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Foreword

Mathematics is a subject which possibly finds itself in a unique position in
academia in that it is viewed as both an Art and a Science. Indeed, in different
universities, graduates in mathematics may receive Bachelor Degrees in Arts or
Sciences. This probably reflects the dual nature of the subject. On the one hand,
it may be studied as a subject in its own right. In this sense, its own beauty is
there for all to behold; some as serene as da Vinci’s “Madonna of the Rocks”,
other as powerful and majestic as Michelangelo’s glorious ceiling of the Sistine
Chapel, yet more bringing to mind the impressionist brilliance of Monet’s Water
Lily series. It is this latter example, with the impressionists interest in light,
that links up with the alternative view of mathematics; that view which sees
mathematics as the language of science, of physics in particular since physics is
that area of science at the very hub of all scientific endeavour, all other branches
being dependent on it to some degree. In this guise, however, mathematics is
really a tool and any results obtained are of interest only if they relate to what
is found in the real world; if results predict some effect, that prediction must be
verified by observation and/or experiment. Again, it may be remembered that
physics is really a collection of related theories. These theories are all manmade
and, as such, are incomplete and imperfect. This is where the work of Ruggero
Santilli enters the scientific arena.

Although “conventional wisdom” dictates otherwise, both the widely accepted
theories of relativity and quantum mechanics, particularly quantum mechanics,
are incomplete. The qualms surrounding both have been muted but possibly more
has emerged concerning the inadequacies of quantum mechanics because of the
people raising them. Notably, although it is not publicly stated too frequently,
Einstein had grave doubts about various aspects of quantum mechanics. Much of
the worry has revolved around the role of the observer and over the question of
whether quantum mechanics is an objective theory or not. One notable contrib-
utor to the debate has been that eminent philosopher of science, Karl Popper.
As discussed in my book, “Exploding a Myth”, Popper preferred to refer to the
experimentalist rather than observer, and expressed the view that that person
played the same role in quantum mechanics as in classical mechanics. He felt,
therefore, that such a person was there to test the theory. This is totally opposed
to the Copenhagen Interpretation which claims that “objective reality has evap-
orated” and “quantum mechanics does not represent particles, but rather our
knowledge, our observations, or our consciousness, of particles”. Popper points
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out that, over the years, many eminent physicists have switched allegiance from
the pro-Copenhagen view. In some ways, the most important of these people
was David Bohm, a greatly respected thinker on scientific matters who wrote a
book presenting the Copenhagen view of quantum mechanics in minute detail.
However, later, apparently under Einstein’s influence, he reached the conclusion
that his previous view had been in error and also declared the total falsity of
the constantly repeated dogma that the quantum theory is complete. It was,
of course, this very question of whether or not quantum mechanics is complete
which formed the basis of the disagreement between Einstein and Bohr; Einstein
stating “No”, Bohr “Yes”.

However, where does Popper fit into anything to do with Hadronic Mechanics?
Quite simply, it was Karl Popper who first drew public attention to the thoughts
and ideas of Ruggero Santilli. Popper reflected on, amongst other things, Chad-
wick’s neutron. He noted that it could be viewed, and indeed was interpreted
originally, as being composed of a proton and an electron. However, again as
he notes, orthodox quantum mechanics offered no viable explanation for such a
structure. Hence, in time, it became accepted as a new particle. Popper then
noted that, around his (Popper’s) time of writing, Santilli had produced an arti-
cle in which the “first structure model of the neutron” was revived by “resolving
the technical difficulties which had led, historically, to the abandonment of the
model”. It is noted that Santilli felt the difficulties were all associated with the
assumption that quantum mechanics applied within the neutron and disappeared
when a generalised mechanics is used. Later, Popper goes on to claim Santilli
to belong to a new generation of scientists which seemed to him to move on a
different path. Popper identifies quite clearly how, in his approach, Santilli dis-
tinguishes the region of the arena of incontrovertible applicability of quantum
mechanics from nuclear mechanics and hadronics. He notes also his most fas-
cinating arguments in support of the view that quantum mechanics should not,
without new tests, be regarded as valid in nuclear and hadronic mechanics.

Ruggero Santilli has devoted his life to examining the possibility of extending
the theories of quantum mechanics and relativity so that the new more general
theories will apply in situations previously excluded from them. To do this, he
has had to go back to the very foundations and develop new mathematics and
new mathematical techniques. Only after these new tools were developed was
he able to realistically examine the physical situations which originally provoked
this lifetime’s work. The actual science is his, and his alone, but, as with the
realization of all great endeavours, he has not been alone. The support and
encouragement he has received from his wife Carla cannot be exaggerated. In
truth, the scientific achievements of Ruggero Santiili may be seen, in one light,
as the results of a team effort; a team composed of Ruggero himself and Carla
Gandiglio in Santilli. The theoretical foundations of the entire work are contained
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in this volume; a volume which should be studied rigorously and with a truly
open mind by the scientific community at large. This volume contains work
which might be thought almost artistic in nature and is that part of the whole
possessing the beauty so beloved of mathematicians and great artists. However,
the scientific community should reserve its final judgement until it has had a
chance to view the experimental and practical evidence which may be produced
later in support of this elegant new theoretical framework.

Jeremy Dunning-Davies,
Physics Department,
University of Hull,

England.

September 8, 2007



Preface

In Volume I we have identified and denounced scientific imbalance of historical
proportions caused by organized academic, financial and ethnic interests on Ein-
steinian theories via the abuse of academic credibility and public funds to impose
the validity of time reversal invariant doctrines for the treatment of irreversible
events, including energy releasing processes.

A primary scope of this Volume III is the presentation of the lifelong research
by the author on the generalization (called lifting) of Einstein’s special and gen-
eral relativities, quantum mechanics and quantum chemistry into forms that are
structurally irreversible in time, that is, irreversible for all possible Lagrangians
and Hamiltonians, since the latter are known as being all reversible.

It is evident that a task of this type cannot be achieved without the prior
lifting of the entire mathematics used in the 20-th century physics, since the
latter is all structurally reversible. In turn, as soon as this problem is addressed,
the transition from the 20-th century reversible mathematics to its irreversible
covering soon emerges as being excessive, particularly for non-mathematically
oriented readers.

