )),

f(f(M, N), P ) = τ5(τ5Mτ6Nτ7 + τ8Nτ9Mτ10)τ6Pτ7 (A.14)

+τ8Pτ9(τ5Mτ6Nτ7 + τ8Nτ9Mτ10)τ10,
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f(M, f(N, P )) = τ5Mτ6(τ5Nτ6Pτ7 + τ8Pτ9Nτ10)τ7 (A.15)

+τ8(τ5Nτ6Pτ7 + τ8Pτ9Nτ10)τ9Mτ10.

Obviously, the associativity condition is not satisfied for this general form
of the product. The term τ5τ8Nτ9Mτ10τ6Pτ7 is present in Eq.(A.14) while
such a term is absent in Eq.(A.15) so to meet the associativity condition
we must put one of fixed matrices in this term equal to zero. This leads to
discarding either third (τ5 = 0 or τ6 = 0 or τ7 = 0) or fourth (τ8 = 0 or
τ9 = 0 or τ10 = 0) term in the definition (A.1), thus yielding its separate
consideration. For τ8 = 0 or τ9 = 0 or τ10 = 0, the associativity condition
reads

τ5τ5Mτ6Nτ7τ6Pτ7 = τ5Mτ6τ5Nτ6Pτ7τ7, (A.16)

from which we find again τ5 = τ7 = I. For τ5 = 0 or τ6 = 0 or τ7 = 0, we
find similarly τ8 = τ10 = I. As the conclusion, we obtain the product in the
form (2.3).

For completeness, let us consider higher degrees (> 2) in M or N in
definition of the product. Using axiom of left and right unit, f(Î , N) =
f(N, Î) = N , one can see that there is no possibility to have these equations
identically satisfied for fixed τi and any N . For example, the definition

f(M,N) = τ1Mτ2Nτ3N + Nτ4Mτ5Nτ6 + Nτ7Nτ8Mτ9, (A.17)

where τi are fixed matrices, M, N, τi ∈ M(n,C), implies

τ1Îτ2Nτ3N + Nτ4Îτ5Nτ6 + Nτ7Nτ8Îτ9 = N, (A.18)

τ1Nτ2Îτ3Î + Îτ4Nτ5Îτ6 + Îτ7Îτ8Nτ9 = N (A.19)

These two equations can not be identically satisfied for fixed τi and arbitrary
N . Indeed, in the first equation, matrix N appears two times in each term of
the l.h.s. so that some of τi must be of the form N−1 to satisfy this equation.
However, we assume that τi’s are fixed matrices so that they can not be of
the form N−1, where N is an arbitrary matrix. The same reason rules out
any higher degree in M or N . Thus, the form (2.3) is the most general form
for associative and distributive product in matrix algebra with unit.

B Appendix B

Below, we present the proof of the statement that matrices I and Î are
not similar to each other. It is based on the construction of the associated
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invariant polynomials [2].
Let us consider the matrices of the form (Iλ−A), where A is 2×2 matrix

and λ is a real number.
Two matrices A and B are similar to each other iff the matrices X =

(Iλ− A) and Y = (Iλ−B) have the same invariant polynomials.
For the case under study, A = I and B = Î, we have

X = (λ− 1)I = diag(λ− 1, λ− 1).) (B.1)

and
Y = (Iλ− Î) = diag(λ− q1, λ− q2). (B.2)

Let us find invariant polynomials of X. Main minors of X are

2nd order minors : (λ− 1)2,
1st order minors : (λ− 1), (λ− 1).

(B.3)

Largest common quotients of the minors are

d2(λ) = (λ− 1)2, d1(λ) = (λ− 1). (B.4)

Then, the invariant polynomials are

i2(λ) ≡ d2/d1 = (λ− 1), i1(λ) ≡ d1 = (λ− 1). (B.5)

Let us find invariant polynomials of Y . Main minors of Y are

2nd order minors : (λ− q1)(λ− q2),
1st order minors : (λ− q1), (λ− q2).

(B.6)

Then, largest common quotients of the minors of are

d2(λ) = (λ− q1)(λ− q2), d1(λ) = 1. (B.7)

So, invariant polynomials are

i2(λ) = d2/d1 = (λ− q1)(λ− q2), i1(λ) = d1 = 1. (B.8)

We see that the invariant polynomials of I given by (B.5) and of Î given by
(B.8) are different. So, the matrices I and Î are not similar to each other in
the sense of (2.60) and (2.61).
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Perhaps, the above presented exercise is not necessary to see that I and
Î are not similar to each other. However, we have seen that I and Î are
homotopically equivalent in the space of matrices, for q1,2 > 0, that could
be thought of as they are related to each other by similarity condition I =
V −1ÎV for some matrix V . We have seen that this is not the case.

One can easily prove that this property holds for general n-dimensional
case, M(n,C), by noting that n = 2 case forms subspace of the higher di-
mensional cases.
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