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Abstract

In this paper, we consider the Lie-isotopic generalizations of the
Legendre, Jacobi, and Bessel functions.
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1 Introduction

In this paper, we consider the Lie-isotopic generalization of the Legendre,
Jacobi, and Bessel functions.

We describe in detail the group of rotations of three-dimensional isoEu-
clidean space, and the group locally isomorphic to it, SU(Q), consisting of
isounitary isounimodular 2 x 2 matrices. Also, we study the group QAU(Q)
of quasiunitary matrices and the group M (2) of isometric transformations
of isoEuclidean plane.

These studies are of interest both in mathematical and physical points
of view. We refer the interested reader to monographs [3] for comprehensive
review on the Lie-isotopic formalism and its applications.

The isotopic generalizations of the groups SO(3), SU(2), and M (2) are
of continuing interest in the literature. From physical point of view, our
interest is that the Lie-isotopic generalizations of the Legendre functions as
well as the other special functions, such as Jacobi and Bessel functions, can
be used in formulating the nonpotential scattering theory [1, 2, 6, 7] when
one considers non-zero isoangular momenta.

The paper is organized as follows.

Sections 2-7 are devoted to representations of the group SU(2) and isoLe-
gendre functions. Namely, in Sec.2, we consider the group SU(2). In Sec.3,
we consider unitary irreducible representations (irreps) of the group SU(2).
In Sec.4, we present matrix elements of the unitary irreps of SU(Z), and
isoLegendre functions If’,lnn(,%) In Sec.5, we present basic properties of the
isoLegendre functions. In Sec.6, we present functional relations satisfied by
the isoLegendre functions. In Sec.7, we present recurrency relations satisfied
by the isoLegendre functions.

Sections 8-14 are devoted to representations of the group QU (2) and
isoJacobi functions.

Sections 15-20 are devoted to representations of the group M (2) and
isoBessel functions.



2 The group SU(2)

In this Section, we consider representations of the group SU(2), elements of
which are isounitary isounimodular 2 x 2 matrices, and its relation to the
group SO(3) of rotations of three dimensional isoEuclidean space.

2.1 Parametrizations

Denote SU(2) the set of isounitary isounimodular 2 x 2 matrices, namely,
of the matrices

. (& B
= I — ~ 1
U * ( 53 ) ( )
If 4, € SU(2) and iy € SU(2) then
(g * Gi0)* = Uy % 0 = Gy " * Uy * = (G * G2) ™" (2)

and det(@ * Gi2) = 1. Therefore, @) % Gy € SU(2). Also, it is easy to show
that ;' € SU(2). We arrive at the conclusion that SU(2) is a group.
Let & € SU(2). Since
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then § = & and v = —B.
Thus, any matrix @ € SU(2) has the form

where I = diag(g7}, g55'), det I = A. Since det@ = 1 then

=@

la|Ala] + |6Al5] = 1, (6)

and vice versa, if 4 is a matrix of the form (5) and Eq.(6) holds, then
ue SU(2).



From the above consideration, it follows that the elements of SU(2)
can be uniquely determined by two complex numbers (&, B) obeying eq.
(6). These complex numbers can be presented by three real parameters,
for example, by |&|, Argf3, and Arga. If & = 3 # 0, one can use another
parametrization, namely Euler angles, 3, 8, and v, which are related to &,
arg @, and arg & according to the following relations:

|&| = gl_ll/2 cos[0AY/2 /2] = isocos[0/2],

Arga =PIV A= PTUET (™)
where ) )
p=AYV2 0=0A2 o =yAal2 (8)

The values of the Euler angles are not determined by (7) uniquely, so that
we must put additionally

0<p<2m, 0<f<m —2r<1)<o2mn. (9)

From (7) it follows that 18] = 9521/2 sin(AA/2/2) and that the matrix @ =
w(p,0,1) has the following form:

ggn cosH/QAe (@+)/2 iAle_ll/z s.iru@/?ei(‘ﬁ”vz’)/2 10)
iA% g, sm9/26 i(p-9)/2 ggl_ll/Qcosé/2Ae*"(¢+w)/2
(5)

From (5) and (10) we have

91172 cos[p A% = 2|a?A —1,

explia /22 = ~iS (11)
expinl/2y /g = VA exp{—iAlp/2)
a

Also, from (10) we have the following factorization

oo [ expliat2p/2} 0 g1 O
u(@:evdj) - < 0 exp{—zAI/Qcp/Q} ) < 0 G20 >

< gl_ll/2 cos0/2 iAgggzl/Qsinéﬂ ) < g1 O )

X ~ A
9952 sinf/2  iAg* cosd/2 0 go



" ( exp{iAY/ %y /2} 0 >

0 exp{—iAY % /2}
= 4(,0,0)A4(0,6,0)Au(0,0, ). (12)
Diagonal matrices
expliAl/2p/2] 0 (13)
0 exp[—iA/2p/2]

form a one-parameter subgroup of SU(2). Thus every matrix @& € SU(2) lies
in the left and right conjugacy class in respect to ths subgroup containing
the matrix of the form

( gi"? coslOAY? /2] iAgy, " sin[9AL? /2] ) (14)

iNgyy P sin[0AY2/2] g t* cos[0AY/2/2]
Notg that the matrices represented by (14) form a one-parameter subgroup
of SU(2).
2.2 IsoEuler angles for matrix product

Let 4 = 11Ado is a product of two matrices 1,1l € SU(Q). Denote the
corresponding isoBEuler angles by (3, 0, ¥), (1, 61, 1), and (g, Oa, 12).
To express the isoEuler angles of @ via the isoEuler angles of 4 and s, we
consider the case when ¢ = 1])1 = 1/32 = 0. For this case we have

. ( gl_ll/zcosél/Q iAgQ_;/Qsinél/Q > ( g1 O >

u ~ ~
’L'Ag2_21/2 sin 6 /2 91_11/2 cos /2 0 g2
) 911 * A cos By /2 exp{ipa/2} iA?sin 0y /2 exp{iga/2} (15)
iA? sin é2/2 exp{—ip2/2} gﬁl/QA oS é2/2 exp{—ip2/2} '

Using (11) we have from (15) in sequence
cos[AY?] = cos[ A2 A cos[92A1/2]gﬁ1/2

—sin[f; AY?]A sin[02A1/2]Aggl_11/2 cos[paAY/?], (16)

sin[HlAl/Q]Agl_ll/2 cos[fa A1/?]

-AI/Q —
exp{id e} sin[0A172]




(g11)~ ! cos[f1 AV/2]A sin[HQAl/Q]Agl_ll/2 cos[paA1/?]

* Sn[0A12]
isin[@y A1) Asin[py A1)
17
- Sn[BAL?] ’ (a7)
—1 1/2 2 SA1/2

) i1 A cos[a A2 [2] A% exp{i A 29 /2

exp{iA2(p + 1) /2} = 1 L cos[él]Al/2/2}{ 22}
g3 sin01A12 /2] A sin[By A1/? /2) A exp{ —iAY %y /2} a8)

g1 cos0AY/2/2]
It is more convenient to use the following expressions:

—1/2
(@) 4 tan[gpAl/z]
gi11

sin[fa A2 A sin[ihy A1/?]

B 917! cos[f1 AL/2] A sin[fa AY/2]A cos[pa A/2] + gl_ll/2 sin[f; A1/2]A cos[f A1/2] 7
(19)

(£2) " tanfwarr?
g11

sin[f; A2 A sin[py A1/?]

sin[@; AL/2)Agyi' cos[B2AL/2]A cos[iha AL/2] + 9;11/2 cos[01 AY/2] A sin[f AL/2] .
(20)
Due to the results of this particular case can easily turn to the general
case. Indeed, according to (12) we have

(@1, 01, 91) At(Pa, B2, 42))
= APa(1,0,0)a(0, 1, 0)i(0, 0, 1)z, 0,0)a(0, B2, 0)i(0,0, ¢5).  (21)
Note that

@(0,0,¢1)Ad(P2,0,0) = a(p2 + ¢1,0,0). (22)
We observe that the result of the product (¢, 6,1)) * 4(p1,0,0) gives the
matrix (@ + @1,é,1ﬂ). Similarly, the result of the product @(0,0,1&1) *
a(p,0,1) gives the matrix 4(p, 0, v +;. From these observations it follows
that the formulas (16)-(18) are valid in general case with the replacements
P2 = P2+ Y1, ¢ = @ — @1, and Y — ¢ — Y.
Namely, in an explicit form

cos[AY?] = cos[0; A2 A cos[f AV



—992_21/2 sin[91A1/2]A sin[92A1/2] cos|(p2 + wl)Al/Q], (23)
-1/2 1/2 1/2
. 911 sin[01 A7) A cos[fa AN ]
expliDe} = sin[0A172]
+gl_l1 cos[&lAl/Q]A sin[ﬁgAl/Z]A cos[(12 + wl)Al/Q]
sin[fA1/2]
192" sinffrA A sinl(ps + 1) A1)
sin[fA1/2] ’
exp{iAY2 (o — o1 + 1 —2)/2}
_ 911" cos[B1 A2 /2]A cos[B AV /2] A exp{iAY/2 (g2 + ¢1) /2}
g cos[pAL/2 /2]
- 952 * sin[ihy AV/2 /2] A sin[0sAY2 /2) A exp{—iAY2 (s + 101)/2}
g1/ cos[pAL/2/2)

(24)

(25)

2.3 Relation to the group of rotations

Let us define the relation between the groups SU(2) and SO(3). To this
end, we identify the vector &(&1,Z9,#3) of three dimensional isoEuclidean
space with the complex 2 matrix of the form

i’/x _ ( A l’gw T +AZZE2 >’ (26)
1 — 1T9 —XI3

where # = 2 = z0~!. The set of the matrices of the form (26) consists
of isoHermitean matrices ¢ with Trg = 0. Namely, with every matrix @ €
SU(2) we relate the transformation 7'(4),

T(0)Ahy = GARy * G. (27)
Since for the isounitary matrices we have 4" = 4=, the traces of h, and
T'(u)Ah, coincide so that the trace of T'(4)Ah, is zero. Also, we have
(T(2)AR(2))* = (0Ah Ax@)* = aA*hy*0A = GARy 1 = T(0) Ahy, (28)
so that the matrix T(Q)Aﬁw is indeed isoHermitean. On the other hand, for
isoHermitean matrices we have the following representation:

PN AT Y3 1 +iAge | _ Alys Ay1 + iy -
T(4W)Ahy, = . R R = B ' = hy,,
@ ( G —iAg =73 ) ( Ay —iys Ay Y
(29)



where §(91, J2,93) is a vector in three dimensional isoEuclidean space.