The latter occurrence has suggested the presentation of a progressive transition
from the 20-th century mathematics to a first generalization, today known as
Santilli isomathematics, where the prefix ”iso” is intended in the Greek sense
of being ”axiom preserving”; the latter mathematics is then lifted into a single-
valued structurally irreversible form known as Santilli genomathematics, where
the prefix ”geno” is intended in the Greek meaning of inducing new axioms; and,
finally, the latter is lifted into the most general known mathematics, that of multi-
valued irreversible type known as Santilli’s hypermathematics. The corresponding
mathematics for antimatter are characterized by the isodual map of Volume II.

Once the above mathematics are known, the construction of the corresponding
broader relativities is elementary, yielding formulations today known as Santilli
iso-, geno-, and hyper-relativities for matter and their isoduals for antimatter.
The construction of the underlying iso-, geno-, and hyper-mechanics for matter
and their isoduals for antimatter is equally elementary.

This yields a progression of formulations each one being a covering of the
preceding one, for the quantitative, axiomatically consistent and invariant rep-
resentation of matter and of antimatter in conditions of progressively increasing
complexity.
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As we shall see, besides resolving the historical imbalance on irreversibility,
iso-, geno-, and hyper-formulations allow the resolution of numerous additional
scientific imbalances of the 20-th century caused by adapting nature to preferred
theories for evident personal gains, rather than adapting the theories to new
physical reality, as done in these volumes.

Ruggero Maria Santilli
January 19, 2008
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Chapter 3

LIE-ISOTOPIC BRANCH OF HADRONIC
MECHANICS AND ITS ISODUAL

3.1 INTRODUCTION
3.1.1 Conceptual Foundations

As recalled in Chapter 1, the systems generally considered in the 20-th century
are the conventional exterior dynamical systems, consisting of closed-isolated and
reversible systems of constituents approximated as being point-like while mov-
ing in vacuum under sole action-at-a-distance potential interactions, as typically
represented by planetary and atomic systems.

More technically, we can say that exterior dynamical systems are characterized
by the exact invariance of the Galilean symmetry for the nonrelativistic case and
Poincaré symmetry for relativistic treatments, with the consequential verification
of the well known ten total conservation laws.

In this chapter we study the more general interior dynamical systems of ex-
tended particles and, separately, of extended antiparticles, consisting of systems
that are also closed-isolated, thus verifying the same ten total conservation laws of
the exterior systems, yet admit additional internal force of nonlocal-integral and
nonpotential type due to actual contact and/or mutual penetration of particles,
as it is the case for the structure of planets at the classical level (see Figure 3.1),
and the structure of hadrons, nuclei, stars, and other systems at the operator
level (see Figure 3.2).

To avoid excessive complexity, the systems considered in this chapter will
be assumed to be reversible, that is, invariant under time reversal. The open-
irreversible extension of the systems will be studied in the next chapter.

The most important methodological differences between exterior and interior
systems are the following:

1) Exterior systems are completely represented with the knowledge of only one
quantity, the Hamiltonian, while the representation of interior systems requires
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the knowledge of the Hamiltonian for the potential forces, plus additional quan-
tities for the representation of nonpotential forces, as done in the true Lagrange
and Hamilton equations, those with external terms,

d OL(t,r,v)  OL(t,r,v)

= F(t,r,v), 3.1.1
dt  Ovk ork k(tmv) ( @)
drk  OH(t,r,p)  dpa OH(t,r,p)
a _ » - L F.(t .1.1b
dt 8pak ’ dt 87“’; + k( 7T7p)7 (3 )
1
L= 2a§ X Mg X Vg X V° = V(t,r,0), (3.1.1c¢)
Pak X Pak
H=Y—"—— t,r,p), 1.1
5 X 1, + V(t,r,p) (3.1.1d)
V =2U(t, m)ar X 08 + Uy(t,7), (3.1.1e)
F(t,r,v) = F(t,r,p/m), (3.1.1f)

a=1,2,3,...,N; k=1,2,3.

Consequently, by their very conception, interior systems are structurally be-
yond the representational capability of classical and quantum Hamiltonian me-
chanics, in favor of covering disciplines.

2) Exterior systems are of Keplerian type, while interior systems are not, since
they do not admit a Keplerian center (see, again, Figures 3.1 and 3.2). Conse-
quently, also by their very conception, interior systems cannot be characterized
by the Galilean and Poincaré symmetries in favor of covering symmetries.

3) Exterior systems are local-differential, that is, they describe a finite set
of isolated points, thus being fully treatable with the mathematics of the 20-th
century, beginning with conventional local-differential topologies. By contrast,
interior systems are nonlocal-integral, that is, they admit internal interactions
over finite surfaces or volumes that cannot be consistently reduced to a finite set
of isolated points. Consequently, interior systems cannot be consistently treated
via the mathematics of classical and quantum Hamiltonian mechanics in favor of
a basically new mathematics.

4) The time evolution of the Hamiltonian treatment of exterior systems char-
acterizes a canonical transformation at the classical level, and a unitary transfor-
mation at the operator level, that we shall write in the unified form

UxU'=U"xU=1, (3.1.2)

where x represents the usual (associative) multiplication.! By contrast, the time
evolution of interior systems, being non-Hamiltonian, characterizes noncanoni-
cal transformations at the classical level and nonunitary transformations at the

ISince we shall use several types of multiplications, to avoid confusions, it is essential to identify the
assumed multiplication in any mathematical treatment.
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Figure 3.1. A view of Jupiter, a most representative interior dynamical system, where one can
see with a telescope the dramatic differences with exterior systems, such as internal exchanges
of linear and angular momentum always in such a way to verify total conservation laws. As
repeatedly stated in the literature on hadronic mechanics, the structure of Jupiter has been
assumed as fundamental for the construction of new structure models of hadrons, nuclei and
stars, and the development of their new clean energies and fuels.

operator level, that we shall jointly write
UxU£1. (3.1.3)

In particular, the noncanonical-nonunitary character is necessary to exit from the
class of equivalence of classical and quantum Hamiltonian theories.

5) The invariance (rather than “covariance”) of exterior systems under the
Galilean or Poincaré symmetry has the fundamental implication of preserving
the basic units, predicting the same numerical values under the same conditions
at different times, and admitting all conditions needed for consistent applications
of the theory to experimental measurements. By comparison, the loss of the
Galilean and Poincaré invariance, combined with the necessary noncanonical-
nonunitary structure of interior systems, activates the theorems of catastrophic
mathematical and physical inconsistencies studied in Chapter 1 whenever treated
with the mathematics of canonical-unitary theories.

