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Abstract

In preceding works we pointed out serious axiomatic inconsistencies of grand
unified theories when gravitation is included in its conventional Riemannian formu-
lation. In this note we present a number of additional inconsistencies of general
relativity and show that they ultimately originate from the the Riemannian curva-
ture. In fact, the latter implies a noncanonical structure at the classical level and a
nonunitary structure at the operator level, with consequential structural problems
at both classical and operator levels, such as the lack of invariance in time of basic
units. In turn the latter features imply the lack of well defined invariance (rather
than the customary covariance), with consequential lack of invariance in time of
numerical predictions. These problematic aspects suggest the construction of a new
theory of gravitation based on the conditions of admitting a universal symmetry
without curvature. The compatibility of gravitation with special relativity then
uniquely identifies the needed invariance as a symmetry isomorphic to the Poincaré
symmetry. It is shown that the latter conditions do not admit a solution within the
context of the conventional Lie theory and its underlying mathematics. It is shown
that the use instead of the novel isomathematics for matter and its isodual for anti-
matter, the related Lie-Santilli isotheory and its isodual and the resulting isotopies
and isodualities of the Poincaré symmetry allow a geometric unification of general
and special relativity via the axioms of the special, in which case gravitation does
indeed emerge as possessing a universal symmetry without curvature. We indicate
the apparent resolution of the inconsistencies of general relativity permitted by its
isotopic reformulation, we point out some intriguing cosmological implications, and
we show that the new invariant isogravitation is a concrete and explicit realization of
the theory of “hidden variables”, with a natural, axiomatically consistent operator
form.

1. Introduction
As it is well known, electroweak theories have an outstanding scientific consistency (see,
e.g., Refs. [1]), while the achievement of a grand unification with the inclusion of gravity
as represented by general relativity [2] has remained elusive despite attempts dating back
to Einstein.

In preceding works [3], we have pointed out a number of axiomatic inconsistencies
of grand unifications in the representation of matter as well as of antimatter whenever
gravity is represented via curvature in a Riemannian space, such as:
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1) The admission by electroweak interactions of the fundamental Poincaré symmetry
compared to the absence of a symmetry for any Riemannian treatment of gravitation in
favor of the well known covariance;

2) The essentially flat, thus canonical structure of electroweak interactions compared
to the curved, thus noncanonical structure of Riemannian gravitation, with consequential
nonunitary character of quantum gravity and related well known problems of consistency;

3) The admission by electroweak interactions of negative-energy solutions for antimat-
ter as compared to the strict absence of negative energies for any Riemannian treatment
of gravitation.

An axiomatically consistent grand unification was then attempted in Refs. [3] via the
isominkowskian representation of gravity [4] because: i) isominkowskian gravity admits a
symmetry for matter that is isomorphic to the Poincaré symmetry, thus resolving incon-
sistency 1); ii) isominkowskian gravity replaces the Riemannian curvature with a covering
notion compatible with the flatness of electroweak theories, thus resolving inconsistency
2); and iii) inconsistency 3) is resolved via the isodual theories of antimatter [5], including
the isodual isominkowskian geometry [5g] that permits negative-energy solutions for the
gravitational field of antimatter.

In this note, we study a number of additional inconsistencies of general relativity
published in refereed journals, yet generally ignored in the vast literature in the field.

We then show that the only resolution of these additional inconsistencies known to
the author is that proposed in Refs. [3], thus confirming the fundamental character of the
Poincaré symmetry in its isotopic formulation for matter and its isodual for antimatter.

2. Consistency and Limitations of Special Relativity.
As it is well known, thanks to historical contributions by Lorentz, Poincaré, Einstein,
Minkowski, Weyl and others, special relativity (see, e.g., the historical accounts [2f,2g])
achieved a majestic axiomatical and physical consistency.

After one century of studies, we can safely identify the origins of this consistency in
the following crucial properties:

1) Special relativity is formulated in the Minkowski spacetime M(x, η, R) with local
spacetime coordinates, metric, line element and basic unit given respectively by

x = {xµ} = (rk, t), k = 1, 2, 3, µ = 1, 2, 3, 0, co = 1, (2.1a)

η = Diag.(1, 1, 1,−1), (2.1b)

(x− y)2 = (xµ − yµ)× ηµν × (xν − yν), (2.1c)

I = Diag.(1, 1, 1, 1, 1), (2.1d)

over the field of real numbers R, where we identify the conventional associative mul-
tiplication with the symbol × in order to distinguish it from the numerous additional
multiplications used in the studies herein considered [3-10];

2) All laws of special relativity, beginning with the above line element, are invariant
(rather than covariant) under the fundamental Poincaré symmetry

P(3.1) = L(3.1)× T (3.1), (2.2)
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where L(3.1) is the Lorentz group and T (3.1) is the Abelian group of translations in
spacetime; and

3) The Poincaré transformations are canonical at the classical level and unitary at the
operator level with implications crucial for physical consistency, such as the invariance of
the assumed basic units (as per the very definition of a canonical or unitary transforma-
tion),

P × [Diag.(1cm, 1cm, 1cm, 1sec)]× P t ≡
≡ Diag.(1cm, 1cm, 1cm, 1sec), (2.3)

with the consequential fundamental property that special relativity admits basic units and
numerical predictions that are invariant in time. In fact, the quantities characterizing the
dynamical equations are the Casimir invariants of the Poincaré symmetry.

As a result of the above features, special relativity has been and can be confidently
applied to experimental measurements because the units selected by the experimenter do
not change in time, and the numerical predictions of the theory can be tested at any
desired time under the same conditions without fear of internal axiomatic inconsistencies.

Despite these historical results, it should be stressed that, as is the fate for all theories,
special relativity has its own well defined limits of applicability. What is well established at
this moment is that special relativity is indeed valid for the arena of its original conception,
the classical and operator treatment of “point-like particles” moving in vacuum.

Nevertheless, special relativity is inapplicable for the classical treatment of antiparticles
as shown in detail in Ref. [5g]. This is essentially due due to the existence of only one
quantization channel. Therefore, the quantization of a classical antiparticle characterized
by special relativity (essentially via the sole change of the sign of the charge) clearly
leads to a quantum particle with the wrong sign of the change, and definitely not to the
appropriate charge conjugated state, resulting in endless inconsistencies.

In fact, the achievement of the correct antiparticle at the quantum level has requested
the construction of the new isodual mathematics as an anti-isomorphic image of conven-
tional mathematics, including its own isodual quantization and, inevitably, the construc-
tion of the new isodual special relativity (for brevity, see Ref. [7d] and quoted literature).
In this case the isodual characterization of a classical antiparticle does indeed lead, under
the isodual (rather than conventional) quantization, to the correct antiparticle as a charge
conjugated state.

Special relativity has also been shown to be inapplicable (rather than violated) for
the treatment of both, particles and antiparticles, such as hadrons, represented as they
are in the physical reality, extended, generally nonspherical and deformable (such as
protons or antiprotons), particularly when interacting at very short distances. In fact,
these conditions imply the mutual penetration of the wavepackets and/or the hyperdense
media constituting the particles, resulting in nonlocal integro-differential interactions that
cannot be entirely reduced to potential interactions among point-like constituents (for
mathematical studies of these aspects see Refs. [6], for comprehensive treatments see
Refs. [7] and for independent works see Refs. [8-10]).

Note that the use of the words “violation of special relativity” would be here inap-
propriate because special relativity was specifically conceived for point-like particles (and
not antiparticles) moving in vacuum under sole action-at-a-distance interactions [2f]. As
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a matter of fact, antiparticles were still unknown at the time of the conception and con-
struction of special relativity. Similarly, states of deep mutual penetrations of extended
hadrons, as occurring in the core of neutron stars or black holes, where simply unthinkable
at the inception of special relativity.