From (27) it can be seen that the components of § are linear combinations
of the components of & so that 7'(4) is a linear transformation of the three
dimensional isoEuclidean space E3. From the local isomorphism between the
groups SU(2) and SO(3) it follows that rotations of £ can be parametrized
by the isoEuler angles (¢, é, 1[1) Here, the angle ¢ varies from 0 to 27 since
4 and —u correspond to the same rotation.

Due to (12) the matrices @(,0,0) and @(0,0,) can be presented as

exp{iAl/? )
< p{AO v eXp{—igl/Qt/2}>Ed)3(t)’ (30)

where ©3(#) is the rotation by the angle £ around the axis O3, and (0, é, 0)
has the form
( gt P cos[tAY2)2]  iAgy? sin[tAl/2/2]
A

(922)"V/2sinftAV2/2] gy 72 cos[tAV/2/2) )Ealm’ (31)

which is the rotation around the axis Oz;. From this observation, we have
the following decomposition for arbitrary rotation § of E3:

3(9,0,9) = 3(¢,0,0)45(0,6,0)Ag(1), 0,0)

9P cosp —goyPsing 0 gu 0 0
= —1/2 . 4 —1/2 A 0 0
9o ' “sing gy’ Tcosg 0 922
0 0 0 0 0 gs3
AT 0 0 giu 0 O
x 0 gf11/2 cos 0 —9521/2 sin 0 0 g O
0 (922)71/2 sin 1) (911)71/2 cos 0 0 0 gs3
AL 0 0
X 0 gl_ll/2 cos 1@ —92_21/2 sin zﬂ . (32)

0 (g22) Y?sindy (g11)~"/?cose

3 Irreps of SU(2)

Recall that with any isounimodular complex 2 x 2 matrix § we associate the
linear transformation,

w1 = aA2zl + ’)/AZZQ = AQ(O[Z1 + v22), (33)



o = BAz + 06720 = A?(Bz1 + 622),

of two dimensional linear complex space. Such a transformation can be
presented by the operator,

T(§)Af(51,20) = (A% +4A2; BA% + Azy), (34)
acting on the space of functions of two complex variables. Evidently,
T(91802) = T(§1) + T(42),

so that 7T (g) is a representation of the group SAL(Z,C’). Similarly to the
theorem from Ref.[4] we have the following

Proposition 1. Every irreducible isounitary representation T'(i) of SU(2)
is equivalent to one of the representations Tl(ﬂ), where [ = 0,1/2,1,.. ..

The prove of the Proposition 1 is analogous to that of given in Ref.[4],
and we do not present it here.

From Proposition 1 it follows that in the space of subgroup SU(Q) there
exists the orthogonal normalized basis, f_l, cee fl, such that the operators
T(ﬁ) are represented in this basis by the same matrices as the operators
Tj(4) in the basis {1s(z)}, where

£k
ENER

—I<k<Il, s=1,...,n.

wk(x) _ A_8+1/2

(35)

We call such a basis isocanonical. It is easy to verify that isocanonical basis
is determined uniquely up to scalar factor A\, with |\| = A~!. More precisely,
isocanonical basis consists of normalized eigenvectors of the operator T'(h),

where L2
- [ exp{iA‘/“t/2} 0
h= ( 0 exp{—iAY?t/2} |- (36)

4 Matrix elements of the irreps of SU(2) and isoLe-
gendre polynomials

In this Section, we calculate matrix elements of the irreps Tj(i) of SU(2),

and express the matrix elements £, (§) through the isoEuler angles (¢, 0,

~

1) of the matrix g.

10



The representations Tj(j) of SL(2,C) are given by

azr +yA~!

T)(5)Ag(2) = (Bx + 5A—1)2lA¢ma

(37)
where ¢(2) is polynomial of degree 2 on &, and § € SL(2,C).

Using the isocanonical basis of Sec. 3 and the formula a;; = (e;}e;), where
{e;} is orthonormalized basis, we write down the matrix element,

(Tigatatn)

Fon(9) = (D@ niom) = s s )
where A nps
vel®) = e (39)
—1<n<l, (I-n=A>1-n)(l-n+1)..., s=1,2,...
On the other hand,
T(§)z' ™" = (ax +yAHI"A(Bz + 6A~HH, (40)

so that (38) yields

<(ax +yA-1)""A(Br + 5A1)l+”jxlmA1>

Fonn = VI=m)+m)!T — )1 +n)! A=z (4D

Taking into account that (/=% ,2/=™) = 0 at k # m and (2!=™,2!"™) =
(I —m)! (I + m)!A% T we have finally from (41)

N . (I —m)! (1 +m)!
trn(9) = \/ 0 _n;!EHn)! AZH

N
Al—m—j Aj l—-m—j njm+j—ngl4+n—j
X l—-n Cl+na ﬁfy o
—yy

J

= \/(l —m)!(l+m)!(l — n)!(I + n)IAZe—dsglmmym-ngltn

~

N A—4s—1 6207
" ZMJ‘!(Z —m =P +n=plm—n+j) (0‘5>

1=

11



= /(L= m)I(l + M)l — n))(I + n)lalmym g
N

(AQ/AHS)I/ZA]’ <57>j7

Xg%ﬂ@—m—ﬁw+n—ﬁWn—n+ﬁ!a5

(42)

where M = max(0,n —m), N = min(l —m,l +n). We should to note that
the matrix element (42) in fact does not depend on (3 because of isounimod-
ularity of § implying By = ad — A™L,

We are in a position to express ffm(g) in terms of the isoEuler angles.
Due to (32),

T)9(¢,0,9)] = Ty[(3(4,0,0)]AT (0,0,0)]AT[3(0,0,4)],  (43)

so that finding the general matrix Tl(g) reduces to finding of the matrices
Ti[9(#,0,0)], T1[9(0,0,0)], and 7;[(0,0,¢)].
The matrix g(¢,0,0) is diagonal,

exp{iA3/?
9(“3’0’0):( S A T ) (44)

For this matrix, we have (see, for example, Ref.[4] for the ordinary case)
Ti[9($,0,0)]A3/22"™ = exp —iAZnpAY2 A3 24t (45)

Hence, the matrix of the operator T}[g(@,o,o)] is diagonal too, with the
nonzero elements being exp[—iA5/2¢], —l < mn < [. The matrix of the
operator 71j[§(0,0, )] has similar form.

Let us denote matrix element of the operator 7j[§(0,0,0)] as . (6).
Then, according to diagonality of the matrices of the operators Tj[§(¢, 0,0)]
and 7;[§(0,0,4))], we obtain

finn = T [9(6,0, 0] AL, (0) AL, [5(0, 0,0) exp{—iA? (mep + n)) } A, (6).

(46)
It remains to obtain #,,,(6). The matrix §(0,6,0) has the form
A 4 g1—11/2 cos /2 Z'Ag2_21/2 sinf/2
9(0,0,0) = N o —1/2 .4 -1/2 A ’ (47)
iAgyy ' “sinf/2 gy’ cosf/2

where 0 < Ref) < 7.
In the same manner as in Ref.[4] we then have

2l N\ — ;—m—n A 5—3s+2j (l — m)'(l — n)' g11\1/2 m+n 1/2
b (0) =1 A ]\/(l )+ ). (£> cotan™" " [IAY/7 /2]

12



LS (I +4)ti% 12 12
2 TG mG e AT )

j=max(m,n

Parameter § varies within the range 0 < Ref < 7 so that, in this range,
different values of 6 correspond to different values of 2 = gl_ll/ 2 cos[dA1/?].

So, L. () can be viewed as a function on isocosf. In accordance to this, we

put
it (0) = Lo (g11% cos[pA2]. (49)

Then, (46) can be rewritten as
thn(0) = exp —iAY2(me + np) AP, (2). (50)

With the use of (50), Eq.(48) leads to the following definition of the isoLe-
gendre polynomials:

Pl mmen A5=2s435+(mm) /2, | (L= )= n)! (Al + Z) (k)2
e I+m)(l+n)\A-T -2

l

(1 + )% A7 —2\J
> )u—j)!(j—m)!(j—n)'( ) o

j=max(m,n ’

The factor ((A~! + 2)/(A~" — 2))(m+7)/2 i5 twovalued since m and n are
both integer or half-integer. Single valued definition in (51) comes when
taking into account that 0 < Ref < 7 and 2 maps this range to the plane
Z cutted along the real axis, (—oo; —1) and (1;00). In the cutted plane the
factor is single valued.