In this chapter we report the rather long scientific journey that lead to a
mathematically and physically consistent, classical and operator treatment of
interior dynamical systems via the isotopic branch of hadronic mechanics for
matter, and the isodual isotopic branch for antimatter including the resolution of
all the above problems.
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Figure 3.2. A schematic view of nuclei as they are in the physical reality, bound states of ex-
tended particles without a Keplerian center, under which conditions quantum mechanics cannot
possibly be exact due to the breaking of the fundamental Galilean and Poincaré symmetries in
favor of covering theories. As we shall see in this chapter, even though these breakings are small
(because nucleons are in conditions of mutual penetration in nuclei of about 10~2 parts of their
volumes), said breakings permit the prediction and industrial development of new clean energies
and fuels that are prohibited by the exact validity of quantum mechanics.

Besides a number of experimental verifications reviewed in this chapter, the
achievement of a consistent treatment of interior systems offers basically new
structure models of hadrons, nuclei, stars, Cooper pairs, molecules and other
interior structures. In turn, these new models permit quantitative studies of new
clean energies and fuels already under industrial, let alone scientific development.

Stated in a nutshell, a primary aim of this chapter is to show that the assump-
tion of a final character of quantum mechanics and special relativity beyond the
conditions of their original conception (isolated point particles in vacuum) is the
primary origin of the current alarming environmental problems.

The reader should be aware that, nowadays, the literature on hadronic me-
chanics is rather vast, having surpassed the mark of 15,000 pages of published
research. As such, to avoid a prohibitive length, the presentation in this chapter
is restricted to the outline of the origination of each topic and of the most impor-
tant developments. Scholars interested in a comprehensive list of literature are
suggested to consult the quoted references as well as those of Chapter 1.

Also to avoid a prohibitive length, the presentation of this chapter is restricted
to studies of direct relevance for hadronic mechanics, namely, research fundamen-
tally dependent on a generalization of the basic unit. The quotation of related
studies not fundamentally dependent on the generalization of the basic unit can-
not be reviewed for brevity.
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3.1.2 Closed Non-Hamiltonian Systems

The first step in the study of hadronic mechanics is the dispelling of the belief
that nonpotential forces, being nonconservative, do not permit total conservation
laws, namely, that the external terms in the analytic equations (3.1.1) solely
applies for open-nonconservative systems, such as an extended object moving
within a resistive medium considered as external.

This belief was disproved, apparently for the first time, by Santilli in mono-
graphs [1,2]. Ref. [1] presented a comprehensive treatment of the integrability
conditions for the existence of a potential or a Hamiltonian, Helmholtz’s condi-
tions of variational selfadjointness, according to which the total force is divided
into the following two components

F(t7 r’ p’ i ') = FSA(t’ /r‘?p) + FNSA(t7 r7p7 .t ')7 (3'1'4)

where the selfadjoint(SA) component F¥4 admits a potential and the nonselfad-
joint (NSA) component FVS4 does not.

We should also recall for clarity that, to be Newtonian as currently understood,
a force should solely depend on time ¢, coordinates r and velocity v = dr/dt or
momenta p = mxv, F' = F(t,r,v). Consequently, forces depending on derivatives
of the coordinates of order bigger than the first, such as forces depending on the
acceleration F' = F'(t,r,v,a), a = dv/dt, are not generally considered Newtonian
forces.

Ref. [2] then presented the broadest possible realization of the conditions
of variational selfadjointness via analytic equations derivable from a variational
principle, and included the first known identification of closed non-Hamiltonian
systems (Ref. [2], pages 233-236), namely, systems that violate the integrability
conditions for the existence of a Hamiltonian, yet verify all ten total conservation
laws of conventional Hamiltonian systems.

Let us begin by recalling the following well known property:

THEOREM 8.1.1: Necessary and sufficient conditions for a system of N par-
ticles to be closed, that is, isolated from the rest of the universe, are that the
following ten conservation laws are verified along an actual path

dXi(t, T,p) o 8XZ db* 8X, o

= S X ot =0, (3.1.50)
Xi=ELiot=H=T+YV, (3.1.5b)

(X2, X3, X4) = Piot = XoPa, (3.1.5¢)

(X5, X6, X7) = Jtot = XaTa A Pas (3.1.5d)

(X3, X9, X10) = Grot = Xa(mg X r4 —t X Pa), (3.1.5¢)
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i=1,2,3,...,10; k=1,2,3, a=1,2,3,...,N.

It is also well known that Galilean or Poincaré invariant systems do verify the
above conservation laws since the X; quantities are the generators of the indicated
symmetries. However, in this case all acting forces are derivable from a potential
and the systems are Hamiltonian.

Assume now the most general possible dynamical systems, those according to
the true Lagrange’s and Hamilton equations (3.1.1) where the selfadjoint forces
are represented with the Lagrangian or the Hamiltonian and the nonselfadjoint
forces are external.

DEFINITION 3.1.1 [2]: Closed-isolated non-Hamiltonian systems of particles
are systems of N > 2 particles with potential and nonpotential forces characterized
by the following equations of motion

% o drkjat Pak/Ma (3.1.6)
dt — \ dpga/dt ) — \ FZA+ ENSA |- =

verifying all conditions (3.1.5), where the term “non-Hamiltonian” denotes the
fact that the systems cannot be entirely represented with the Hamiltonian, thus
requiring additional quantities, such as the external terms.

The casen = 2 is exceptional, yet it admits solutions, and closed non-Hamiltonian
systems with N = 1 evidently cannot ezist (because a single free particle is always
Hamiltonian).

Closed non-Hamiltonian systems can be classified into:

CLASS «: systems for which Eqs. (3.1.5) are first integrals;

CLASS [3: systems for which Eqs. (3.1.5) are invariant relations;

CLASS ~: systems for which Eqs. (3.1.5) are subsidiary constraints.

The case of closed non-Hamiltonian systems of antiparticles are defined ac-
cordingly.

The study of closed non-Hamiltonian systems of Classes 3 and ~ is rather
complex. For the limited scope of this presentation it is sufficient to see that
interior systems of Class « exist.