3. Inconsistencies of General Relativity due to the Lack of Sources.
By comparison with special relativity, despite widespread popular support, there is no
doubt that general relativity has been the most controversial theory of the 20-th century.
In this and in the next section we shall review some of the major mathematical, theoretical
and experimental inconsistencies of general relativity published in the refereed technical
literature, yet generally ignored by scientists in the field.

There exist subtle distinctions between “general relativity”, “Einstein’s Gravitation”,
and “Riemannian” formulation of gravity. For our needs, we here define Einstein’s gravi-
tation as the reduction of exterior gravitation in vacuum to pure geometry, namely, gravi-
tation is solely represented via curvature in a Riemannian space R(x, g, R) with spacetime
coordinates (2.1a) and nowhere singular real-valued and symmetric metric g(x) over the
reals R, with field equations [2b,2c]

Gµν = Rµν − gµν ×R/2 = 0, (3.1)

in which, as a central condition to have Einstein’s gravitation, there are no sources for the
exterior gravitational field in vacuum of a body with null total electromagnetic field (null
total charge and magnetic moment).

For our needs, we define as general relativity any description of gravity on a Riemannian
space over the reals with Einstein-Hilbert field equations with a source due to the presence
of electric and magnetic fields,

Gµν = Rµν − gµν ×R/2 = k × tµν , (3.2)

where k is a constant depending on the selected unit whose value is here irrelevant. For
the scope of this paper it is sufficient to assume that the Riemannian description of gravity
coincides with general relativity according to the above definition.

In the following, we shall first study the inconsistencies of Einstein gravitation, that
is, the inconsistencies in the entire reduction of gravity to curvature without source, and
then study the inconsistency of general relativity, that is, the inconsistencies caused by
curvature itself even in the presence of sources.

It should be stressed that a technical appraisal of the content of this paper can only be
reached following the study of the axiomatic inconsistencies of grand unified theories of
electroweak and gravitational interactions whenever gravity is represented with curvature
on a Riemannian space irrespective of whether with or without sources [3].

THEOREM 3.1 [11a]: Einstein’s gravitation and general relativity at large are incom-
patible with the electromagnetic origin of mass established by quantum electrodynamics,
thus being inconsistent with experimental evidence.

Proof. Quantum electrodynamics has established that the mass of all elementary
particles, whether charged or neutral, has a primary electromagnetic origin, that is, all
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masses have a first-order origin given by the volume integral of the 00-component of the
energy-momentum tensor tµν of electromagnetic origin,

m =
∫

d4x× telmoo . (3.3a)

tαβ =
1

4π
(F µ

α Fµβ +
1

4
gαβFµνF

µν), (3.3b)

where tαβ is the electromagnetic tensor, and Fαβ is the electromagnetic field (see Ref. [11a]
for explicit forms of the latter with retarded and advanced potentials).

Therefore, quantum electrodynamics requires the presence of a first-order source ten-
sor in the exterior field equations in vacuum as in Eqs. (3.2). Such a source tensor is
absent in Einstein’s gravitation (3.1) by conception. Consequently, Einstein’s gravitation
is incompatible with quantum electrodynamics.

The incompatibility of general relativity with quantum electrodynamics is established
by the fact that the source tensor in Eqs. (3.2) is of higher order in magnitude, thus being
ignorable in first approximation with respect to the gravitational field, while according to
quantum electrodynamics said source tensor is of first order, thus not being ignorable in
first approximation.

The inconsistency of both Einstein’s gravitation and general relativity is finally estab-
lished by the fact that, for the case when the total charge and magnetic moment of the
body considered are null, Einstein’s gravitation and general relativity allows no source at
all. By contrast, as illustrated in ref. [11a], quantum electrodynamics requires a first-
order source tensor even when the total charge and magnetic moments are null due to the
charge structure of matter. q.e.d.

The first consequence of the above property can be expressed via the following:

COROLLARY 3.1A [11a]: Einstein’s reduction of gravitation in vacuum to pure cur-
vature without source is incompatible with physical reality.

A few comments are now in order. As is well known, the mass of the electron is
entirely of electromagnetic origin, as described by Eq. (3.3), therefore requiring a first-
order source tensor in vacuum as in Eqs. (3.2). Therefore, Einstein’s gravitation for the
case of the electron is inconsistent with nature. Also, the electron has a point charge.
Consequently, the electron has no interior problem at all, in which case the gravitational
and inertial masses coincide,

mGrav.
Electron ≡ mIner

Electron. (3.4)

Next, Ref. [11a] proved Theorem 3.1 for the case of a neutral particle by showing that
the πo meson also needs a first-order source tensor in the exterior gravitational problem in
vacuum since its structure is composed of one charged particle and one charged antiparticle
in high dynamical conditions.

In particular, the said source tensor has such a large value to account for the entire
gravitational mass of the particle [11a]

mGrav.
πo =

∫
d4x× tElm

00 . (3.5)
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For the case of the interior problem of the πo , we have the additional presence of short
range weak and strong interactions representable with a new tensor τµν . We, therefore,
have the following

COROLLARY 3.1B [11a]: In order to achieve compatibility with electromagnetic, weak
and strong interactions, any gravitational theory must admit two source tensors, a trace-
less tensor for the representation of the electromagnetic origin of mass in the exterior
gravitational problem, and a second tensor to represent the contribution to interior gravi-
tation of the short range interactions according to the field equations

GInt.
µν = Rµν − gµν ×R/2 = k × (tElm

µν + τShortRange
µν ). (3.6)

A main difference of the two source tensors is that the electromagnetic tensor tElm
µν is

notoriously traceless, while the second tensor τShortRange
µν is not. A more rigorous definition

of these two tensors will be given shortly.
It should be indicated that, for a possible solution of Eqs. (3.6), various explicit

forms of the electromagnetic fields as well as of the short range fields originating the
electromagnetic and short range energy momentum tensors are given in Ref. [11a].

Since both sources tensors are positive-definite, Ref. [11a] concluded that the interior
gravitational problem characterizes the inertial mass according to the expression

mIner =
∫

d4x× (tElm
00 + τShortRange

00 ), (3.7)

with consequential general law
mInert. ≥ mGrav., (3.8)

where the equality solely applies for the electron.
Finally, Ref. [11a] proved Theorem 3.1 for the exterior gravitational problem of a

neutral massive body, such as a star, by showing that the situation is essentially the same
as that for the πo. The sole difference is that the electromagnetic field requires the sum
of the contributions from all elementary constituents of the star,

mGrav.
Star = Σp=1,2,...

∫
d4x× tElem.

p00 . (3.9)

In this case, Ref. [11a] provided methods for the approximate evaluation of the sum that
resulted to be of first-order also for stars with null total charge.

When studying a charged body, there is no need to alter equations (3.6) since that
particular contribution is automatically contained in the indicated field equations.

Once the incompatibility of general relativity at large with quantum electrodynamics
has been established, the interested reader can easily prove the incompatibility of gen-
eral relativity with quantum field theory and quantum chromodynamics, as implicitly
contained in Corollary 3.1.B.

An important property apparently first reached in Ref. [11a] in 1974 is the following:

COROLLARY 3.1C [11a]: The exterior gravitational field of a mass originates en-
tirely from the total energy-momentum tensor (3.3b) of the electromagnetic field of all
elementary constituents of said mass.
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In different terms, a reason for the failure to achieve a “unification” of gravitational
and electromagnetic interactions initiated by Einstein himself is that the said interactions
can be “identified” with each other and, as such, they cannot be unified. In fact, in all
unifications attempted until now, the gravitational and electromagnetic fields preserve
their identity, and the unification is attempted via geometric and other means resulting
in redundancies that eventually cause inconsistencies.

Note that conventional electromagnetism is represented with the tensor Fµν and related
Maxwell’s equations. When electromagnetism is identified with exterior gravitation, it is
represented with the energy-momentum tensor tµν and related equations (3.6).

In this way, gravitation results as a mere additional manifestation of electromagnetism.
The important point is that, besides the transition from the field tensor Fµν to the energy-
momentum tensor Tµν , there is no need to introduce a new interaction to represent gravity.