5 Basic properties of the isoLegendre polynomials

In this Section, we study the basic relations obeyed by the isoLegendre
polynomials.
5.1 Symmetry relations

We will show that P! (%) is invariant under the changing of signs of the
indeces m and n. For this purpose, we use the relation

9(mg(0) = 9(0)g (), (52)



where we have denoted for brevity

sy o eosta Y ing a2y
iA(QQQ)_1/2 Sin[tA1/2/2] 91_11/2 COS[tAI/Q/Q]
From (52)-(53) it follows that
T (m)TH (@) = T(B)T (). (54)

Recall that the matrix elements of 7y(6) are just P, (2). Also, it is known
that £, (1) = 0 at m+n # 0, and #! (m) = i*A!. Replacing the operators

m,—m
in (54) by their matrix elements we obtain

Pl . (2)=P, (3, (55)
from which we have X
P8 =P, (3) (56)

According to the explicit representation (51), we then also obtain
Prun(2) = Pun (2). (57)

The relations (55), (56) and (57) are the basic symmetry relations for
the isoLegendre polunomials.

The relations (56) and (57) means, particularly, that P! (2) depends on
m and n through the combinations |m + n| and |m — n|.

Also, it is straightforward to verify that the following relation holds,

Pl (3) = 2AU=m=mI APl (3). (58)

5.2 Counter relations

The function P!, (%) is defined in complex plane cutted along the lines
(—oo0;—1) and (1;00). On the upper and lower neighbours of these lines
PL (%) takes different values. From (51) it follows that for 2 > 1 we have

. 1 .

P! (2 4i0) = — =D AP (% —1i0). (59)
Similarly, for 2 < —1,

S 1 N

Pl (2+41i0) = NCET AP (% —10). (60)

14



5.3 Relation to classical orthogonal polynomials

In Sec. 4, we have defined the isoLegendre function P!, (%), and obtained
one of the representaions of it. Now, we relate P! (%) to some of classical
orthogonal polynomials - isoJacobi, adjoint isoLegendre, and isoLegendre
polynomials.

This relations allows, particularly, to establish properties of the polyno-
mials by the use of the properties of the isoLegendre function.

5.3.1 IsoJacobi polynomials

IsoJacobi polynomials are defined by

2B, (CATHF —an1/2 —BA1/2
PP(2) = ToRE (1 =2)"*AY*(1+42)""A
dk;
x ol - R+ 2) AV + )P AV AR (61)
Z
Comparing (61) with the following representation of the isoLegendre func-

tion,

o Anmed (I +m)!
Bn(2) = ol \/(l_n)!(l+n)(l—n)!

s (14 2)~(mEm)/2(1 _ y(n=m)/2 dczl—z (1= 2)7(1 + 2)+7A2-5+2L (62)
we obtain
PRO(z) = 2 (= )T+ n)l(— m)l (1 + m)!
X (1 —2)nmm2(1 — )~ (MR PL(5) AFFIm, (63)
where . . )
l:k—i—&;ﬂ, m:d—gﬂ, n:ﬂ;&. (64)

From (30) we see that & = m —n and 3 = m+n are integer numbers. Thus,
Pl (%) is reduced to isoJacobi polymomials, for which & and 3 are integer
numbers.
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5.3.2 isoLegendre polynomials
IsoLegendre polynomials are defined by

- AL !

P(2) = =gy gzl = AT, (65)

This implies that P,(2) = P?°(2). Comparing (65) and (62) we obtain

Bi(2) = Ply(2). (66)

5.3.3 Adjoint isoLegendre functions

The adjoint isoLegendre function P (%), where m > 0 (I,m are integer), is
defined by

DM (2 _A_l ! m dl —(s m
Py = Coha e L yantemen - (g)
that is (i )
PM [ 2 "+ m)! m/2 H—M,—M \ Am
Bz = EE G apeprmemgan ()

Comparing (68) with (62) leads to the following relation:

(I +m)! -
(1—m)” ™0

P (z) ="
Let us rewrite (69) by taking into account (56),

P (2) =i (l_m)!ﬁ,ilo(z)ﬁfm, m > 0. (70)

6 Functional relations for isoLegendre functions

In this Section, we derive basic theorems of composition and multiplication
of PL (%), and the condition of its orthogonality.

6.1 Theorem of composition

Many important properties of prl,m(é) are related to the theorem of compo-
sition. To derive the rule, let us use the relation

T 51 AG2) = TH(G1) AT (42), (71)
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from which it follows that

l
t(91002) = Y (1) At (g2), (72)
k=—1

and it can be rewritten as

thon (G1802) = exp{—iAY?(me + n)} Pl (). (73)
For X R
7§lmn(gl = Prlnk(é)v Eéﬂn(gQ = exp{_lA3/2¢2}APlén(2)v (74)

where ¢, é, zﬂ are isoEuler angles of the matrix §;Ags. These angles are
expressed through the angles 61 2, ¢ due to the following formulas:

cos[0AY?] = cos[0; A2 A cos[fa AV

—g2_21/2 sin[0; AY2) A sin[fa AY/?] cos[pa AV, (75)

sin[91A1/2]Ag;11/2 cos[foA1/?]
sin[fA1/2]

+9f11 cos[01 A2 A sin[B3 AV/2] A cos[ipp] A1/?]

sin[fA1/2]

exp{z’Al/Qcp} =

2.92—21/2 sin[@zAl/Q]A sinfpg + ¢1]A1/2]
sin[fA1/2] ’

gﬂl 605[91/2] cos[ég/Q]A exp{ipa/2} A exp{p2/2}
g11/? cos[ih/2] ’
_92_21/2 sin[zﬁl/2]A sin[ég/Z]A exp{—ip2/2}

+ (76)

exp{i(p +¢)/2} =

- - (77)
9111/2 cos(1)/2]
where 0 < Re ) < m, 0 < Rep < 27, and —27 < Req/; < 2m.
Inserting equations (73) and (74) into (72), we obtain
exp{—iA'2(mp + )} P, ()
l A A
=3 exp{ i) Bl (21) Bl (22) A2 (78)

k=—1
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(a) Let ¢p = 0, then if Re(6; 4+ 62) <m = 6 =6, + 60y and p =) = 0.
Accordingly, (78) takes the form

Pl (214 22) Z 2)AP, (%) ©
k=—1

Pl 1g11% cos[(By + 62) AV (79)

Z g11 cos[&lAl/ZQ]AP,in(gﬁl/Q cos[0AY/22)).
k=—1
(b) Let @3 = 0, then if Re(d; +6;) > 7 = 0 =21 — 0, — 0y, ¢ = th = 7.
Therefore,

~

Pl (31 + 39) = —AZm

Z L (911 Pcos[01 AY22)APL (g1 ? cos[aAV/22)). (80)
k=—1
(c) Let g = m, then if Refy > Refy, = 0 = 01 — 6o, » =0, 1[1 = 7.
Therefore, R
Pl(31+ 22)
[
= 3 (~ATREL (g1 cos[i AV22) AP (g1, cos[BA1/22]). (81)
k=—1

(d) In particular, at 0, = 0y = 0, we have

l
3 (AR BL (g1 cosl1 A1/22))

k=—I1

< AP kn(gy1* cos[.A1/22]) = 5™ (82)

(e) At ¢ = 7, the formulas (75)-(77) take the following forms:
cos[IAY?] = cos[f A2 A cos[f A2, (83)

in[01 A2 Agy /% cos[oAY2] + iA sin[0,A1/2]
AL/20 — sin[f1 11 2 2 4
exp{i v} NN , o (84)

1/2 : _ 1/2
expliAl2( + 1) )2} = cos[(01 + 02) A= /2] + iA cos[(01 — 02)A /2]7
cos[fa A1/2]

(85)
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respectively.
Instead of (84) and (85), it is more convenient to define

) (B, AL/2
gonPtanfpnt/?) = SR T AvoA cogg,a12), (86)

sin
sin[{HlAl/Q]

—1/2 1/21 _
t AYe] = .
92 tanly ] cos[f1 A1/2] A sin[f A1/2]

(87)

Then X
exp{—iAY2 (mep + ) }APL (g1, cos[0A1/2])

5 —-1/2
S P oAV AR (g oA ). (89
k=—1
6.1.1 Theorem of composition for isoLegendre polynomials

Consider particular cases of the function prl,m(é), namely, the IsoLegendre
polynomials and adjoint isoLegendre polynomials. The polynomials are de-
fined due to

(I +m)!
(1 —m)!

Taking into account the formulas from Sec 6.1 and using (89) we get

P(2) = Pyy(2), B =i" PLo(2)A%m, (89)

exp{iAY > mp} B (g1, cos(0)”])

_ l +m) Z k;' (90)

x exp{—z'ﬁ/?mm}ﬁink(ga & coswlAl/ﬂ])z%'f(g;l 12 cos[B A1) AP TR,

where @, é, p2, and él, ég are related to each other as in Sec. 6.1.
If we put m = n = 0, we obtain, particularly,

P(gr! cos[01A1/%)) A cos[001/)

e Sln([01A1/2]81n([92A1/2 /Cos[¢2A1/2]A81n[92A1/2]) (91)

l
3/2
ZZ l+k eXp{ i Pmpa}
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x PF(g11"? cos[1 AV PF (g7 cos[f2 A1) A%,

Due to the symmetry P ,(2) = P', ,(2) and (89), the relation (91) can
be reduced:

B = -1y () A (92)

Thus, from (91) it follows that the polynomials - P;(2) obey the following
theorem of composition:

Pl (g cos[ AY2)) A cos[f AL/
~a33' sin([B1 A sinfip2 AV 29,2 cospa A Asinf, A1) (93)
k)!

l J—
=0 3 g eet-ia )
k=—I ’

xlﬁlk(gl_ll/2 cos[@lAl/Q])If’lk (91_11/2 COS[GQAI/QDA3.