THEOREM 3.1.2 [2]: Necessary and sufficient conditions for the existence of
a closed non-Hamiltonian systems of Class o are that the nonselfadjoint forces
verify the following conditions:

0, (3.1.7a)

FNSA
Za: 2
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> pa®FY54 =0, (3.1.7b)
a

> ra AFYSA =0, (3.1.7¢)

a

Proof. Consider first the case N > 2 and assume first for simplicity that
F54 = 0. Then, the first nine conservation laws are verified when

0Xi x FNSA =, (3.1.8)
8pka
in which case the 10-th conservation law, Eq. (3.1.5e), is automatically verified,
and this proves the necessity of conditions (3.1.7) for N > 2.

The sufficiency of the conditions is established by the fact that Eqgs. (3.1.7)
consist of seven conditions on 3/N unknown functions F; ,ﬁSA. Therefore, a solution
always exists for N > 3.

The case N = 2 is special inasmuch as motion occurs in a plane, in which case
Eqgs. (3.1.7) reduce to five conditions on four functions F{;;SA, and the system
appears to be overdetermined. Nevertheless, solutions always exist because the
verification of the first four conditions (3.1.5) automatically implies the verifica-
tion of the last one, Egs. (3.1.5e). As shown in Ref. [2], Example 6.3, pages
272273, a first solution is given by the non-Newtonian force

d
FV94 = _FVS4 — K xa = K x dit)’ (3.1.9)

where K is a constant. Another solution is given by

F{VSA:—Fé\[SA:MXd—ZX(ﬁ(MX?'"—l-V), M= xme

.1.10
d m1 + ms (3 )

Other solutions can be found by the interested reader. The addition of a non-null
selfadjoint force leaves the above proof unchanged. q.e.d.

The search for other solutions is recommended to readers interested in ac-
quiring a technical knowledge of hadronic mechanics because such solutions are
indeed useful for applications. A general solution of Egs. (3.1.7), as well as of their
operator counterpart and of their isodual images for antimatter will be identified
later on in this chapter after the identification of the applicable mathematics.

It should be noted that the proof of Theorem 3.1.2 is not necessary because the
existence of closed non-Hamiltonian systems is established by visual observations
(Figure 3.1). At any rate, the representation of Jupiter’s structure via one single
function, the Lagrangian or the Hamiltonian, necessarily implies the belief in
the perpetual motion within physical media, due to the necessary condition that
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constituents move inside Jupiter with conserved energy, linear momentum and
angular momentum.

As recalled in Chapter 1, whenever exposed to departures from closed Hamilto-
nian systems, a widespread posture is the claim that the non-Hamiltonian char-
acter of the systems is “illusory” (sic) because, when the systems are reduced
to their elementary constituents, all nonpotential forces “disappear” (sic) and
conventional Hamiltonian disciplines are recovered in full.

The political-nonscientific character of the above posture is established by the
following property of easy proof by any graduate student in physics:

THEOREM 3.1.3 [3]: A classical non-Hamiltonian system cannot be consis-
tently reduced to a finite number of quantum mechanical point-like particles and,
vice-versa, a finite ensemble of quantum mechanical point-like particles cannot
consistently characterize a classical non-Hamiltonian system.

The above property establishes that, rather than being “illusory,” nonpotential
effect originate at the deepest and most elementary level of nature. The property
also establishes the need for the identification of methods suitable for the invariant
treatment of classical and operator non-Hamiltonian systems in such a way to
constitute a covering of conventional Hamiltonian treatments.

This chapter is devoted to the mathematical theoretical and experimental
study of classical and operator interior system of particles and antiparticles, their
experimental verifications and their novel applications.

3.1.3 Need for New Mathematics

By following the main guidelines of hadronic mechanics, we adapt the math-
ematics to nature, rather than adapting nature to preferred mathematics. For
this purpose, we shall seek a mathematics capable of representing the following
main features of interior dynamical systems:

1) Points have no dimension and, consequently can only have action-at-a-
distance potential interactions. Therefore, the first need for the new mathematics
is the representation of the actual, extended, generally nonspherical shape of the
wavepackets and/or of the charge distribution of the particles considered, that we
shall assume in this monograph for simplicity to have the shape of spheroidal
ellipsoids with diagonal form

Shape, = Diag.(n2;,n2y,n23), a=1,2,3,...,N, (3.1.11)

with more general non-diagonal expressions not considered for simplicity, where

n2,,n2,,n2, represent the semiaxes of the spheroidal ellipsoids assumed as devi-

ation from, or normalized with respect to the perfect sphericity

n? =n2y =niy = 1. (3.1.12)
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The n’s are called characteristic quantities of the particles considered. It should
be stressed that, contrary to a rather popular belief, the n-quantities are not
parameters because they represent the actual shape as derived from experimental
measurements.

To clarify this important point, by definition a “parameter” can assume any
value as derived form the fit of experimental data, while this is not the case for
the characteristic quantities here considered. As an example, the use for the n’s
of value of the order of 1076 cm to represent a proton would have no physical
value because the proton charge distribution is a spheroidal ellipsoid of the order
of 10713 cm.

2) Once particles are assumed as being extended, there is the consequential
need to represent their density. This task can be achieved via a fourth set of
quantities

Density, = n2,, (3.1.13)

representing the deviation of the density of the particle considered from the den-
sity of the vacuum here assumed to be one,

" acuwuma = 1- (3.1.14)

Again, ny is not a free parameter because its numerical value is fixed by experi-
mental data. As an example for the case of a hadron of mass m and radius r we
have the density

m X c?

ni = (3.1.15)

3 X m X 7'3,
thus establishing that n.4 is not a free parameter capable of assuming.
Predictably, most nonrelativistic studies can be conducted with the sole use of
the space components characterizing the shape. Relativistic treatments require
the additional use of the density as the forth component, resulting in the general

form
(Shape — Density)q = Diag.(n2,,n2y,n25,n2,), a=1,2,3,...,N. (3.1.16)

3) Perfectly rigid bodies exist in academic abstractions, but not in the physical
reality. Therefore, the next need is for a meaningful representation of the defor-
mation of shape as well as variation of density that are possible under interior
conditions. This is achieved via the appropriate functional dependence of the
characteristic quantities on the energy F,, linear momentum p,, pressure P and
other characteristics, and we shall write

nak = nak(E,p, P,...), k=1,2,34. (3.1.17)

The reader is suggested to meditate a moment on the fact that Lagrangian
or Hamiltonian theories simply cannot represent the actual shape and density
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of particles. The impossibility of representing deformations of shapes and varia-
tions of density are well known, since the pillar of contemporary relativities, the
rotational symmetry, is notoriously incompatible with the theory of elasticity.