Note finally the irreconcilable alternatives emerging from the studies herein considered:
ALTERNATIVE I. Einstein’s gravitation is assumed as being correct, in which case

quantum electrodynamics must be revised in such a way to avoid the electromagnetic
origin of mass; or

ALTERNATIVE II: Quantum electrodynamics is assumed as being correct, in which
case Einstein’s gravitation must be irreconcilably abandoned in favor of a more adequate
theory.

By remembering that quantum electrodynamics is one of the most solid and experi-
mentally verified theories in scientific history, it is evident that the rather widespread as-
sumption of Einstein’s gravitation as having final and universal character is non-scientific.

THEOREM 3.2 [11b,7d]: Einstein’s gravitation (3.1) is incompatible with the Freud
identity of the Riemannian geometry, thus being inconsistent on geometric grounds.

Proof. The Freud identity [11b] can be written

Rα
β −

1

2
× δα

β ×R− 1

2
× δα

β ×Θ = Uα
β + ∂V αρ

β /∂xρ = k × (tαβ + τα
β ), (3.10)

where
Θ = gαβgγδ(ΓραβΓρ

γβ − ΓραβΓρ
γδ), (3.11a)

Uα
β = −1

2

∂Θ

∂gρα
|ρ

gγβ ↑γ, (3.11b)

V αρ
β =

1

2
[gγδ(δα

βΓρ
αγδ − δρ

βΓρ
αδ)+

+(δρ
βgαγ − δα

βgργ)Γδ
γδ + gργΓα

βγ − gαγΓρ
βγ]. (3.11c)

Therefore, the Freud identity requires two first order source tensors for the exterior grav-
itational problems in vacuum as in Eqs. (3.6) of Ref. [11a]. These terms are absent in
Einstein’s gravitation (3.1) that, consequently, violates the Freud identity of the Rieman-
nian geometry. q.e.d.

By noting that trace terms can be transferred from one tensor to the other in the r.h.s.
of Eqs. (3.10), it is easy to prove the following:
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COROLLARY 3.2A [7d]: Except for possible factorization of common terms, the t-
and τ -tensors of Theorem 3.2 coincide with the electromagnetic and short range tensors,
respectively, of Corollary 3.1B.

A few historical comments regarding the Freud identity are in order. It has been
popularly believed throughout the 20-th century that the Riemannian geometry possesses
only four identities (see, e.g., Ref. [2h]). In reality, Freud [11b] identified in 1939 a fifth
identity that, unfortunately, was not aligned with Einstein’s doctrines and, as such, the
identity was ignored in virtually the entire literature on gravitation of the 20-th century.

However, as repeatedly illustrated by scientific history, structural problems simply do
not disappear with their suppression, and actually grow in time. In fact, the Freud identity
did not escape Pauli who quoted it in a footnote of his celebrated book of 1958 [2g]. Santilli
became aware of the Freud identity via an accurate reading of Pauli’s book (including its
important footnotes) and assumed the Freud identity as the geometric foundation of the
gravitational studies presented in Ref. [7d].

Subsequently, in his capacity as Editor in Chief of Algebras, Groups and Geometries,
Santilli requested the mathematician Hanno Rund, a known authority in Riemannian
geometry [2i], to inspect the Freud identity for the scope of ascertaining whether the said
identity was indeed a new identity. Rund kindly accepted Santilli’s invitation and released
paper [11c] of 1991 (the last paper prior to his departure) in which Rund confirmed indeed
the character of Eqs. (3.10) as a genuine, independent, fifth identity of the Riemannian
geometry.

The Freud identity was also rediscovered by Yilmaz (see Ref. [11d] and papers quoted
therein) who used the identity for his own broadening of Einstein’s gravitation via an
external stress-energy tensor that is essentially equivalent to the source tensor with non-
null trace of Ref. [11a], Eqs. 3.6).

Despite these efforts, the presentation of the Freud identity to various meetings and
several personal mailings to colleagues in gravitation, the Freud identity continues to re-
main vastly ignored to this day, with very rare exceptions (the indication by colleagues
of additional studies on the Freud identify not quoted herein would be gratefully appre-
ciated.)

Theorems 3.1 and 3.2 complete our presentation on the catastrophic inconsistencies of
Einstein’s gravitation due to the lack of a first-order source in the exterior gravitational
problem in vacuum. These theorems, by no means, exhaust all inconsistencies of Einstein’s
gravitation, and numerous additional inconsistencies do indeed exist.

For instance, Yilmaz [11d] has proved that Einstein’s gravitation explains the 43” of
the precession of Mercury, but cannot explain the basic Newtonian contribution. This
result can also be seen from Ref. [11a] because the lack of source implies the impossibility
of importing into the theory the basic Newtonian potential. Under these conditions the
representation of the Newtonian contribution is reduced to a religious belief, rather than
a serious scientific statement.

For these and numerous additional inconsistencies of general relativity we refer the
reader to Yilmaz [11d], Wilhelm [11e-11g], Santilli [11h], Alfvén [11i-11j], Fock [11k],
Nordensen [11l], and large literature quoted therein.
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4. Inconsistencies of General Relativity due to Curvature
We now pass to the study of the structural inconsistencies of general relativity caused
by the very use of the Riemannian curvature, irrespective of the selected field equations,
including those fully compatible with the Freud identity.

THEOREM 4.1 [11m]: Gravitational theories on a Riemannian space over a field of
real numbers do not possess time invariant basic units and numerical predictions, thus
having serious mathematical and physical inconsistencies.

Proof. The map from Minkowski to Riemannian spaces is known to be noncanonical,

η = Diag.(1, 1, 1,−1) → g(x) = U(x)× η × U(x)†, (4.1a)

U(x)× U(x)† 6= I. (4.1b)

Thus, the time evolution of Riemannian theories is necessarily noncanonical, with conse-
quential lack of invariance in time of the basic units of the theory, such as

It=0 = Diag.(1cm, 1cm, 1cm, 1sec) → I ′t>0 = Ut × I × U †
t 6= It=0. (4.2)

The lack of invariance in time of numerical predictions then follows from the known
“covariance”, that is, lack of time invariance of the line element. q.e.d.

As an illustration, suppose that an experimentalist assumes at the initial time t = 0
the units 1 cm and 1 sec. Then, all Riemannian formulations of gravitation, including
Einstein’s gravitation, predict that at the later time t > 0 said units have a different
numerical value.

Similarly, suppose that a Riemannian theory predicts a numerical value at the initial
time t = 0, such as the 43” for the precession of the perihelion of Mercury. One can prove
that the same prediction at a later time t > 0 is numerically different precisely in view of
the “covariance”, rather than invariance as intended in special relativity, thus preventing
a serious application of the theory to physical reality. We therefore have the following:

COROLLARY 4.1A [11m]: Riemannian theories of gravitation in general, and Ein-
stein’s gravitation in particular, can at best describe physical reality at a fixed value of
time, without a consistent dynamical evolution.

Interested readers can independently prove the latter occurrence from the lack of
existence of a Hamiltonian in Einstein’s gravitation. It is known in analytic mechanics
(see, e.g., Refs. [2l,7b]) that Lagrangian theories not admitting an equivalent Hamiltonian
counterpart, as is the case for Einstein’s gravitation, are inconsistent under time evolution,
unless there are suitable subsidiary constraints that are absent in general relativity.

It should be indicated that the inconsistencies are much deeper than that indicated
above. For consistency, the Riemannian geometry must be defined on the field of numbers
R(n, +,×) that, in turn, is fundamentally dependent on the basic unit I. But the Rie-
mannian geometry does not leave time invariant the basic unit I due to its noncanonical
character. The loss in time of the basic unit I then implies the consequential loss in time
of the base field R, with consequential catastrophic collapse of the entire geometry [11m].
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In conclusion, not only is Einstein’s reduction of gravity to pure curvature inconsistent
with nature because of the lack of sources, but also the ultimate origin of the inconsis-
tencies rests in the curvature itself when assumed for the representation of gravity, due
to its inherent noncanonical character at the classical level with consequential nonunitary
structure at the operator level.

serious mathematical and physical inconsistencies are then unavoidable under these
premises, thus establishing the impossibility of any credible use of general relativity, for
instance, as an argument against the test on antigravity predicted for antimatter in the
field of matter [5], as well as establishing the need for a profound revision of our current
views on gravitation.