6.2 Multiplication rules

Let in the composition rule
exp{—iAY2(mp + np) } P (g7, cos[0AY/?))

— exp{—iAY ko } Pl (91,7 cos[01 AV2)) PL (9177 cos[0A/2)) A%, (94)

If 9 is a real angle, then this formula can be viewed as a Fourier expansion
of the function

eXp~{—z'A3/2 (me + m/})}APl (91_11/2 COS[@AI/Q]).
Therefore,

Ph(gn”? cos|r AV AP, (g1, cos[0417))

A3 T , o
T o / exp{—iA*2 (kpy — mp — nh)} Py (97, ) d(@2A1/). (95)
Putting m = n = 0 in this formula, we get

3 s
= [ (it e} P (91 coslon a1 2)
™
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(I —k)!

(1 + k)!l%’“(gﬂlh COS[GlAI/z])plk(gﬂl/2 cos[0sA1/2)) A3F, (96)

Since Pf,m(gfll/ 2 cos[AA/2]) is an even function in respect to g, the above
equality can be rewritten

/ (91177 cos|IAY]) g1 2 coslkipa AV2]d(pa A1)

= PP (g1 cos[01 AV2) Pl (g1, cos[0,A1/7)). (97)

If we now let additionally £ = 0, we obtin the further reduction

/ W91 2cos|0A12)d(ip,A1/2)

— Pl (g1, cos[01 AY?) P (g1, cos[0,A1/7)). (98)

Let us rewrite eq. (98) in a more convenient form. Assuming 6y, 62, @2 to
be real numbers such that 0 < 61 < 7 and 0 < #; 4+ 65 < 7w, we redefine the

variable
cos[AY?] = cos[0; AY?|A cos[f AV

— g5y sin[01 AY/2] sin[0y AY/?] cos[pa A2 A2, (99)
Introduce the notation
T (&) = 91—11/ 2 cos[nAgfll/ 2arccosi].

This function defines Chebyshev-I polynomial. From the last equation it
follows that
gﬂl/Q cos[k:A?’/zgog}
(cos[91A1/2]AgH cos[fa AY/2] — cos[AA/?))
oo sin[f; AL/2] A gyt sin[fa AL/2] .

In turn, from the condition (100) it follows

=177 (100)

dpy =
905" sin[0AY2]| Add

\/911 (cos[AAY/2] — cos[(61 + 92)A1/2})Ag_1/ (cos[(61 — 62) — cos[9A1/2].
(101)
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Since when varying ¢s from 6 to 7 the variable 6 varies in the range from
|01 + 62| to |01 — O2|, the above made redefinition transfroms the integral to

the form
9 01462

5[ Brencosloat’?)
01+62]

T g7t cos[01 A2 Agyi! cos[92A1/2] — g7/ cos[9A1/2]
g oo sin[f; AL/2] A gy, sin[fa AL/2]

. 952" * sin[0AY2]Ad(OAY/?)

911 "* (cos[0AL/2] — cos[(6) + 02) AL/2]) Agry/* (cos[(81 — 02) A1/2] cos[fAL/2])

— Pl (g1, Pcos|h AV AP (g1, cos[BA17)). (102)

The expression in the denominator has a simple geometrical meaning: it
is equal to the square of the spherical triangle with the sides 61, 65 and 6,
divided to 472

6.3 Orthogonality relations

In this Section, we apply theorems of orthogonality and completeness of
the system of matrix elements of pairwise nonequivalent irreducible isouni-
tary representations of compact group to the group SU(Z). Since dimen-
sion of the representation 7}(%) of the group SU(2) is 21 4 1, the functions
V2l + 1A#, (@) form complete orthogonal normalized system in respect to
invariant measure da on this group. In other words, the functions (i)
fulfill the relations

2

mélk&mpdnq. (103)

/ £l () A28 (@) da =
SU(2)

Inserting expression for the matrix elements
B (9,0, ) = exp{—iA2(mep + n) P (g7 cos[0AY)) (104)

into (103) and using the fact that the measure di on the group SU(Q) is
given by
A A4 -1/2 . 1/27 7,4 15.7.7
du = 16,9922 sin[0A#|dpdbdi, (105)
T
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we turn to the following specific cases.
(a) If l # k or m # p or n # q, then

27
/
AS exp{iA®?(p — m)p} exp{iA*?(q — n)y }yd(0AY?)d( AY?)d(pAM?).
(106)

O\[:\‘j

/ Af,m(gil/Q cosl[f; Al/Q])P*k (911 1/2 cos[91A1/2])g;21/2 sin[@Al/Z]
0

(b) Let p = m and ¢ = n, then, at | # k,

/ (o112 cos|L AV B (917172 cos[01 A1) g; ! cos[] APd(0A1/?) =
0

(107)
Analogously, from (103) it follows
T - ‘ 9
/ 911 COS[91A1/2])‘2g111/2 s1n[0A1/2]d(9A1/2) 2041 (108)
0

Further, putting & = gﬂl/ 2 cos[AAY/?] we get the orthogonality relations for
Py (2):

[ Bl @Bk 0)(0) = b (109)

7 Recurrency relations for isoLegendre functions

In this Section, we derive the formulas relating the functions P, (%), indeces
of which are differ from each other by one, that is, recurrency relations, which
can be viewed as an infinitesimal form of the theorem of composition. These
relations are then follow from the composition rules at infinitesimal 0.

To obtain the reccurency rules, we diffirentiate the equation below on 0,

and put 6y = 0:
R —m)! !
pl (2) \/(l m).(l—l—m).><

(I —n)l(l+n)!

X%O/ ©(911 COS[ B Jexp B
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- IV NN
+19221 sin| J exp )’ (19221/ sin| 9 J exp 2
B 9A1/2 _»AI/Q
xglll/ cos| 5 exp ’ 5 (p)l*”expiAl/zgo. (110)

First, we find

16=0

A (1 —=m) (14 m)!
= 47r\/ (= n)(+n) (111)

;gu%n( 112 cos[RAY2)]

2
X /dso(l —n)exp —iAY?(n + 1)p+ (1+n) exp —iA?(n — 1)pexp A *mep.
0

It is obvious that the r.h.s. of this equation is zero unless m = n £ 1. At
m =mn+1, from (111) we get

. 1/2
6;{‘A}[Pg”“lcos[ei]w 0= A3/2\/(l—n)(l+n—|— 1). (112)
Similarly,
d sp_1, —1/2 oA/ i 3/2
AP o eos ] = A JUtn)(—n+1).  (113)

Now, we are ready to derive the recurrency relations.
Using the factorization

Pl ot cos[(6r + 62) A1) Z he(gn 2 cos[r A1)
k=—1

AP (g1, cos[f, A7)

obtained in Sec. GS6, putting 6, = 0 and replacing g;11/2 cos[l A/2]) by 2,
we obtain the recurrency relation in the form

V1-— dp;z(é) = —%A?’/Q[\/(l —n)(+n+1) (114)

Bl (2) + L+ n) - n+ )P, (2)).
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To derive the second recurrency relation, we use the particular case of
the theorem of composition which corresponds to @2 = 5. Namely, we
differentiate the formula

exp —iAY2(mip + n) Py, (91,1 cos[f1 A7) =
Z i kPl A g11 cos[91A1/2]
k=—1
Aplk:n(gl_ll/2 cos[fa A1/2))
and put 0o = 0. After strightforward computations, we have

iA3 md? n% ‘é -0
dfs dbs 2=

dpjnk(gl_ll/ cos[01A1/2])d0|
db, f, 02=0

x P! gfl/QcoselAl/2 — 115
mk\J11

A= DB (g7 coslr A1)

JE= T4 DB (012 coslpanaV?))

It remains to find dp/ dfs and dw/ dfs. To this end, we differentiate the
equality cos[fA1/?] = cos[91A1/2]A cos[faA1/?]. Since, at 6y = 0, we have

6 =60, ¢=0,and ) = @y = Z, it follows that d@/d02|9 _o = 0. Similarly,
1/2
de = — (116)
dby 270 cos[f1 AY/2]
and
dw g1
35, im0 = () Petany A
o [m=—mnz] ~ .
iA [ s } B (%)

N =

[\/(z )l =4 DBy (2) = JU—m) U4+ DB (2 )} .
(117)
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From the reccurency relations obtained above it is straightforward to
write down the following recurrency relations:

dP! -m o ~ > 2
(118)

and, analogously,

dp! —mos . : 3
T I ey o [T D P2
(119)

Due to the symmetry, we have from (118) and (119)

d]?’fnn Z) mz-—mn - 2 : z 2
Vi) B Phn(8) = =i\ = m) (- m+ )P 1)
(120)

and

d]?’fnn zZ) mz-—mn - s : z 2
Vi tmle) D Phn(8) = =i\ m) (= 4 1) P (9)
(121)

Adding (118) to (119), we obtain the recurrency relations for three P’s:

5 ﬁ__’:ﬂ Pl o(5) = ind/? W(z )i —nt DEL, L(2)
=)+ n+ )P, (3)], (122)
VIZ 2Pl (3) = —in¥2 {\/ I+n)(l—n+ 1B, ()
/=) +n+ P3| (123)
Putting m = 0 in (118) and (119), and using
Ph(2) =72 U= b (124)

(Il+n)

we obtain, finally, the recurrency rules for the adjoint isoLegendre polyno-
mials,

dP" (2 Nz ap. . Al
V1— 2222() + A21 ——5 (8 =P, 6 (125)
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and

V1- 22‘”3&5) - A% 22 Pr(s) = —A3(I+n)(l—n+1)PP1(2). (126)
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8 The group QU (2)

In this Section, we consider the group QAU(Q) consisting of isounimodu-
lar isoquasiunitary matrices representations of which lead to isoJacobi and
isoLegendre functions.