4) Once particles are represented as they are in the physical reality (extended,
nonspherical and deformable), there is the emergence of the following new class
of interactions nonexistent for point-particles (for which reason these interactions
have been generally ignored throughout the 20-th century), namely, interactions
of:

I) contact type, that is, due to the actual physical contact of extended particle;
consequently, of

IT) zero range type, since all contacts are dimensionless; consequently of

III) nonpotential type, that is, not representable with any possible action-at-a-
distance potential; consequently, of

IV) non-Hamiltonian type, that is, not representable with any Hamiltonian;
consequently, of

V) noncanonical type at the classical level and nonunitary type at the operator
level; as well as of

VI) nonlinear type, that is, represented via nonlinear differential equations,
such as depending on power of the wavefunction greater than one; and, finally, of

VII) nonlocal-integral type. Interactions among point-particles are local-differ-
ential, that is, reducible to a finite set of isolated points, while contact interactions
among extended particles and/or their wavepackets are, by conception, nonlocal-
integral in the sense of being dependent on a finite surface or volume that, as
such, cannot be reduced to a finite set of isolated points (see Figure 3.3).

5) Once the above new features of interior systems have been identified, there
is the need not only of their mathematical representation, but above all of their
invariant representation in order to avoid the theorem of catastrophic inconsis-
tencies of Chapter 1.

As an illustration, Coulomb interactions have reached their towering position in
the physics of the 20-th century because the Coulomb potential is invariant under
the basic symmetries of physics, thus predicting the same numerical values under
the same conditions at different times with consequentially consistent physical
applications. The same occurs for other interactions derivable from a potential
(except gravitation represented with curvature as shown in Section 1.4).

Along the same lines, any representation of the extended, nonspherical and
deformable character of particles, their densities and their novel nonlinear, non-
local and nonpotential interactions cannot possibly have physical value unless it
is also inwvariant, and not “covariant,” again, because the latter would activate
the theorems of catastrophic inconsistencies of Chapter 1.

It should be indicated that an extensive search conducted by the author in
1978-1983 in the advanced libraries of Cambridge, Massachusetts, identified nu-
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Figure 3.3. A schematic view of the fundamental interactions studied in this monograph, those
originating from deep wave-overlappings of the wavepackets of particles also for the case with
point-like charge as occurring in electron valence bonds, Cooper pairs in superconductivity,
Pauli’s exclusion principle, and other basic structures. These interactions have been ignored
throughout the 20-th century, resulting in the problematic aspects or sheer inconsistencies iden-
tified in Chapter 1. As we shall see in this chapter, the representation of the new interactions
here depicted with generalized units of type (3.1.19) permits the achievement of the first known,
exact and invariant representation of molecular data and other data that have escaped an exact
and invariant representation via quantum mechanics for about one century.

merous integral geometries and other nonlocal mathematics. However, none of
them verifies all the following conditions necessary for physical consistency:

CONDITION 1: The new nonlocal-integral mathematics must admit the con-
ventional local-differential mathematics as a particular case under a well identified
limit procedure, because new physical advances must be a covering of preceding
results. This condition alone is not verified by any integral mathematics the
author could identify.

CONDITION 2: The new nonlocal-integral mathematics must permit the clear
separation of the contributions of the new nonlocal-integral interactions from those
of local-differential interactions. This second condition too was not met by any
of the integral mathematics the author could identify.

CONDITION 3: The new nonlocal-integral mathematics must permit the in-
variant formulation of the new interactions. This latter condition was also vio-
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lated by all integral mathematics the author could identify, thus ruling them out
in a final form for consistent physical applications.

After clarifying that the mathematics needed for the correct treatment of in-
terior systems was absent, the author was left with no other choice than that
of constructing the needed mathematics. After extensive search, Santilli [4,5]
suggested as the only possible or otherwise known solution, the invariant repre-
sentation of nonlinear, nonlocal and nonpotential interactions via a generalization
of the trivial unit of conventional theories. The selection was based on the fact
that, whether conventional or generalized, the unit is the basic invariant of any
theories. We reach in this way the following:

FUNDAMENTAL ASSUMPTION OF HADRONIC MECHANICS [4-10]:
The actual, extended, nonspherical and deformable shape of particles, their vari-
able densities and their nonlinear, nonlocal and nonpotential interactions can be
invariantly represented with a generalization of the basic spacetime unit of con-
ventional Hamiltonian theories

I = Diag.(1,1,1,1), (3.1.18)

into nowhere singular, sufficiently smooth, most general possible integro-
differential forms, today called “Santilli isounit”, of the type here expressed for
simplicity for the case of two particles:

[=1"=1_,= Diag'(”%l?”%Q?”%S?”%ZL)X
x Diag.(n3,, n3y, n33, n34)
o R e R Y (31.19)

with trivial generalizations to multiparticle and nondiagonal forms, where the ngk
represents the semiaxes of the spheroidal shape of particle a, nZ4 represents its
density, the expression T'(t,r, 1,1, ...) represents the nonlinearity of the interac-
tion and [ dr3 x PT(r) x (r) provides a simple representation of its nonlocality.
The corresponding features of antiparticles are represented by Santilli’s isodual
1sounit

I"=—_t=—-I<o, (3.1.20)

and mized states of particles and antiparticles are represented by the tensorial
product of the corresponding units and their isoduals.

Explicit examples of classical (operator) systems with nonpotential forces rep-
resented via generalized units will be given in Section 2.3 (Section 2.4).

As we shall see, the entire structure of hadronic mechanics follows uniquely
and unambiguously from the assumption of the above basic unit. As a matter
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of fact, some of the main features of hadronic mechanics can already be derived
from the above basic assumption.
First, the maps, called in the literature Santilli liftings

I — I, 179 - |4 (3.1.21)

(where I = —I is the isodual unit of Chapter 2 [8]) require two corresponding
generalizations of the totality of the mathematical and physical formulations of
conventional classical and quantum Hamiltonian theories without any exception
known to this author (to avoid catastrophic inconsistencies).