THEOREM 4.2: Einstein’s gravitation is incompatible with experimental evidence be-
cause it predicts a bending of the speed of light that is double the experimental value.

Proof. Light carries energy, thus being subjected to a bending due to the conventional
Newtonian gravitational attraction, while Einstein’s gravitation predicts that the bending
of light is due to curvature, thus resulting in a bending twice the experimentally measured
value, the first being incompatible with the latter. q.e.d.

COROLLARY 4.2.A: the lack of curvature in gravitation is established by the free fall
of masses that necessarily occurs along straight radial lines.

In fact, a consistent representation of the free fall of a mass along a straight radial
line requires that the Newtonian attraction be represented the field equations necessarily
without curvature, thus disproving the customary belief needed to avoid Corollary 4.2.A
that said Newtonian attraction emerges at the level of the PPN approximation of Eqs.
(3.1).

THEOREM 4.3. Gravitational experimental measurements do not verify Einstein’s
gravitation uniquely.

Proof. All claimed “experimental verifications” of Einstein’s gravitation are based on
the PPN “expansion” (or linearization) of the field equations that, as such, is not unique.
In fact, Eqs. (3.1) admit a variety of inequivalent expansions depending on the selected
parameter, the selected expansion and the selected truncation. It is then easy to show
that the selection of an expansion of the same equations (3.1) but different from the PPN
approximation leads to dramatic departures from experimental values. q.e.d.

A comparison between special and general relativities is here in order. Special rela-
tivity can be safely claimed to be “verified by experiments” because the said experiments
verify numerical values uniquely and unambiguously predicted by special relativity. By
contrast, no such statement can be made for general relativity since the latter does not
uniquely and unambiguously predict given numerical values due, again, to the variety of
possible expansions and linearization.

The origin of such a drastic difference is due to the fact that the numerical predic-
tions of special relativity are rigorously controlled by the basic Poincaré “invariance”. By
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contrast, one of the several drawbacks of the “covariance” of general relativity is precisely
the impossibility of predicting numerical values in a unique and unambiguous way, thus
preventing serious claims of true “experimental verifications” of general relativity.

By no means, the inconsistencies expressed by Theorems 3.1, 3.2, 4.1, 4.2 and 4.3
constitute all inconsistencies of general relativity. In the author’s opinion, additional
deep inconsistencies are caused by the fact that general relativity does not possess a well
defined Minkowskian limit, while the admission of the Minkowski space as a tangent
space is basically insufficient on dynamical grounds (trivially, because on said tangent
space gravitation is absent).

As an illustration, we should recall the controversy on conservation laws that raged
during the 20-th century [11]. Special relativity has rigidly defined total conservation
laws because they are the Casimir invariants of the fundamental Poincaré symmetry.
By contrast, there exist several definitions of total conservation laws in a Riemannian
representation of gravity due to various ambiguities evidently caused by the absence of a
symmetry in favor of covariance.

Moreover, none of the gravitational conservation laws yields the conservation laws of
special relativity in a clear and unambiguous way, precisely because of the lack of any limit
of a Riemannian into the Minkowskian space. Under these conditions, the compatibility of
general relativity with the special reduces to personal beliefs outside a rigorous scientific
process.

Another controversy that remained unresolved in the 20-th century (primarily be-
cause of lack of sufficient consideration by scholars in the field) is that, during its early
stages, gravitation was divided into the exterior and interior problems. For instance,
Schwartzchild wrote two articles on gravitation, one on the exterior and one on the inte-
rior problem [2d].

However, it soon became apparent that general relativity was structurally unable to
represent interior problems for numerous reasons, such as the impossibility of incorpo-
rating shape, density, local variations of the speed of light within physical media via the
familiar law we study in high school c = co/n (which variation cannot be ignored clas-
sically), inability to represent interior contact interactions with a first-order Lagrangian,
structural inability to represent interior nonconservation laws (such as the vortices in
Jupiter’s atmosphere with variable angular momenta), structural inability to represent
entropy, its increase and other thermodynamical laws, etc. (see Ref. [7d] for brevity).

Consequently, Schwartzchild’s solution for the exterior problem became part of history
(evidently because aligned with general relativity), while his interior solution has remained
vastly ignored to this day (evidently because not aligned with general relativity). In
particular, the constituents of all astrophysical bodies have been abstracted as being point-
like, an abstraction that is beyond the boundaries of science for classical treatments; all
distinctions between exterior and interior problems have been ignored by the vast majority
of the vast literature in the field; and gravitation has been tacitly reduced to one single
problem.

Nevertheless, as indicated earlier, major structural problems grow in time when ig-
nored, rather than disappearing. The lack of addressing the interior gravitational problem
is causing major distortions in astrophysics, cosmology and other branches of science (see
also next section). We have, therefore, the following important result:
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THEOREM 4.4 [7d]: General relativity is incompatible with the experimental evidence
on interior gravitational problems.

By no means the above analysis exhaust all inconsistencies of general relativity, and
numerous additional ones do indeed exist, such as that expressed by the following:

THEOREM 4.5 [11m]: Operator images of Riemannian formulations of gravitation
are inconsistent on mathematical and physical grounds.

Proof. As established by Theorem 4.1, classical formulations of Riemannian gravita-
tion are noncanonical. Consequently, all their operator counterparts must be nonunitary
for evident reasons of compatibility. But nonunitary theories are known to be inconsis-
tent on both mathematical and physical grounds [11m]. In fact, on mathematical grounds,
nonunitary theories of quantum gravity (see, e.g., Refs. [2j,2k]) do not preserve in time
the basic units, fields and spaces, while, on physical grounds, the said theories do not
possess time invariant numerical predictions, do not possess time invariant Hermiticity
(thus having no acceptable observables), and violate causality. q.e.d

The reader should keep in mind the additional well known inconsistencies of quantum
gravity, such as the historical incompatibility with quantum mechanics, the lack of a
credible PCT theorem, etc.

To avoid raising issues of scientific ethics, all these inconsistencies establish beyond a
scientific, or otherwise credible, doubt the need for a profound revision of the gravitational
views of the 20-th century.

5. Apparent Resolution of the Inconsistencies via the Poincaré Invariant Iso-
gravitation.
Following decades of studies, in order to achieve a resolution of the above inconsistencies,
this author recommends the construction of a new theory of gravitation under the central
conditions of admitting a basic invariance of the line element without curvature. In fact,
such properties would resolve most of the inconsistencies studied in the preceding sections.
The condition of compatibility of any gravitational theory with special relativity then
restricts the said symmetry to a form isomorphic to the Poincaré symmetry (2.2).

The biggest technical difficulty in the realization of the above proposal rests on the fact
that the achievement of the needed symmetry without curvature admits no solution within
the context of the conventional Lie theory, and this illustrates the reasons gravitation
departed from special relativity for one century.

In fact, any meaningful representation of gravitation requires a generalization of the
Minkowskian metric η = Diag.(+1, +1, +1,−1) into a nonsingular 4 × 4-matrix g that
preserves the Minkowskian signature (+1, +1, +1,−1), but possesses an otherwise un-
restricted functional dependence on the local coordinates and, possibly, other variables.
Symmetrization of the g matrix (permitted by its non singularity) then leads to a Rie-
mannian metric. In this way, we the familiar Riemannian line element

(x− y)2 = (xµ − yµ)× gµν(x, ...)× (xν − yν) ∈ R, (5.1)

for which no universal symmetry is known to exist within the context of the conventional
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Lie theory, and for which curvature is unavoidable.
In order to achieve a universal symmetry without curvature, the author was forced

to construct a new mathematics first proposed in Refs. [12a,12b] of 1978, then studied
in various works [3-7]] and today known as Santilli isomathematics for the treatment of
matter (with the isodual isomathematics for the treatment of antimatter).