8.1 Definitions

The representations of QAU(2) are in many ways similar to that of the group
SU(2). However, in contrast to SU(2), the group QU(2) is not compact,
thus having continuous series of isounitary representations.

Similarly to the description of the group SU(2), we describe the group
QU (2) as a set of isounimodular isoquasiunitary 2 x 2 matrices

§70=<

where & and § are given by (7), satisfying

[oN ey

) , (127)

! O

NN (128)
where
. ([ ATY 0 i @ 3 . 12 A2 A1
S( 0 A—1>7 90 <B OA[> deth*L ’CM‘ _‘ﬁ‘ =A"".

(129)

8.2 Parametrizations

The matrices gy above have been defined by the complex numbers & and
B. However, in various aspects it is suitable to define them by the isoEuler
angles. Constraints on the isoEuler angles following from the requirement
that go € QU(2) are

“12 OAV?

911 COS[T]AQXP{—ZAS/Q(CP+¢)/2}

= 911 cos[0AL/2 /2] A exp{—iA¥/2(p + 1)) /2} (130)

and
Al/2

2

—-1/2

g/ sin[“=—]A exp{iA¥ (o — ) /2}
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B 1/2 _
= g sl ") A explin¥(p — )2}, (131)

which we rewrite in the following form:

iOAL/2 HAL/2

= cos|

cos| Jexp{iA*?(p — ¢ + v — ¥)/2} (132)

and

iOAL/? RTNE
5 | = —sin[

sin| Jexp{id®2() — o +v—p)/2}.  (133)
The angles ¢ — @41 —1) and ) — @+ — @ are real. So, if go = Go(ps 9, 1&) €
QU(2) then cos[#AY?/2] is an imaginary number, i.e. 7 = i is real.

Taking into account the constraints (132) and (133), we obtain the fol-
lowing ranges for the parameters:

0<p<2r, 0<7<o0, —or <4 < 2. (134)

In terms of these parameters, the matrix gg is

C1/2 irAl/2q A 8% 2 (etw) N2 12 832 (p—y)
. ( 911/ cos[T5=]Ae 2 —2A2922/ sin[itAlY/?]e” 2

do = \3/2 \3/2
. —1/2 . i-Al/2, AV T@W—p) —1/2 1/2 —iAT 2 (o)
—iA2 gy, / sin[T5=le” 2 911 / cos[%]Ae z

(135)
Thus, we see that the group QU (2) is one of the real types of subgroups
of SL(2,C). In the following, we use the parameters (134) instead of the
isoEuler angles (¢, 6, 1)).

Let us find the transformation laws for these parameters under the mul-
tiplying of two elements of QU (2). We introduce the notation go; = (0, 71,0)
and go2 = (p2,72,0) so that go1Agoe = (g?),i‘,iﬁ). Using the formulas (16)-
(18) we find

cos[itAY?] == cos[in A% A cos[iTgAl/Q]gl_ll/Q (136)

—sin[in AY?]A sin[iTgA1/2]Agil/2 cos|pa A/,

g1 cos[iTi A2 A cos[ima A2 exp{iA/ 2y )2}

exp{iA? (o + ¥)/2} = A¥( cos[iTA1/2]

(137)
+92_21 sinfiTi A2 A sin[iro A2 exp{ —iAY %@y /2})
cos[iTAl/2]
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and
sin[iTi AY2) A cos[ity A1/?]

g2_21/2 sin[iTAl/2]

exp{iAl/2p} = A1/2( (138)

n A2 coslim AV?)A sin[irgAl/Q]Agl’ll/Q cos[paA1/2]
9521/2 sin[iTA1/2]

B i92_21 sin[iTgAl/Q]A sin[g@Al/?]
92_21/2 sin[iTA1/2]

).

It is easy to check that the element Qo((ﬁ,f',@z)) is an inverse of go(m —
@7 %7 - = ¢)

8.3 Relation to the group SH(3)

Let us define the group S}-I(S) as the group of isolinear transformation of
three dimensional isoEuclidean space F; acting transitively on (iso)hyperboloids
and (iso)conics. This transformation is an isohyperbolic one.

The relation between the groups QU (2) and SH(3) is similar to that
between SU(2) and SO0(3). Namely, to every point #(i1,29,23) € F3 we
associate the quasiuntary matrix

hy = ( o1 T2tids > (139)
o — 13 —X1
Then,
T'(go)Ahy = GoAhzgo. (140)
Accordingly,
2 ; A7y Ay +iys
T(Go)Ahy = : , 141
(40) ( Ayo — iy3 Ayy (141)

~ 1/2 ~ 1/2 Al A A AN T
where & = g11°x, § = 93"y, and §(J1, G2, 93 )inFs.

9 Irreps of QU(2)

9.1 Description of the irreps

Denote x = (I,¢), where [ is complex number and € = 0,1/2. With every x
we associate the space Dy of functions ¢(2) of complex variable 2 = & + iy
such that:
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(1) ¢(2) is of C*° class on Z and gy at every point 2 = Z + i except for
’ :(g,) for any a > 0 the following equation is satisfied:
P(alz) = a2 Ap(2). (142)
(3) ¢(2) is an even (odd) function at e = 0(1/2),
p(=2) = (~ATH*Ag(2). (143)

For subsequent purposes, we realize the space Dy on a circle. Namely,
with every function ¢(2) we associate the function f such that, at £ = 0,

fexp{ifA?}) = p(exp{iA'/?}) (144)
and, at e = 1/2,
flexp{ifAY?}) = exp{i0 A2} Ap(exp{idAL/?Y). (145)

Thus, the space Dy can be represented as the space D of functions on circle.

9.2 Representations 7% (o)

(32

of the group QU (2) we associate the operator in the space Dy,

To every element

@
(SN

Te(G0)AG(2) = G(az + B2). (146)

Clearly, function 7' (90)A¢(2) has the same homogeneity degree as the func-
tion ¢(2), and so the operator T%(go) is an automorphism of the space Dy.
Also, it is easy to verify that

Ty (§01) ATy (Go1) = Ty (Go1 Adoz)- (147)

Action of the operator :/}(go) can then be strightforwardly derived.
Namely, for x = ({,0) we have

T3 (9)Af(exp{igAl/?})
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N B | a OAL/21 4§
_ |ﬁAexp{i9A1/2} +d|21A2l+1f Aozexp{z@A }+ﬁ, ’ (148)
BA exp{ifAY/2} + &

and for x = (1,1/2)
T3 (9)Af(exp{ifAY?})

BA exp{ifA1/2} + &
(149)

. _ . | a OA1/21 | A
= |BA eXp{i9A1/2}+d|2l_1A2l+l(ﬂAexp{i9A1/2}+d)f ( aexp{iAY*} + 3 ) '

10 Matrix elements of the irreps of QU(2) and iso-
Jacobi functions

10.1 The matrix elements

Let us choose the basis exp{—im#A3/2} in space lA);(, and define the matrix
elemets of Tx(ﬁ), where

~ exp{itA1/2/2 0
h:( p{ ° /2} exp{—itA1/2/2})' (150)

In the same manner as for § of QAU(2) we can represent

i AL/2 —1/2 iTA/2 . —1/2 . rirAl/2
ib el /272 0 g1 / COS[”% / ] 1922/ SIH[ZTA2 / ]
= i OAL/2 A — . iiAL/2 — L AL/2

0 e~ iPA /272 1/2 Sln[zTAQ / ] 1/2 S[WAQ/

—1Go9
(151)

ipAl/2
A e 2 0
X _ipal/? )
0 e 2

where ¢, 7, and zﬂ are isoEuler angles of go. From (153) we define f}((gT),

namely,
-1/2 irAL/2 L —1/2 . rirAL/2
(o eli L ) )
—1G99 sin[%] 911 COS[%]

Then, straighforward calculations yield [4]

A p2n irAl/2 L A1/2

o 5 —1/2 . —1/2 . ATA
2 o )y d@(gn/ cos| 5 ]—2922/ sin|

] eXp{i@Al/Q})l+n+a
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- A1/2
< (g2 cos| T2

(153)

P L
—igqy ' sin|

| exp{—i0AY2}) "= exp{if(m — n) A%/?}.

Introduce the function B!, (isocosh?) defining

4+ pom L A1/2 L A1/2
Bl coslir V2 = 5 [ (917 cos )i sinl )
2r  Jo 2 2
 A1/2
< exp{i0AY2) ! (g2 cos] T (154)
A1/2
ig sin] TE T exp{—i0 A2} exp(if(m — n) A2
Comparing (153) and (154) we have
B = Blun(gr? coslirAY2)) % = (L,¢), (155)
where
m =m+e, n=n+e, 0<7<00, (156)

l is a complex number, m and n are simultaneously integer or half-integer
numbers. From the expansion (153) it follows that

Ty (go) = T (hep) ATx (97) ATy (hap). (157)
So we can write

7%1”( D, T, @ZAJ) = exp{—iA?’/Q(m’go + n'@ZJ)}Bl (gl_ll/2 cos[z'TAl/2]), (158)

mn

where m’,n/, and 7" are defined according to (156). Since B!, (%) plays
the same role for QU (2) as the function P!, (%) for SU(2), we call B!, (%)

isoJacobi function of the variable Z = 91—11/2 cos[itAY/?].