As we shall see in this chapter, even basic notions such as trigonometric func-
tions, Fourier transforms, differentials, etc. have to be lifted into two forms
admitting the new quantity I and I? as the correct left and right units.

In view of the assumed Hermiticity and positive-definiteness of I, the result-
ing new mathematics is called in the literature Santilli’s isotopic mathematics
or isomathematics for short, with the corresponding isodual isomathematics for
antimatter in interior conditions. The resulting new physical formulations are
known as Santilli isotopic mechanics or isomechanics for short for the case of
particles, with the isodual isomechanics for antiparticles.

Again in view of the fact that I is Hermitian and positive-definite, at the
abstract, realization-free level there is no topological difference between I and I
and, for this reason [ is called Santilli isotopic unit or isounit for short.

Consequently, the new mathematical and physical formulations are expected to
be new realizations of the same axioms of conventional Hamiltonian mechanics,
and they should not be intended as characterizing “new theories” since they do
not admit new abstract axioms. This illustrates the name of isotopic mathematics
from the Greek meaning of preserving the topology.?

Finally, Santilli isounit I identifies in full the covering nature of isomechanics
over conventional mechanics, as well as the type of resulting covering. This cover-
ing character is illustrated by the fact that at sufficiently large mutual distances
of particles the integral in the exponent of Eq. (3.1.19) is null

. N -
dm [ drt <l (r) < (r) =0, (3.1.22)

in which case the actual shape of particles has no impact in the interactions and
the generalized unit recovers the conventional unit3

lim [ =1= Diag.(1,1,1,1 3.1.23
o iag.(1, 1, 1, 1), ( )

2When [ is no longer Hermitian, we have the more general genotopic mathematics studied in Chapter 4.
3When the exponent of Eq. (3.1.19) is null, that is, when the mutual distances of particles are large,
the characteristic quantities are constant and, consequently, terms such as Diag.(nff, n;22, nfsg, n;f)
factor out of all equations, resulting in reduction (3.1.23).
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under which limit hadronic mechanics recovers conventional quantum mechanics
identically and uniquely.

The above limits also identify the important feature according to which hadro-
nic mechanics coincides with quantum mechanics for all mutual distances of par-
ticles sufficiently bigger than their wavepackets, while at mutual distances below
that value hadronic mechanics provides a generally small corrections to quantum
mechanics (see Figure 3.3).

In this chapter we review the long and laborious scientific journey by mathe-
maticians, theoreticians and experimentalists (see the bibliography of Chapter 1)
for the achievement of maturity of formulation of the isotopic branch of hadronic
mechanics, its experimental verification, its novel industrial applications, and its
isodual for antimatter.

We shall begin with a review of recent developments in the construction of
isomathematics that have occurred following the publication of the second edi-
tion of Vol. I of this series in 1995 [6] since these developments have important
implications. We shall then identify the recent developments in physical theories
occurred since the second edition of Vol. II of this series [7]. We shall then re-
view the novel industrial applications developed since the appearance of Volumes
I and II.

It should be noted that in this chapter we shall merely present recent develop-
ments. As a consequence, Volumes I and II of this series [6,7] remain useful for
all detailed aspects that will not be repeated in this final volume.

A primary motivation of this volume is to present industrial applications. Con-
sequently, we have selected the simplest possible mathematical treatment acces-
sible to any experimentalists. Readers interested in utmost mathematical rigor
are suggested to consult the specialized mathematical literature in the field.

Finally, the literature on the mathematics, physics and chemistry of classical
and quantum Hamiltonian theories is so vast to discourage discriminatory quota-
tions. For this reason, unless there is a contrary need, we shall abstain from quo-
tations of works on pre-existing methods since their knowledge is a pre-requisite
for the understanding of this monograph in any case.

3.2 ELEMENTS OF SANTILLI’S ISOMATHEMATICS
AND ITS ISODUAL
3.2.1 Isounits, Isoproducts and their Isoduals

As indicated earlier, Santilli isotopic mathematics, [4-10] or isomathematics
for short, is characterized by the map, called lifting, of the trivial unit I = +1
into a generalized unit I

N-dimensional unit

I=+1—I(trp oot op op .., (3.2.1)
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or, more generally, by the lifting of N-dimensional units
I = (I}) = Diag.(1,1,1,...), i,j = 1,2,...,N

of conventional Hamiltonian theories? into a nowhere singular, Hermitian and
positive-definite, matrix I of the same dimension N whose elements f; have an
arbitrary, nonlinear and integral dependence on time ¢, space coordinates 7, mo-
menta p, wavefunctions 1, their derivatives 0v, and any other needed quantity
[loc. cit.] ‘

I = (I}) = Diag.(1,1,...)>0 —

— 1 = (I]) = I(t,r,p. 0,91, 00,001,...) = YT > 0. (3.2.2)

Isomathematics can then be defined as the lifting of all possible branches of
mathematics with left and right unit I into forms admitting I as the new left and
right unit.

Recall that I is the right and left unit under the conventional associative prod-
uct A x B = AB, where A, B are generic quantities (e.g., numbers, vector-fields,
operators, etc.) for which I x A = A x I = A for all element A of the considered
set.

It is easy to see that I cannot be a unit under the same product because
IxA # A. Therefore, for consistency, the conventional associative product
A x B must be lifted into the new form first proposed by Santilli in Ref. [5] of
1978,

AxB—AxB=AxTxB=Ax(1/I)x B, (3.2.3)

where T is fixed for the set considered, under which product I is indeed the
correct left and right new unit,

IxA=AxI=A—IxA=AxI=A, (3.2.4)

for all elements A of the considered set. In this case (only) I is called Santilli’s
isotopic unit, or isounit for short, and 7' is called Santilli’s isotopic element, or
isoelement for short.

Isomathematics was first submitted by Santilli in memoirs [loc. cit.] of 1978
and then worked out in various additional contributions by the same author,
as well as by numerous mathematicians and theoreticians (see the references of
Chapter 1 as well as of this section).

4For instance, Hamiltonian theories in 3-dimensional Euclidean space are based on the unit I =
Diag.(1,1,1) of the rotational and Euclidean symmetries, while Hamiltonian theories in Minkowski
space are based on the unit I = Diag.(1,1,1,1) that is at the foundation of Lie’s theory of the Lorentz
and Poincaré symmetries.
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The most salient feature of Santilli’s liftings (3.2.2) and (3.2.3) is that they
are axiom preserving, from which feature they derived their name “isotopic” [loc.
cit.], recently contracted to the prefix “iso.”