The main main assumption for the case of matter is the generalization (called lifting)
of the N-dimensional unit I of Lie’s theory into a nowhere singular, N-dimensional and
positive-definite matrix Î, called isounit [12a], with an arbitrary functional dependence
on the local coordinate x, velocities v, accelerations a, densities d, temperatures τ and
any other needed variables. Jointly, the conventional associative product A×B of generic
quantities A, B (e.g., numbers, matrices, vector fields, operators, etc.) must be lifted into
a form admitting Î, rather than I, as the correct left and right unit,

I > 0 → Î(x, v, a, d.τ, ...) = 1/T̂ (x, v, a, d, τ, ...) > 0, (5.2a)

A×B → A×̂B = A× T̂ ×B, (5.2b)

I × A = A× I = A → Î×̂A = A×̂Î = A, (5.2c)

for all A of the set considered, where T̂ (x, ...) is called the isotopic element, and the prefix
“iso” stands for “isotopic” and denotes the preservation of the original axioms although
under a broader realization [12a].

The isodual isomathematics for antimatter can be simply constructed by subject-
ing all quantities of isomathematics and their operations to the isodual map given by
the anti-Hermitean transform that, for a generic quantity Q(x, ψ, ...) is given by Qd =
−Q†(−x†,−ψ†, ...). The following presentation is restricted to the isomathematical treat-
ment of matter. Its isodual to antimatter can be easily worked out by interested readers.

The lifting of the basic unit requires a compatible lifting of the totality of the math-
ematics used in Lie’s theory, resulting in new numbers, new spaces, new algebras, etc,
known as isonumbers, isospaces, isoalgebras, isogroups, isosymmetries, isotopologies, etc.

Following these lines, Santilli proposed since the original memoirs [12a] the isotopic
lifting of all main branches of Lie’s theory, including the isotopies of the universal en-
veloping algebras, Lie’s algebras, Lie’s group and the representation theory.

The emerging new theory was then studied in various papers and monograph and is
today known as the Lie-Santilli isotheory for matter and its isodual for antimatter (see
memoirs [6] for mathematical works, papers [3-5] for various applications, monographs
[7a,7b] for a review up to 1982, monograph [7c,7d] for a review up to 1995 and independent
studies [8-10]).

A geometric unification of gravitation and special relativity was first proposed in
Ref. [12b] of 1996 (see also memoir [12c]) under the name of isogravitation. The ba-
sic assumption is the decomposition of any given Riemannian metric g(x) (for instance,
Schwartzchild’s exterior metric [2d]) into the product of the Minkowski metric η and a
4× 4-dimensional matrix T̂ (x) that is necessarily positive-definite (from the nowhere de-
generacy of g(x)). Isogravitation then occurs when T̂ (x) is assumed as the inverse of the
isounit,

g(x) = T̂ (x)× η, Î(x) = 1/T̂ (x), Detg(x) 6= 0, T̂ (x) > 0, (5.3)
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in which case Î(x) and T̂ (x) are called the gravitational isounit and isotopic element,
respectively.

The basic numbers of isogravitation are then given by the isofield R̂(n̂, +̂, ×̂) of ison-
umbers n̂ = n× Î with the above isounit [6a].

The basic spaces of isogravitation are given by the isotopies M̂(x̂, η̂, R̂) of the Minkowski
space M(x, η, R) first introduced by Santilli in Ref. [4a] of 1983 with isocoordinates
x̂ = x × Î, isometric η̂(x) = T̂ (x) × η = g(x) now defined over R̂, rather than R. The
basic isotopic line element of isogravitation is then given by

x̂ = x× Î , ŷ = y × Î , N̂µν = η̂ × Î , (5.4a)

(x̂− ŷ)2̂ = (x̂µ − ŷν)×̂N̂µν×̂(x̂ν − ŷν) =

= {(xµ − yµ)× [T̂ (x)× η]µν × (xν − yν)} × Î ∈ R̂, (5.4b)

where the lifting of the isometric η̂ into the form N̂µν = η̂× Î is necessary for mathemat-

ical consistency on M̂ due to the condition that the elements of the isometric must be
isonumbers.

Therefore, the first expression of Eqs. (5.4b) depicts the isoline element properly
written on M̂ over R̂, while the second expression of Eqs. (5.4b) is its projection on M .
The reader should acquire a familiarity with this dual interpretation because typical of
all isotheories (although absent for conventional theories), thus applying also for the field
equations of isogravitation (see below).

As one can see, the main mechanism of the isotopies is to turn any given Riemannian
line element in R over R into an identical form merely written on isospace M̂ over R̂.
Despite its simplicity, this mechanism does indeed achieves the desired objectives.

To begin, despite the assumption of an arbitrary Riemannian metric as the isometric,
isominkowskian spaces are isomorphic to the Minkowski space and, therefore, are isoflat
(see memoir [6c] for geometric studies).

This feature can be empirically seen from the fact that the conventional Minkowski
metric η is deformed by the product of the Riemannian isotopic element T̂ (x) but, jointly,
the basic unit I of η is deformed by the inverse amount T̂ (x)−1, thus verifying the abstract
axiom of flatness.

Next, the above mechanism does indeed permit the construction of the universal
isosymmetry of all infinitely possible Riemannian line elements and that symmetry is
isomorphic to the Poincaré symmetry, thus being without curvature. This isosymmetry
was first proposed by Santilli in Ref. [4a] of 1983, then studied in various works [4b-4g,5-
7] and is today called the Poincaré-Santilli isosymmetry for matter (see studies [8] and
monographs [11]),

P̂(3.1) = [L̂(3.1)×̂T̂ (3.1)]× Ŝ, (5.5)

where L̂(3.1) is the Lorentz-Santilli isogroup, T̂ (3.1) is the group of isotranslations, and
Ŝ is the following novel one-dimensional isosymmetry

(x̂µ×̂η̂µν×̂x̂ν)× Î ≡ [x̂µ×̂(n̂−2×̂η̂)µν×̂x̂ν ]× (n̂2×̂Î), (5.6)

that is evidently in the center of the isogroup. Note that the latter essentially acts as the
isotopic image of the conventional “scalar extension” of Lie’s symmetries, as familiar for
the Galileo’s (but not for the Poincaré) symmetry.
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Contrary to the popular belief throughout the 20-th century that the Poincaré sym-
metry is ten-dimensional, isosymmetry (5.6) also applies to the conventional Minkowskian
line element, and we have the following

LEMMA 5.1 [4e]: The Poincaré symmetry and the Poincaré-Santilli isosymmetry are
eleven dimensional.

Despite its simplicity, the discovery of the 11-th dimensionality of conventional space-
time symmetries has far reaching implications. In fact, the iso-grand-unification of elec-
troweak and gravitational interactions of Refs. [3] is precisely permitted by the above
11-th dimensionality.

The reader should be aware that the identification of the new symmetry (5.6) required
the prior discovery of new numbers, those with arbitrary units [6a], and this illustrates
the reason isosymmetry (5.6) escaped detection for about one century (see below for the
“hidden” character of the isosymmetries as well as connection with the E-P-R argument).

The explicit construction of the universal invariance of the isogravitational line element
(5.4) is elementary. The isogenerators and isoparameters are given by the conventional
quantities of P(3.1) merely written on isospace M̂ over isofield R̂ (see below for their
explicit form), and can be written

X̂ = {̂X̂k} = {M̂µν = x̂µ×̂p̂ν − x̂ν×̂p̂µ, p̂α, Ŝ}, ŵ = w × Î ∈ R̂, (5.7a)

p̂µ×̂|ψ̂ >= −î×̂∂̂µ|ψ̂ >= i× Îν
µ × ∂ν |ψ̂ >, (5.7b)

where: µ, ν = 1, 2, 3, ; k = 1, 2, ..., 11; and expression (5.7b) characterizes the realization
of the isomomentum permitted by the isodifferential calculus on a iso-Hilbert space with
isostates |ψ̂ >, isoexpectation values of a Hermitean operator < ψ̂|×̂Ô×̂|ψ̂ > /̂ < ψ̂|×̂|ψ̂ >
and isonormalization < ψ̂|×̂|ψ̂ >= Î (see Refs. [6b, 7c,12c] for brevity).