11 IsoJacobi function B! (2)

Integral representation of the isoJacobi function B! (%) can be readily de-
rived (see [4] for the usual case),

Bl (g1, cosliTAl/?)) =
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441 _ 3/2
- \/QAg (cos[iTAL/2] — cos|itAl/2])

(159)
_2+ig2_21/2 sin[ir A2 /2])2" 4 ,é'T_?’bA(gl_ll/2 cos[itAY? /2]
—2,igg;21/2 sin[iTAl/Q/Q])Qn} dt,
where
. exp{TAl/?} — 91—11/2 cos[iTA/?]
9oz sinfiT AL/2]
+i exp{z‘tAl/?/z}A\/ 2Ag71"* (cos[it A/2] — cos[itA1/2]) (160)

92_21/2 sin[iTAY/2]
As one can see, the representation (159) is simplified when n = m and

also when n = 0.
When n = m we have directly from (159)

~L . AP oT 91—11/2 cos[(l —n + lAI/Q]Ag_ll/Q cos[(2nA3/2a) AV/?)di
Bl ==~ | o T .
\/9 11 cosl TE2] + oy sinl T4
(161)
When n = 0 we have
R As+m 7 14 HYA324y (57 57V dE
Blo(3) = =, / exi{ /(2 ) ATHNE £ AN (162)
2 J-1 2A(gy; ' “ (cos[iTA/2] — cos[itAL/2]))
Particularly, when in addition m = 0 we have
. _ A% 1/2)t
l J(2) / cos|i l+/)] __ (163)
\/ cos2 ”A 21 _ cos [LAQ/ ]
12 IsoJacobi function B},
Let us put m =n =0 in (155). Then
50(d0) = Boo(2)- (164)

We call Bly(%) isoJacobi function with index [ and denote it simply B;(%),
namely,

Bl(é) = 7%(0(07 7, 07) = B(ZJO(ZA")v (165)
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where x = (1,0) and 2 = 91_11/2 cos[iTAY/?].
The following integral representations for the isoJacobi function B!(2)
can be written:

5 sy AL T 1 L AL/2 —1/2 i A1/27,71/2 O AL/21\ 1)
Bi(2) = 5 / (917 "7 cos[iTAYZ] — goo ' " sin[itAY 7]gy; " cos[i0AY]) d0,
™ Jo

166
~ AH_I —1/2 . 1/2 Z +1 -1/2 . 1/2 ldé’ ( )
B (2) = = /(g11 cos[iTA=] — 2A2A Goo | sin[iTAYZ]) P (167)

- ! 1/2 (14 $)tAl/?)at
Bi(z) = Afg sm [T A=) / gn cos[( +3) ] (168)

7r

\/COb [it A/2)) + cos[iT A1/2] '

From (166) it can be seen that when [ is integer the isoJacobi function Bj(2)
coincides with the isoLegendre polynomial,

Bi(2) = A(2), (169)

which has been considered in Secs. 2-7.

12.1 Symmetry relations for B! (%) and Bj(2)

Similarly to the isoLegendre polynomials Pfrm(é), the isoJacobi functions
Bl (%) satisfy the following symmetry relations:

Bl(2) = BL,, (%) (170)
and R X
Bi(2) = B-1-1(2). (171)

13 Functional relations for B! (2)

Functional relations for isoJacobi functions B!, (%) can be derived in a sim-
ilar fashion as it for isoLegendre functions P!, (2). Particularly, we have

exp{—iAY%(me +ny)} BL (2) Z exp —iAY koo Bl (31)ABL, (22),
k=—o00

(172)
where z = gfll/2 cos[iTAY?], 2 = 9;11/2 cosliti AY/?], 25 = 91—11/2 cos[iyA1/?),
and 7, 71, T2, ¢, and ¢ are defined due to egs. (136)-(138).
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So, as a consequence of (172) we have the following particular cases.
(a) Let 93 =0, then 7 =7 + 72, ¢ =¥ = 0, and we have

f?f,m(gl_ll/ cos[i(T1 + 712) A1/2 Z Bmk g11 cos[iTlA1/2])A (173)

k=—00
- ~1/2 .
x BL (g77? coslira AY?)).
(b) Let @9 =7, then 71 > 7o, 7 = 71 — T2, » = 0, ¥ = 7, and we have

B (17 cosli(m — m2)AY?)) Z Blu(g1)? coslim AV A% (174)

k=—00
><J}:>’,lm(gl_11/2 coslityA1/?)).
(c) Particularly, when in addition 71 = 72, we have

Z Blu(g11? coslim AV A2 B (g1, coslimAl?]) = B, (1) (175)

k=—o00

= O = Omn AL

Theorem of composition for isoLegendre function.
Let us define isoLegendre function and adjoint isoLegendre function as
follows

Bi(2) = Bho(2) (176)
and
. Fl+m+1) m . A~ N f‘(l‘i’l >0m / 2
r="1 PO, Blo®) = < AR(:)
T(l+1) T(l—m+1)
(177)
Putting m =n = 0 in (172) and using (176) and (177) we obtain
R T(l—k+1 R
Buz) = LUZRED) s oin®2hes gl 5 B (5y), (178)
Fl+k+1)
where
—-1/2 S A1/27 -1 . 1/21 A —1 . 1/2
911 cos[iTA4] = g1y cosliTi A #|Agyy cos[iTa AT 7|+ (179)

935 sinfiTi AY2) A2 sin[imy AY2) g7 coslipa AV
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The composition formula for the adjoint isoLegendre function follows
from (172) with n = 0, namely, we have

. INC 1 . . R
Bi(z) = WMD) \3iad2ken gl 5y BE (2), (180)

L+ k+1)

where

D(l+m+1) =TI +m)A(l+m)andl(l+m+1) = / e mmAZEHm L gy,
0
(181)
Multiplication formula.
Multiplying both sides of the equation (172) by exp{iA%/?ke,} we obtain

AQ 27

on dipy e8P (krmmemni) Bl 5y (182)

Bl w(21) Bl (22)

Putting m = n = 0 in (182) and using the symmetry relations we get

. . A2 2
BH B M (2) = o [ oAb (183)
™ JO
Binn (21 AZo + 23A§4A25)d(p2,

where 2; = gﬂlﬂ cos[iTlAl/Q], 2y = gﬂl/Q COS[iTQAl/Q], 29 = 9;11/2 sin[iTlAl/z],
Zy = 91_11/2 sin[irpA/?], and 25 = 91_11/2 cos[ipaA/?]. Particularly,

A A A 2 ) ) ) ) R
Bl(zl)Bl(Zg) /0 Bi,m(zlAzg + 23Az4Az5)dcp2. (184)

T o

14 Recurrency relations for Bfm

Recurrency relations for B! = can be derived in the same manner as it for

Pﬁrm So, we do not represent the calculations here, and write down the final
results.

-
v 1 Wm0 e 0
Z k)

m—nAz dBL,(2)  (I+n) A R
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From (185) and (186) we have

A dB. () m—nAz dB! (2 . )
VE2—1A d;:«( ) _ —— A dé( ) _ (1 —n)ABL, ,1(2) (187)

and

dBL (3 —nAz  dB. (2
NEESTN gg(Z)eréQn_fA sg(z):(l+n)ABfnn+1(é) (188)

Using the symmetry relations we have

Al (s A5 JBl (3
\/zz—mng;}(z)ﬂ MAZNBun(®) _ 4 )ABL L (2) (189)

32 _ 1 dz
and
dBl 2 —nA% dB. (3
V2 1A 22_1 A T;‘Z( ) - m+1)AB .1 (2). (190)
Also,
2(m — nAz .
(= m)BL 1 (2) — (L4 m)Bh 1 (5) = 2B nopt oy (101
V2 -1
2(n — mAZ
(1) B (3)= (= 1) B, (9) = 2= S A, 2. (192)

The differential equation satisfied by isoJacobi function is

2B (2 dB. (3 2402 —2mnA | - R
NEE C}ZZ(Z)—?Z zg(z)—m +:2_1m" ABL ()= 1(1+1)BL (2).
(193)

The differential equation satisfied by adjoint isoLegendre function is

d2B™ (2 AB™(2)  m2A2 . .
\/deQ() 224 ézs( )—22_1ABZ”(z) = 1(I1+1)AB™(2), (194)

and the equation satisfied by isoLegendre function is

2B(% By(2 .
N d;éz) PN dlé(z) =I(l+ 1)AB(2). (195)
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15 The group M (2)

In this Section, we consider linear transformations of isoEuclidean plane.

15.1 Definitions

The motion of isoEuclidean plane E? is similar to that of the ordinary Eu-
clidean plane E? so the definition of the group M (2) is similat to that of
M(2).

Choosing local coordinates (&, ) on E2, we write the motion § : (&,§) —
(#',9") in th following form:

= :%Agl_ll/2 cos|aAY/?] — @Agz_Ql/Q sin[aAY?] 4+ a, (196)

:&/ _ .’IAZ'Ag;;/Z Sin[OéAl/2] o ?JAgil/Q COS[O(AI/Z] 4 b,

where
~ 1/2 ~ 1/2
P=gi’r, §= 97, (197)
so that, in an explicit form,
i = (9117 g2) coslaA?] = (g1{ go) sin[a AV 4, (198)

7 = iAgi’P sin[aAY/?] — g)A(gi{ng) cos[aAY?] +b.