In fact, I preserves the basic topological characteristics of I. Therefore, iso-
mathematics is expected to provide new realizations of the abstract axioms of the
mathematics admitting I as left and right unit. In particular, the preservation of
the original abstract axioms is an important guiding principle in the consistent
construction of isomodels and their applications.

At this introductory stage the axiom-preserving character of generalized prod-
uct (3.2.3) is easily verified by the fact that it preserves all basic axioms of the
original product. In fact, the isoproduct verifies the right and left isoscalar laws

nx(AxB) = (nxA)x B, (3.2.5a)
(AXB)xn = Ax(Bxn), (3.2.5b)
the right and left isodistributive laws’
AX(B+C) = AxXB + AxC, (3.2.6a)
(A+ B)xC = AxC + BxC, (3.2.6b)

and the isoassociative law
Ax(BxC) = (AxB)xC. (3.2.7)

A verification of the preservation of the axioms of all subsequent constructions is
crucial for a serious study and application of hadronic mechanics.

The simplest method for the construction of isomathematics as needed for
various applications is given by the use of a positive-definite N-dimensional non-
canonical transform at the classical level or a nonunitary transform at the oper-
ator level, here written in the unified form

UxUT£1, (3.2.8)
and its identification with the basic isounit of the theory
I=UxU'=1/T>0, (3.2.9)

realization first introduced by Santilli in Ref. [6,7] of 1993.

5The reader should keep in mind that the verification of the right and left scalar and distributive laws
are necessary for any product to characterize an algebra as commonly understood in contemporary
mathematics.
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In this case, the Hermiticity of I is guaranteed because of the property,
(UxUNY =U x U (3.2.10)

Therefore, realization (3.2.9) of the isounit only requires that U x UT be a
positive-definite N-dimensional matrix other than the unit matrix, from which
the nowhere singularity follows, e.g., via condition

Det(U x UT) > 0,# 1. (3.2.11)

Once the fundamental realization (3.2.9) is assumed, the construction of iso-
mathematics follows in a simple, unique and unambiguous way. In fact, isomath-
ematics can be constructed by submitting conventional mathematics with left and
right unit I to said noncanonical-nonunitary transform, with very few exception,
such as the isodifferential calculus that escapes construction via noncanonical-
nonunitary transforms.

To begin, the isounit itself is simply given by said noncanonical-nonunitary
transform of the conventional unit,

I-UxIxU =1, (3.2.12)

the isoproduct too is simply given by said noncanonical-nonunitary transform of
the conventional product

AxB—-Ux(AxB)xU' =
= (UxAxUN)x (Ux U x(Ux BxU) =
=AxTxB=AxB, (3.2.13)

and the same simple transform holds for the construction of other aspects of
isomathematics, as illustrated in this section.

As a matter of fact, the use of the above transform provides a method for the
construction of isomathematics that is more rigorous than empirical liftings. For
instance, by comparing Eqgs. (3.2.3) and (3.2.13), we see that the lifting of the
wnit 7 — I =U x I x UT implies not only the lifting of the associative product
x — x = x(UxUT)7Ix, but also the lifting of all elements of the set considered,
A—A=UxAxU.

In view of the above, the claim often expressed in the nontechnical physics
literature that “the mathematics of hadronic mechanics is too difficult to com-
prehend” is just a case of venturing judgment without any serious knowledge of
the topic.

The reader should be aware that other generalizations of the associative prod-
uct, such as

AR)B=1Tx Ax B, (3.2.14a)
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A()B=AxBxT, (3.2.14b)

are unacceptable because they violate either the right or the left distributive
and scalar laws, thus being unable to characterize an algebra. As such, liftings
(3.2.14) are not isotopic in Santilli’s sense [loc. cit.].

Examples of isounits have been given in Section 3.1.3. Additional examples
will be provided in Sections 3.3 and 3.4. Note that, since they are Hermitian by
assumption, isounits can always be diagonalized into the form of type (3.1.19).

Santilli isodual isomathematics [6-10] is the image of isomathematics under
the anti-isomorphic isodual map of an arbitrary quantity

A(ta D, % 1/1T7 o ) - Ad(tda rdvpd7 ¢d7 ¢Td7 . )

— — Al (—t, =", —p", =T, =T, ), (3.2.15)

(where ¢ denotes transposed) first submitted by Santilli in Ref. [8] of 1985 (see
also Chapter 2).
The basic quantity of isodual isomathematics is then the isodual isounit

It = —Jt(—t,—rt, —pl, =T, —oyf, .. )= 1/77. (3.2.16)
Similarly, we have the isodual isoproduct
Bl x T4 x At = Bf 44T, (3.2.17)
under which 7% is indeed the right and left unit,
54 = A% = A, (3.2.18)

for all A of the considered set.

Note that, isodual map (3.2.15) must be applied for consistency to the totality
of quantities of isomathematics as well as of their operations. As an illustration,
the application of the isodual map only to the quantities A, B of a product A x B
and not to the product itself x, leads to a host of inconsistencies.

For this and other reasons the conventional associative product is written in
this monograph with the explicit notation A x B rather than the conventional
notation AB. In fact, the latter would lead to gross misunderstandings and
inconsistencies under the various liftings of hadronic mechanics.

Also, the construction of isomathematics is indeed recommended for physicists
to be done via a noncanonical-nonunitary transform (3.2.9), while the construc-
tion of isodual isomathematics is recommended via the isodual map (3.2.15) and
not via the use of an anti-isomorphic transform.

In fact, the use of anti-isomorphic transforms causes ambiguities in the very
central issue, the achievement of equivalence of the isodual operator theory with
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charge conjugation due to ambiguities and other technical aspects. In turn,
this occurrence illustrates the significance and uniqueness of Santilli isodual map
(3.2.15).

Note also that isodual isomathematics preserves the axioms, not of conven-
tional mathematics, but of the isodual mathematics of Chapter 2, that with the
simplest possible isounit unit I% = —1.

Needless to say, mathematicians do not need the above elementary construc-
tion of isomathematics and its isodual since they can be formulated on abstract
realization-free grounds from basic axioms.