Some of the important features of the above operator isotopies (that should be con-
fronted with the inconsistencies of Theorem 4.5) are given by: the identity of conventional
and isotopic hermiticity, thus assuring that all observables of conventional quantum me-
chanics remain observables under isotopies; the preservation of Hermiticity under the time
evolution, thus assuring the existence of acceptable observables and the strict verification
of causality guaranteed by the isounitary structure of the liftings (see below).

The connected component of the isosymmetry can be written

P̂o(3.1) : Â(ŵ) = Πk=1,...,10ê
î×̂X̂×̂ŵ = (Πke

i×X×T̂×w)× Î =

= Ã(x, v, d, τ, ψ, ...)× Î . (5.8)

where the isoexponentiation is given by

êÂ = Î + Â/̂1̂! + Â×̂Â/̂2̂! + ... = (eA×T̂ )× Î . (5.9)

Note the appearance of the gravitational isotopic element T̂ (x) in the exponent of the
group structure. This illustrates the nontriviality of the Lie-Santilli isotheory and, in par-
ticular, its nonlinear, nonlocal and nonunitary characters when projected on conventional
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spaces over conventional fields. However, the Lorentz-Poincaré-Santilli isosymmetry re-
covers linearity, locality and unitarity on M̂ over R̂, as the reader is encouraged to verify
[loc. cit.].

Conventional linear transforms on M violate isolinearity on M̂ . Consequently, they
must be replaced with the isotransforms

x̂′ = Â(ŵ)×̂x̂ = Â(ŵ)× T̂ (x)× x̂ = Ã(w, ...)× x̂, (5.10)

that verify the laws of the Lie-Santilli isogroups

Â(ŵ)×̂Â(ŵ′) = Â(ŵ′)×̂Â(ŵ) = Â(ŵ + ŵ′), Â(ŵ)×̂Â(−ŵ) = Â(0) = Î . (5.11)

The use of the isodifferential calculus on M̂ [6b] then yields the Poincaré-Santilli
isoalgebra P̂(3.1) [4]

[M̂µν ,̂ M̂αβ] = i× (η̂να × M̂µβ − η̂µα × M̂νβ − η̂νβ × M̂µα + η̂µβ × M̂αν), (5.12a)

[M̂µν , p̂α] = i× (η̂µα × p̂ν − η̂να × p̂µ), (5.12b)

[p̂α ,̂ p̂β] = [M̂µν ,̂Ŝ] = [p̂µ̂,Ŝ] = 0, (5.12c)

[Â,̂B̂] = Â×̂B̂ − B̂×̂Â = Â× T̂ × B̂ − B̂ × T̂ × Â, (5.12d)

where [A,̂B] is the Lie-Santilli isoproduct first proposed in [12a] (that satisfies the Lie
axioms in isospace, as one can verify), and we have written the isocommutation rules in
their projection on conventional spaces for simplicity.

More technically, the isoalgebra P̂(3.1) is characterized by the universal enveloping
isoassociative algebra Â(P̂) with isoproduct (5.2b) such that the attached antisymmet-
ric algebra [Â(P̂)]− is locally isomorphic to P̂ with underlying Poincaré-Birkhoff-Witt-
Santilli isotheorem first introduced in Ref. [12a].

Note the appearance of the Riemannian metric as the structure isofunctions of the
theory.

The local isomorphism
P̂(3.1) ≈ P(3.1), (5.13)

is ensured by the positive–definiteness of T̂ .
The isocasimir invariants of P̂(3.1) are the simple isotopic images of the conventional

invariants
Co = Î = [T̂ (x, v, d, τ, ψ, ...)]−1, (5.14a)

C(2) = p̂2̂ = p̂µ×̂p̂µ = η̂µν × p̂µ×̂p̂ν , (5.14b)

C(4) = Ŵµ×̂Ŵ µ, Ŵµ =∈µαβπ M̂αβ×̂p̂π, (5.14c)

and they can be used for the construction of isorelativistic equations with the inclusion
of gravitation (see below for an example).

It should be noted that the above setting characterizes the isotopies of relativistic
quantum mechanics first proposed in ref, [12a] of 1978 under the name of relativistic
hadronic mechanics, and then developed in the references of this work by various scholars
(see, e.g., memoir [12c] or monographs [7c,7d] for details).

16



The reader should be aware that we are presenting here operator isogravitation as a
particular realization of the relativistic hadronic mechanics characterized by the restriction
of the isounit to the gravitational expression (5.3).

The explicit form of the Poincaré-Santilli isotransformations can be easily constructed
from Eqs. (5.8) and are given by:

1) Isorotations [4c], that can be written for the isorotation in the (1, 2)-plane

x′ = x× cos(T̂
1
2
11 × T̂

1
2
22 × θ3)− y × T̂

− 1
2

11 × T̂
1
2

22 × sin(T̂
1
2
11 × T̂

1
2
22 × θ3), (5.15a)

y′ = x× T̂
1
2
11 × T̂

− 1
2

22 × sin(T̂
1
2
11 × T̂

1
2
22 × θ3) + y × cos(T̂

1
2

11 × T̂
1
2
22 × θ3), (5.15b)

(see Ref. [7d] for general isorotations in all there Euler angles).
2) Lorentz-Santilli isotransformations [4a], characterized by the isorotations and

the isoboosts in the (3, 4)–plane

x3′ = x3 × sinh(T̂
1
2

33 × T̂
1
2
44 × v)− x4 × T̂

− 1
2

33 × T̂
1
2
44 × cosh(T̂

1
2
33 × T̂44 × v) =

γ̃ × (x3 − T̂
− 1

2
33 × T̂

1
2
44 × β̂ × x4), (5.16a)

x4′ = −x3 × T̂33 × c−1
0 × T̂

− 1
2

44 × sinh(T̂
1
2
33 × T̂44 × v) + x4 × cosh(T̂

1
2
33 × T̂

1
2
44 × v) =

γ̃ × (x4 − T̂
1
2

33 × T̂
− 1

2
44 × β̃ × x3), (5.16b)

β̃ = vk × T̂
1
2

44/c0 × T̂
1
2
44, γ̃ = (1− β̃2)−

1
2 . (5.16c)

3) Isotranslations [4w], that can be written

x̂′µ = (êî×̂p̂×̂â)×̂x̂µ = [xµ + aµ × Aµ(x, v, d, ...)]× Î =, p̂′ = (êî×̂p̂×̂â)×̂p̂ = p̂, (5.17a)

Aµ = T̂ 1/2
µµ + aα × [T̂ 1/2

µµ ,̂ p̂α]/1! + .... (5.17b)

and they are also nonlinear, as expected.
4) Isoinversions [4e], given by

π̂×̂x̂ = (π × x)× Î = (−r, x4)× Î , τ̂×̂x̂ = (τ × x)× Î = (r,−x4)× Î , (5.18)

where π̂ = π × Î , τ̂ = τ × Î, and π, τ are the conventional inversion operators.
5) Isoscalar transforms [4e], characterized by invariances (5.6), that can be written

Î → Î ′ = n̂2̂×̂Î = n2 × Î , η̂ → η̂′ = n̂−2̂×̂η̂ = n−2 × η̂, (5.19)

where n̂2̂ = ŵ11 is the parameter characterizing the novel 11-th dimension.
A few comments are now in order. Note first the universal character of the Poincaré-

Santilli isosymmetry and related isotransforms for all possible Riemannian metrics. In
particular, there is nothing to compute for the invariance of any given Riemannian metric,
except the identification of the gravitational element T̂ (x) and its plotting in the above
isotransforms.