Here, a, b, and a parametrize the motion § so that every element § € M (2)
can be defined by the three parameters having the following ranges:

—oo<a<oo, —oo<b<oo, 0<a<?2m. (199)

Another realization of M(2) comes with the identification of §(a,b, @)
with the matrix

R gﬂl/Z cos[aA1/?] —9521/2 sin[aA'/?]  a
T(9) = g2_21/2 sin[aA/?] gl_ll/2 cos[aAl/?] b : (200)
0 0 A1

It can be easily verified that
T(91)AT (g2) = T(3:801),

so that T'(j) is a representation of M(2). This representation is an exact
one, i.e. T(g1) # T(g2) if g1 # go. Thus, we conclude that the group M (2)
is realized as group of 3 x 3 real matrices (201).
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The group M(2) can be realized also as the group of 2 x 2 complex
matrices. Namely, by the identification of g(a, b, o) with the matrix

AL e iA3/2¢ z
Q) = ( wlidah 2 )) , (201)
where
2= a4 ilb, (202)
It is easy to verify that Q(§1)AQ(j2) = Q(51A91) and Q(41) # Q(j2) if
g1 # Go-
15.2 Parametrizations

For the parametrization above, let us find the composition law. Let g3 =
g(a1,b1,a1) and ga = g(ag,be, ). Then

T(51092) = (203)
—1/2

1/2 . ra
Gyo | sin[ég

0 0 A1
so that the law is
a=a+ agAgil/2 cos[a; Al/?) — bgAg;;/2 sin[ag A2, (204)
b=b + azAgQ_QI/2 sin[alAl/Q] + bQAgl_ll/2 cos[alAl/Q], (205)
& = &1 + da. (206)
Denoting & = (a1, b1) and § = (a1,b1) we rewrite the formulas (204)-(206)

as follows:

(&, 8)A3(9, 8) = §(2 + Jar & + ). (207)
From this equation it follows that if ¢ = §(Z, &) then
Gt =9(—1_4,2m — @&). (208)

Another useful parametrization can be represented by isoEuler angles.
On the plane, we parametrize the vector & = (a,b) by isopolar angles a =

rAgfll/Z cos[pA'/2] and b = 9521/2 sin[pA'/2]. The set of parameters for § is
then (7, p, &), with the rabges

0 <7 <00, quadd < ¢ < 2w, quadd < & < 2. (209)
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Decomposition for element of M (2) reads

Transformations corresponding to §(0,0, @) and §(0,0,& — ¢) are rotations
while g(7,0,0) defines a parallel transport along the axis Oz. For §; =
g(7,0,&71) and go = §(72,0,0), we have from eqs.(204)-(206)

glAgQ = g(fv @7 d)

, where

£ = /72 1+ 2 + 287 AR AGLY cos[aA 2] (211)
and
P2 = xbiz + ybly + 2b3z; f% = x1biy + y1bsyr + 210321, (212)

73 = wabixo + Y2b3ys + 22b322,

71 + T A exp{iA3/2a1 R
T?

}
a=a. (214)

expiA®/?p = (213)

To find the parameters of the composition g1 Agy for g1 = §(71, 1, 41) and
g2 = §(72, P2, G2), one should replace &; by &1 + @2 — @1, & by ¢ — —¢1,
and & by & — &g in (211)-(214).

From decomposition (210) and equation

Q(O, 0, a1+ @2 - @1) = Q(O, 0, ay — Qpl)A.g(Oa Oa @2) (215)
we get

gng = g(ov Oa @1)g(f17 07 07 )g(oa 0’ éél + @2 - @1)&(722, 0’ 07 )g(oa 07 d2 +¢2)A3
(216)

16 Irreps of M(2)

16.1 Description of the irreps

Denote the space of smooth functions f (&) on circle :L'lb%xl + xlb%xl =A"1
by D. To every element §(a,&) € M(2) we associate the operator To(§j)
acting on f(Z),

Te(9)f(2) = €D f(i_4). (217)
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Here, c¢ is fixed complex number, _4 is vector to which the vector & is
transformed by rotation on angle —&, and (a,z) = auxlgi{Q + ag.’rggi{Q.
Let us show that 7,.(§) is the representation of M(2). For g1 = g(a, &) and
g2 = §(b, B) we have

To(§1)Tu(32) f(2) = Te(§1)e @D f(3_p)e@PeCief(z_ . o). (218)

Since (b, Z_qo) = (ba, &) the following equation is valid:

Tu(§) AT () f (@) = 2t f(_ o). (219)
On the other hand, owing to (207)
g = §(a,6)g(b, B) = ja+ ba, 6 + ), (220)
so that
To(§18G2) f(#) = DD (3, 5. (221)

Thus, To(§1A§2) = T(1AT,g2), i.e. To(§) is representation of M(2).
Parametrical equations of the circle, :vlb%:nz + be%l'Q = A~! have the
form

z1 = g7 cos[p A2, zy = ATV 2sin[pAY?], 0 <4 < 2m, (222)

so that one can think of functions f(#) € D as functions depending on ),

f(@) = (). (223)
The operator can be rewritten as
T(9)f (9) = exp{cA?igy,' " cos|(¥ — ) AV} (i — &), (224)

where

~

A —1/2 A —1/2 . SN
a=(FAgy,"? cos[pA?], #Agy, 1 sinpA?), g = gla,q).
By introducing scalar product,
2T A - R
(f12f2) = o / F1(¥) f2(h)dp, (225)
we make the space D to be isoHilbert space £. Then, T}(g) is isounitary

in respect to the scalar product (225) if and only if ¢ = ip is an imaginary
number.
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16.2 Infinitesimal operators

The operator T, (i (£)), where

i (1) = 0 At 0 ), (226)

w1 € o, transforms function f(iﬂ) to

A

To (i () f () = exp{cA2tr gy cos[p AV} f (1)), (227)

so that

dT (i (t))
dt
ie. Ay acts as a multiplication operator.

Similarly, one can prove that the infinitesimal operator Ay corresponding
to the subgroup (2o represented by the matrices

A = liig = cAgl_ll/2 cos[¢A1/2], (228)

A1 0 0
o (t) = 0 tA L 0 ) (229)
0 0 A1
is given b
& Y A 1/2y . 1/2
Ag = C(g11955" ) sin[pA=]. (230)

Also, for the subgroup {23 consisting of the matrices

gi1/2 cos[tAl/?] —g;21/2 sin[tA/?] 0

ws(t) = 9521/2 sin[tA1/?] 9;11/2 cos[tA1/?] 0 ) (231)
0 0 AN
we have p
Ay = ——. (232)
dip

16.3 The irreps

The prove of irreducibility of the representation 7 (g) of the group M (2) can
be given in the same way as it of T/(g), and we do not present it here.
Below, we consider two choices of c.
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(a) ¢ # 0. We have

~ A~

T.(i3(6)) f () = f(4b — ). (233)
(b) ¢ =0. We have
T.(9)Af () = f(d — &), (234)

where g = (2}&). This representation is reducible since it can be decomposed
into direct sum of the one-dimensional representations

Ton(9) = ¢ (235)
Note that T5(§) with ¢ # 0 and Tp, (), where n is integer number, constitute

all possible irreps of M (2).

17 Matrix elements of the irreps of M (2) and isoBessel
functions
17.1 Matrix elements

In the space £, we choose the orthonormal basis {exp(iA%/?ny)} consisting
of eigenfunctions of the operator T,(w), w € Q3. The matrix elements are
written in this basis as

e ~ 2 oy i A3/ 24 imap A3/2
trn(9) = (Te(@)e™ 2" ™A, (236)

Taking into account definition (225) and eq.(224) we get

e (§) = eXP{—inaAg/Q}A?, o i) ecA2fg;11/2 cos[(¥—p) A1/2] i(n—m)$pA3/2.
(237)
Let # = ¢ = 0, i.e. § defines rotation on isoangle &. Due to orthogonality
of the functions exp{—inyA%?}, we have

e (5) =1, (&) = exp{—inaA®?})6mn. (238)

Thus, the rotation is represented by a diagonal matrix TC(&), with non-zero
elements being exp{—inaA%?}, co < n < co.
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Let ¢

= & = 0. In this case, § defines transplacement on 7 along the O%
axis so that (237)

takes the form

R N A2 2m _
fun(§) =l () = 5 | dib exp{CAgy " coslp A2 i(n—m)pa®/2).
) ) (239)
Replacing ¢ by 7/2 — 6, we then have
. N AQ —mm, 2 2. —1/2 . 1/2 . 3/2
te o () = 5t df exp{cA*Tgyy '~ sSIn[0A™*] —i(n + m)iA> “}.
u 0
(240)
Let us denote
YA S 9 —1/2 . 1/21 i A3/2
Jn(Z) = 5 df exp{A=gyy '~ sIn[0AY ] —inhA>“}, (241)
™ 0
and refer to J, (i) as isoBessel function.
Using this definition we have from (240), in a compact writting,
2 (F) = " ATy (—icA2F). (242)

Now, to obtain £, (§) in a eneral case it is suffice to make the replace-
ment 1) — ¢ = § — 6 in the integral (237). Namely, using (241) we obtain

i (§) = i" " Aexp{—inaA®? +i(n + m) A%} Iy (—icAF).  (243)
Indeed, from (243) it follows that
Te(§) = To(@)Te(F)To(6 — @) (244)

Since the matrices T,(§) and T.(& — @) are both diagonal, with the non-
zero elements exp{iA®/?np} and exp{—iA3/?n(p — )} respectively, while
. (7) = "M Ay (—icA%7) we come to (243). )

If g is an identity transformation, § = §(0,0,0), then 7,(g) is the isounit
matrix. Consequently, we have the following relations:

Jp—m(0) =6, JO)=A", J,(0)=0, (n#0).