Note also that the isorotations leave invariant all ellipsoidal deformations of the sphere,
as the reader is encouraged to verify. The local isomorphism between Ô(3) and O(3) then
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confirms the perfect spheridicity of ellipsoids when formulated on the Euclidean isospace,
called isosphere.

The mechanism for the reconstruction of the perfect spheridicity (that is, for the re-
construction of the exact rotational symmetry) is essentially the same as that for the
elimination of curvature. In fact, we have the deformation of the sphere with semiaxes
(1, 1, 1) into the ellipsoid with semiaxes (n−2

1 , n−2
2 , n−2

3 ) while, jointly, the units are de-
formed from the trivial value of the sphere (1, 1, 1) to the inverse of the deformations
(n2

1, n
2
2, n

2
3), thus preserving the perfect spheridicity because the structure of the isoinvari-

ant is given by [length]2 × [unit]2, as shown by invariance (5.6).
In particular, the space components of all gravitational theories, including Schwartz-

child’s solution, characterize an isosphere when reformulated on isoeuclidean spaces over
isofields.

Despite their simplicity, the physical implications of the isoinversions are not trivial
because of the possibility of reconstructing as exact discrete symmetries when believed to be
broken. This reconstruction can be achieved by merely embedding all symmetry breaking
terms in the isounit.

For instance, it has been shown in Ref. [7d] that parity is indeed an exact symmetry
for weak interactions. The widespread belief parity violation is merely due to the use of
a mathematics insufficient for the problem at hand.

The reconstruction of exact symmetries generally applies for all conventional spacetime
symmetries when believed to be broken. In fact, the isorotational symmetry reconstructs
the exact rotational symmetry under conditions for which the latter is manifestly broken,
such as for deformable ellipsoids.

Similarly, the Lorentz-Santilli isosymmetry reconstructs the exact Lorentz symmetry
when the latter is believed to be broken by signature-preserving deformations of the
Minkowski spacetime. As a matter of fact, the Lie-Santilli isotheory has permitted the
Lorentz and Poincaré symmetries to become “universal” because exact for all infinitely
possible space-times.

Next, it should be noted that, thanks to the fundamental isodifferential calculus [6b],
the isominkowskian geometry admits an isotopic image of the entire formalism of the
Riemannian geometry, such as Christoffel’s symbols, covariant derivative, etc. [6c].

Consequently, the isominkowskian gravitation preserves the Einstein-Hilbert field equa-
tions, although in their covering isotopic form compatible with the iso-Freud identity. By
keeping in mind the analysis of Sections 3 and 4, we therefore have the following basic
field equations of isogravitation (see Ref. [6c] for details)

ĜInt.
µν = R̂µν − N̂µν×̂R̂/̂2̂ = k̂×̂(t̂Elm

µν + τ̂ShortRange
µν ). (5.20)

From the above treatment, one can construct any needed isorelativistic equation, such
as the following Dirac-Santilli-Schwartzchild isoequation including electromagnetic and
gravitational interactions [4e,7d]

(γ̂µ×̂p̂µ + î×̂m̂)×̂| >= [η̂µν(x, v, ...)× γ̂µ × T̂ × p̂ν − i×m× Î]× T̂ × | >= 0, (5.21a)

{γ̂µ ,̂ γ̂ν} = γ̂µ × T̂ × γ̂ν + γ̂ν × T̂ × γ̂µ = 2× η̂µν , γ̂µ = T̂ 1/2
µµ × γµ × Î , (5.21b)
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where γµ represents the conventional gammas, γ̂µ represents the isogamma matrices, and
the gravitational isotopic element is that of the Schwartzchild’s metric,

γ̂k =
γk

(1− 2M/r)1/2
× Î , (5.22a)

γ̂4 = γ4 × (1− 2M/r)1/2 × Î . (5.22b)

Note that Eqs. (5.21) belong to hadronic (and not quantum) mechanics. Note also
that, again for the particular case η(x, v, d, ...) = g(x), the anti-isocommutators of the
isogamma matrices yield twice the Riemannian metric, thus confirming the representation
of any desired Riemannian metric in the structure of Dirac’s equation. Consequently, one
can similarly construct the isogravitational version of all other equations of relativistic
quantum mechanics.

Equations (5.21) are not a mere mathematical curiosity because they establish the
compatibility of operator isogravity with experimental data in particle physics (with the
understanding that compatibility with gravitational data requires a separate inspection).
In fact, the much smaller value of gravitational over electromagnetic, weak and strong
interactions establishes the compatibility with currently available experimental data in
particle physics of the isogravitational equations of type (5.21).

It should be indicated also that, as one can verify via the isotopic decomposition of
Schwartzchild’s metric or Eqs. (5.22), gravitational singularities are characterized by the
zeros of the fourth component of Santilli’s isounit, or, equivalently, by the zeros of the
space component of the gravitational isotopic element,

Î(x)44 = 0, T̂ (x)kk = 0. (5.23)

The explicit construction of the entire theory of isogravitation, including its isosym-
metry P̂(3.1), can be simply done by identifying a nonunitary transform with the gravi-
tational isounit,

U × U † = Î(x) 6= U, (5.24)

and then applying such a transform to the totality of the quantity and their operations
of special relativity (with no known exception to avoid major structural inconsistencies
comparable to those emerging if quantum mechanics is treated with isomathematics),
resulting in the isotopies introduced above, e.g.,

I → U × I × U † = Î , (5.25a)

A×B → U × (A×B)× U † = Â×̂B̂, Â = U × A× U †, etc. (5.25b)

The invariance of isogravitation can be proved by rewriting nonunitary transform (5.25)
in the correct isounitary form (that is, by reconstructing unitarity on isospaces)

Û = U × T̂ 1/2, Û×̂Û † = Û †×̂Û = Î , (5.26)

under which we have the isoinvariances

Î → Û×̂Î×̂Û † ≡ Î , Â×̂B̂ → Û×̂(Â×̂B̂)×̂Û † ≡ Â′×̂B̂′, etc. (5.27)
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The above results can be summarized with the following:

THEOREM 5.1 [4]: The 11-dimensional Poincaré-Santilli isosymmetry on isomin-
kowski spaces over real isofields with common, 4×4-dimensional, positive-definite isounits
is directly universal for nonsingular, signature preserving generalizations of the Minkow-
skian spacetime, where “universal” represents the the validity of the isosymmetry for all
infinitely possible spacetimes of the class admitted, and “directly universal” represents its
applicability in the fixed coordinates of the observer, without any use of coordinate or other
transforms.

The isosymmetries for the lifting of the de Sitter, Finslerian, non-Desarguesian and
other nondiagonal and diagonal metrics with signatures different from (+, +, +,−) is
straightforward and it is ignored here. The case of nondiagonal metrics requires a struc-
tural generalization of the Lie-Santilli isotheory into the broaderLie-admissible theory,
and it is not considered here for simplicity (for these broader cases the interested reader
may consult Ref. [6d-6f,7d]).

It is easy to see that isogravitation does resolve most of the inconsistencies studied in
this paper, such as:

I. Lack of compatibility of Riemannian gravity with special relativity. This
is the fundamental insufficiency of general relativity for whose solution the Lie-Santilli
isotheory and isogravitation were built. In fact, the isominkowskian space and related
Lorentz-Poincaré-Santilli isosymmetry admit the simple, unique and unambiguous limit
into conventional structures

Î(x) → I, η̂(x) → η, M̂ → M, P̂(3.1) → P(3.1), etc. (5.28)

In particular, the proposed Poincaré invariant gravitation constitutes a geometric unifica-
tion of general and special relativities since the said relativities are merely differentiated by
the basic positive-definite unit while all abstract axioms are the same for both relativities.

The century old controversies on the incompatibility of the Riemannian conservation
laws with those of special relativity are uniquely and unambiguously resolved by iso-
gravitation because the total conservation laws of isogravitation are characterized by the
same generators of the Poincaré symmetry, only written on isospace over isofield. Conse-
quently, the total conservation laws of isogravitation can be uniquely and unambiguously
reduced to those of special relativity under the limit

LimÎ→I(M̂µν , P̂µ) = Mµν , Pµ. (5.29)

II. Inconsistencies due to curvature (Theorems 4.1, 4.2). Isogravitation is invari-
ant under the Poincaré-Santilli isosymmetry in the same way as occurring for a Poincaré
invariant theory on Minkowski space. In particular, isogravitation preserves the numeri-
cal values of the isounit and of the isoproduct as explicitly proved by Eqs. (5.27), with
evident invariance of the numerical predictions. Unlike general relativity, isogravitation
can indeed be safely applied to experiments without fear that the numerical predictions
have been lost under the time evolution.
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Moreover, isogravitation is isoflat, that is, there exists no curvature on the isominkow-
skian space, as proved, for instance, by the fact that the isomomenta isocommute, Eqs.
(5.12c), while it is well known that momenta do not commute on a curved space.

The removal of the curvature as the basic notion representing gravity also resolves other
controversies that have raged throughout the 20-the century. For instance, the Newto-
nian attraction remains fundamental in isogravity and it is formulated at the isorelativistic
level, thus including relativistic corrections. Consequently, isogravitation correctly pre-
dicts and represents one single bending of light and provides the first and only consistent
representation known to this author of the free fall of a massive body along a straight
radial line, since no curvature can be credibly used in this setting.

III. Inconsistencies due to lack of sources and the Freud identity, (Theorems
3.1 and 3.2). these inconsistency are readily resolved by the “identification” of the grav-
itational and electromagnetic fields [11a], resulting in isofield equations (5.20) in which
the electromagnetic and short range isotensors are of first-order in magnitude even for a
body with null total electromagnetism. As such, these isotensors cannot be eliminated
even in first approximation. Other technical or epistemological controversies that raged
during the 20-th century are also resolved by isogravitation.

IV) Inconsistencies for interior gravitation (Theorem 4.4). We have recalled
earlier the complete inability of general relativity to represent even minimal features of
interior gravitational problems, such as the shape and density of the considered body,
the locally varying character of the speed of light in interior conditions c = co/n, the
local nonconservation of the angular momentum, the entropy and its increase, and other
interior features [7d].

These inconsistencies too are resolved by isogravitation due to the unrestricted func-
tional dependence of the isometric. As an illustration, any given gravitational isotopic
element representing a conventional exterior gravitation

T̂ (x)Ext. = Diag.(T̂11, T̂22, T̂33, T̂44) > 0, (5.30)

can be easily lifted to the interior form

T̂ (x, v, a, d, τ, ...)Int. = Diag.(T̂11/n
2
1, T̂22/n

2
2, T̂33/n

2
3, T̂44/n

2
4), (5.31)

where n2
1, n

2
2, n

2
3 can represent the shape of the body considered (generally a spheroidal

ellipsoid), and n2
4 can represent its density or, equivalently, the local variation of the

speed of light (since all n’s are normalized to 1 to represent the vacuum). The central
point is that, for the case of general relativity, the transition from the exterior to the
interior problem causes serious structural inconsistencies, while for isogravitation the same
transition causes no problem of any type, since all basic axioms, symmetries, etc. remain
completely unaffected.

V) Inconsistencies due to quantum gravity (Theorem 4.5). As recalled in Section
4, another controversy that raged during the 20-th century is the quantum version of
general relativity, due to the resulting incompatibility of gravity with quantum mechanics.

One of the most significant advances permitted by isogravitation is the resolution of
this century old controversy. In fact, isogravitation was first and most naturally for-
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mulated at the operator interior gravitational problems as a simple particular case of
relativistic hadronic mechanics [12c], and then its classical counterpart was identified [6c].

The resolution of the controversies is then assured by the fact that the basic abstract
axioms remain those of quantum mechanics. A clear understanding is that one should
not expect conventional quantization of energy levels (thus justifying a new name), since
the latter have no physical meaning in the core of a star.

Despite the above results, a number of additional aspects remain to be studied. For
instance, Euclidean-PPN expansions are notoriously insufficient within a relativistic set-
ting. Consequently, a basically new isorelativistic expansion of Eqs. (5.20) has to be
worked out and compared with experiments. It is hoped that the rigid implementation
of invariance under the Poincaré-Santilli isosymmetry will restrict such an expansion to
a unique form, thus avoiding the century old controversy on the lack of uniqueness of
the Euclidean-PPN expansion, while replacing it with a bona fide relativistic expansion.
Studies on these and related aspects are under way and they will be reported in some
future paper.

The cosmological implications of the (apparently only known) axiomatically consistent,
classical and operator treatment of interior gravitation are significant. They are studied
as part of the new isoselfdual cosmology [5f], namely, a cosmology in which the universe
is assumed, as a limit case, to be composed half of matter and half of antimatter under
the universal isosymmetry

Ŝ = P̂(3.1)× P̂(3.1)d = Ŝd. (3.32)

that is isoselfdual (as the Dirac equation and its isotopies), namely the symmetry is
invariant under the anti-Hermitean isodual transform [5].

The primary implications of the above new cosmology relevant for this paper are:
1) The isoselfdual cosmology provides the only explanation known to this author,

not only of the expansion of the universe, but also of the recently reported increase of
the expansion itself, due to the necessary gravitational repulsion between matter and
antimatter galaxies implied by the isodual theory of antimatter [5,7f];

2) The isoselfdual cosmology eliminates any need for very large values of the missing
mass because the maximal causal speed for all interior astrophysical problems is predicted
to be bigger than that in vacuum, as confirmed by recent astrophysical and other evidence.
Consequently, the total energy of a galaxy is characterized by values E = m × c2 =
m× c2

o/n
2
4 that are much bigger than those currently believed under the rather simplistic

assumption that the speed of light in vacuum co remains valid in the interior of hyperdense
stars and quasars [7d]; and

3) The isoselfdual cosmology eliminates the immense singularity at the creation of the
universe that is implied by the “big bang” because, under the isodual representation of
antimatter, the universe has identically null total characteristics, that is, identically null
total time, identically null total mass, identically null total energy, etc. [loc. cit].

As a final comment, it should be indicated that the isotopies are an explicit and
concrete realization of “hidden variables” λ (see Ref. [12g] for the “hidden variables”,
and Ref. [12c] for their isotopic realization), as evident from the fact that the isotopies
are hidden in conventional relativistic axioms. In fact, the conventional and isotopic
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eigenvalue equations

H × |ψ >= E × |ψ >→ Ĥ×̂|ψ̂ >= Ĥ × T̂ × |ψ̂ >= Ê ′×̂|ψ̂ >= E ′ × |ψ̂ >, (5.33)

coincide at the abstract, realization-free level, because both actions are modular, asso-
ciative and to the right. Consequently, the isotopic element constitutes an explicit and
concrete realization of the “hidden variable”, λ = T̂ (x, ...).

The geometric unification of general and special relativity at the basis of these studies
is also an explicit and concrete realization of the degrees of freedom, this time, hidden in
the axioms of special relativity. Intriguingly, classical images of quantum mechanics are
restricted by Bell’s inequality [12h], while the same inequality does not hold under iso-
topies (due to the nonunitarity - isounitarity of the lifting), with intriguing epistemological
implications, such as a necessary revision of local realism, studied in Ref. [12f].

In the author’s view, one of the most important and thought provoking intuitions of
Albert Einstein has been his vision of the lack of completion of quantum mechanics, a
vision today known as the E-P-R argument [12l] (the author elected to become a physicist
mostly stimulated by this vision). In the final analysis, the isotopies in general, includ-
ing isogravitation, have been conceived and constructed to achieve an axiom-preserving
“completion” of special relativity and relativistic quantum mechanics precisely along the
lines of Einstein’s vision.
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