17.2 IsoBessel functions with opposite sign indeces

In this section, we find the relation between the isoBessel functions with
opposite sign indeces.
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In the space of functions f (1&), introduce the operator Q acting according
to

QAF (W) = f(—9). (245)
This operator commutes with operator TC(Q) = Tc(f), where g = §(7,0,0).
Indeed,

T.(HAQ (%) = T(1) f(—) = exp{eA?gy) " cos[p A} (=),
Consequently, o ) R
QTc(f) = Tc(’ﬁ)Q' (246)
Operator Q acts by changing the basis element, exp{inaA®/?} to exp{—inaAd/?},

so the matrix has the form (Gimn), where Gm —m = A7 and Gppn = 0 for
m ~+n # 0. Thus, from (246) we obtain

£ () = £, (7). (247)

—m,n
Then, taking into account (242) we get

i e (=i A2ER) = T (—iAZer). (248)
Putting in (248) m = 0 and 2 = —iA%¢f, we finally have

Jn(2) = =AY, (3). (249)

17.3 Expansion series for IsoBessel functions

Our aim is to derive the expansion series for isoBessel function in . To
this end, we use integral representation (241). Expanding the exponent
exp{iA22g_; /2 sin[)A?]} and integrating over all the terms we obtain

o0

Ju(@) =" aradt (g ghy), (250)
k=0
where
A3k‘*8 2 ] ) ) “
L dip exp{—iAY?nap}(i(g1195° sin[A2])F, (251)

 ork! 0

Here, s =1,2,3,... On the other and, owing to the Euler formula,

A3/2)
(igay? sin[p AZ))F = we—m” Yok A2k (252)
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1) A20=k)= mCmexp{z(k: 2m)A3/2¢}

k
- ;

Inserting this formula into (251), one can observe that aj is non-zero iff
(k —n) is an even number, i.e. kK —n =2m, m > 0. If k = n + 2m then

o (—1)Am _ (_1)A7n73m725 (253)
P 2kml(k — m)IAR2Zs T 2nt2mp)(n 4 m)’

So, we finally have

A 5/2 925 2 9% k _Anfmx2m
Jn(2) = (911 )(x/2)" Z 92m |

Pl (254)
m=0 ' !

18 Functional relations for isoBessel function

18.1 Theorem of composition

Theorem of composition for isoBessel function can be derived in the same
manner as it for isoLegendre function P! . One should use the equality

T(51AG2) = To(1) AT (g2, that is

(91A82) = Z trk (91) AEG (52).- (255)

k=—o00

Let us put g1 = §(71,0,0) and go = g(72,p2,0). Then the parameters 7,
¢, and & corresponding to the composition § = §1Age can be expressed via
parameters 71, 72, and @9 as

T = \/f% + 73+ 201 A A gy P eos[pa A2, (256)
e P N e (257)
a=0, (258)

where f%, f’g, and 72 are defined due to (212).
Inserting the matrix elements (243) into (255) and putting m = 0 and
R = iA~! we have after some algebra

AR o7y = 3 AR (F) ATy (), (259)

k=—00
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where 7, 71, 79, ¢, and (P9 are defined according to (256)-(257).
The formula (258) represents the theorem of composition of isoBessel
functions.
Particularly, at n = 0 we have from (258)
A O 1. ass2 A A
Jo(F) = 3 (gg)e' ™ 22 d(1) A (7). (260)

k=—oc0

Below, we consider some useful particular cases of the theorem.
(a) At 92 =0, we have 7 = 71 + 73 and ¢ = 0, so that

Jn (1 + ) = i T (P1) AT (72). (261)

k=—o00

b) At Y3 = w and 71 > 79, we have ¢ = 0 and 7 = 7y — 79, so that
®

Jn (1 — 7g) = i (1) Jn—p(71) AYE T4 (7). (262)
k=—o00
(c¢) For ¢ = /2, we have
(2 +§2)3A3+1jn(\/f% +i3) = éj: P T k(AR T (). (263)
(d) For 7 = 71 = 7y we have
S T AL = 4, (0) = % R (264)

k=—o00

18.2 Theorem of multiplication
Multiplying both sides of equation (259) by exp{—iA3/?mpsy}/2r and inte-
grating over ¢ in the range (0, 27), we have
A2
o

2m . A T
/ ezA(ngo—ms@ Jn(f’)dng = Jn_m<7A’1)Jm(722>, (265)
0

where 7, 71, 72, ¢, and @9 are defined according to (256)-(258). Here, we
have used the fact that exp{iA3/?ng,} are orthogonal so that all the terms
are zero except for those with k = m.

48



The equation (265) represents the theorem of product for isoBessel func-
tions.
Let us consider specific case of the theorem characterized by 71 = 7o = R.

From this condition it follows that 7 = 2RAZgg,; Y 2008[“"2] and ¢ = @2, 0
that

A2
o

A

N ™ PN _

Tn—m (1) Jm (F2) = / e An=2me j (9RAZg 2 cos[%])dgb. (266)
0

Replacing the variable in the above integral by 7, we note that when o

varies from 0 to 7 the variable 7 varies from 71 + 72 to |71 — 2|, while when
(9 varies from 7 to 27 the variable 7 varies from |fqy — 73] to 71 + 2. In
addition,

JVARAR - (72— - )
d(pg 2A7 ’

where minus and plus signs correspond to 0 < @9 > 7 and 7 < Yy > 27
respectively. Thus, we have

(267)

L A [T GiAmemmee (75
T (1) I (72) = |

71 Tz\e

)
T \JAAR — (72 - 3 — 3)?

(268)

where ¢ and (@9 are related to 7 according to (256)-(258).
At m = n = 0 the formula (268) takes the most simple form,

. 2A? S Jo(#)rdi
Jo(71)Jo(72) = [f1—ta/ (269)

”¢M%w—(—ﬁ—@)

19 Recurrency relations for .J, (%)

As it for isoLegendre functions P! (%), recurrency relations for isoBessel
functions follow from the composition theorem. Namely, we should first put
79 in this theorem to be infinitesimal.

Let us find derivatives of the isoBessel function on & at the point & = 0.
Differentiating (241) we have

iA2

5 _ AT

27 “ N N
/ exp —iA2nggyy 2 sin[)]d) (270)
0
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AQ 2T . ~ ~
= 4—/ [exp —iA%(n — 1)9) — exp —iA%(n + 1)¢)]di.
T JO
This integral is non-zero only when n = +A~!. Also,

. . —1
J1(0) = J 1(0) = AT. (271)

Differentiating both sides of (263) on 73 and putting 7 = 0 we find

~

2j7,1(1%) = jnfl(i’) — Jn+1 (i) (272)

Here, we used (271) and replace 7 by Z.
Similarly, from (265) we find

2n - - -

= (@) = Jaer (@) + Jusa (@), (273)

Combining (272) and (273) we finally obtain

Jum1(&) = ZATu(8) + T, (@), (274)
Juir(@) = ZATu(&) = J, (@) (275)

Ja1(@) = (5 + 1AL (2), (216)
Jua(@) = (5 = )AL @) (217

20 Relations between IsoBessel functions and P! ()

20.1 IsoEuclidean plane and sphere

Two-dimensional sphere can be mapped to isoEuclidean plane in a standard
way. Namely, this can be done in taking the limit R — oo for the radius of
the sphere. Accordingly, M(2) can be considered as some limit of SO(3).
More precisely, replacing @, ¥, 6, 61, 65, and s by @, f/f%, a, 731/1%, f’g/]%,
and & in (135) defining multiplications in SO(3) we should retain leading
terms in the limit R — oo. Simple calculations show that the result is
exactly the formulas (211)-(214) defining multiplications in M (2).
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20.2 IsoBessel and isoJacobi functions

The relation between the groups M (2) and SO(3) makes it possible to relate
matrix elements of its irreducible isounitary representations. Thus, isoBessel
functions, as matrix elements of representations ij(g) of M(2), can be
derived from P! | which are matrix elements of representations 7j(g) of
SO(3). The limiting procedure is R — oo and [ — co.

To obtain concrete formulas we note first that P,ﬂm has the integral

representation,
7 9 .
pl (12 (A (L —m)!( +m)! ~ o —1/2 0. iz/2
Prn(911 COS[9])—(27T)\/ (—n)l+n) Jo dé (911 COS[§]€¢)

) R X (278)

+i92_21/2 Sin[g]e—icﬁ/Q)(gQ—zl/Q Sin[g]eicﬁ/Q + 291_11/2 COS[g]e_i(‘b/Q)eimsa_

Putting 6 = 7 /1 and taking the limit [ — oo we find

. _ P A20+1)  ror irA5/2
liglo mn(gll COS[ 1 ]) o B + 2 exXp ’“P) ( 79)
irA\5/2
x(1+ r expip) expiA®2(m — n)pd(pAY/?).

21
Note that at m = n = 0 the above relation takes the following simple
form:

LA 7 .
Jim Py(gy;'"” cos[3 AY2)) = Jo(#), (280)

so that Jo(7) appears as the limit from the isoLegendre polynomial.

o1



References

[1] R.Mignani, Lett. Nuovo Cim. 39, 406 (1984); 43, 355 (1985); Hadronic
J. 9,103 (1986).

[2] R.M.Santilli, Hadronic J. Suppl.4B, issue no.2 (1989).

[3] R.M.Santilli, Elements of hadronic mechanics, Vol. 1, 2 (Naukova
Dumka, Kiev, 1994).

[4] N.Ya.Vilenkin, Special functions and theory of representations of groups.
(Nauka, Moscow, 1978).

[5] A.G.Sitenko, Scattering theory (Naukova Dumka, Kiev 1975).

[6] A.K.Aringazin, D.A Kirukhin, and R.M.Santilli, ”Nonpotential two-body
elastic scattering problem”, Hadronic J 18 (1995).

[7] A.K.Aringazin, D.A .Kirukhin, R.M.Santilli, "Nonpotential elastic scat-
tering of spinning particles”, Hadronic J 18 (1995).

52