3.2.2  Isonumbers, Isofields and their Isoduals

The first necessary isotopic lifting following that of the basic unit and product,
is that of ordinary numbers. The resulting new numbers were first presented by
Santilli at the 1980 meeting in Clausthal, Germany, on Differential Geometric
Methods in Mathematical Physics and then published in a variety of papers, such
as Ref. [8] of 1985, Vols. [15,16] of 1991, memoir [9] of 1993 and other works.
A comprehensive presentation is available in Vol. I [6] of 1995 that also presents
industrial applications of the new numbers for cryptograms and other fields. As
a result of these contributions the new numbers are today known as Santilli’s
tsonumbers.

The new numbers have also been studied by various authors. An important
contribution has been made by E. Trell [11] in 1998 consisting in a proof of Fer-
mat’s celebrated theorem that is the simplest on record and, therefore, credibly
conceivable by Fermat (as compared to other proof requiring mathematics ba-
sically unknown during Fermat’s time). Unfortunately, Fermat left no record
of the proof of his celebrated theorem and, therefore, there is no evidence that
Fermat first studied numbers with arbitrary units. Nevertheless, Trell’s proofs
of Fermat’s theorems remains the most plausible known to this author for being
conceived during Fermat’s time.

Numerous additional studies on isonumbers have been conducted by other au-
thors. For a complete bibliography we refer interested readers to the monograph
on Santilli isonumber theory by C.-X. Jiang [12] of 2002. Additional studies on
isonumbers have occurred for their use as basis of other isostructures. Related
references will be quoted in the appropriate subsequent sections.

Santilli’s isonumbers have also been subjected to a generalization called pseudo-
isonumbers identified in Ref. [9] and studies by various authors, including N.
Kamiya [13] and others. However, the latter generalization violates the axioms
of a field and, as such, it cannot be used for hadronic mechanics.

The reader should be aware that in this section we merely present the minimal
possible properties of isonumbers sufficient for industrial applications.
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Let us consider: the field R(n,+, x) of real numbers n with ordinary sum +
and product x; the field C(c,+, x) of complex numbers ¢ = ny + i X ny where
i is the imaginary unit and ni,ny € R; and the field Q(q,+, X) of quaternions
q = i+ 11 X n1 + i3 X no + i3 X ng, where i, is the 2-dimensional unit matrix,
i,k = 1,2,3 are Pauli’s matrices and ni,no,n3 € R. These fields are hereon
represented with the unified notation®

F(a,+,x):a=n, ¢ q, (3.2.19)

In this section we present first the simplest possible method for the lifting of
numbers via the use of a positive-definite (thus invertible) noncanonical-nonunitary
transform identified with Santilli’s isounit

I-T1=UxIxU'=1/T>0, UxU #1. (3.2.20)

We shall then pass to a mathematical presentation.
The isotopic lifting of ordinary numbers is easily achieved via the above map
resulting in Santilli isonumbers for the characterization of matter

a—a=UxaxU =ax(UxU")=ax1, (3.2.21)
and related isoproduct
axb—Ux(axb) xU=axTxb=axb, (3.2.22)

under which I is the correct right and left isounit, Eq. (3.2.4), with the element
1sozero coinciding with the ordinary zero

0-0=Ux0xU"=0, (3.2.23)

and, consequently, the isosum coinciding with the ordinary sum,

a+b—Ux(a+b)xUl=aFb=a+b. (3.2.24)

The above liftings result in: Santilli isofield R(ﬁ, +, x) of isoreal isonumbers;
the isofield C'(¢,+, x) of isocomplex isonumbers; and the isofield Q(g,+, x) of
isoquaternionic isonumbers; hereon represented with the unified notation

F(a,4,%), a=mn,¢é4q. (3.2.25)

Needless to say, the liftings of the unit and of the product require a cor-
responding lifting of all conventional operations of numbers depending on the

6(ctonions are not considered “numbers” because they violate the associativity property of the axioms
of a field.
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multiplication. By using the above noncanonical-nonunitary map, one can easily

prove the isopowers
" =axax ... xa (n times) =a" x I. (3.2.26)

An important particular case is the property that isopowers of the isounits
reproduce the isounit identically,

I"=IxIx..xI=1. (3.2.27)
Similarly we have the isosquare isoroot
all? = q1/2 x jY2, (3.2.28)
the isoquotient
a/b=(a/b) x I = (a/b) x I; (3.2.29)
and the isonorm o .
la| = |a| x I, (3.2.30)

where |a| is the conventional norm. All these properties were first introduced by
Santilli in Refs. [6-9]. The reader can now easily construct the desired isotopic
image of any other operation on numbers.

Despite their simplicity, isonumbers are nontrivial. As an illustration, the
assumption of the isounit I=3 implies that “2 multiplied by 3” = 18, while 4
becomes a prime number.

The best way to illustrate the nontriviality of the new numbers is to indicate
the industrial applications of Santilli’s isonumbers, that are a primary
objective of this monograph as indicated earlier.

To begin, all applications of hadronic mechanics are based on isonumbers, and
they will be presented later on in this chapter. In addition to that, Santilli’s
isonumbers have already found a direct industrial application consisting of the
isotopic lifting of cryptograms used by the industry to protect secrecy, including
banks, credit cards. etc. This industrial application was first presented by Santilli
in Appendix 2.C of the second edition of Vol. I [6] of 1995, and will be reviewed
later on in this chapter.

At this moment we merely mention that all cryptograms based on the multi-
plication depend on only one value of the unit, the quantity +1 dating back to
biblical times. A mathematical theorem establishes that a solution of any cryp-
togram can be identified in a finite period of time. As a result of this occurrence,
banks and other industries are forced to change continuously their cryptograms
to properly protect their secrecy.

By comparison, Santilli’s isocryptograms are based on the isoproduct and, as
such, they admit an infinite number of possible isounits, such as, for instance, the
values A

I =172; 0.98364; 236; 1,293 576; etc. (3.2.31)
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Consequently, it remains to be seen whether Santilli isocryptograms can be broken
in a finite period of time under the availability of an infinite number of possible
isounits.

Independently from that, with the use of isocryptograms banks and other
industries do not have to change the entire cryptogram for security, but can
merely change the value of the isounit to keep ahead of possible hackers, and
even that process can be computerized for frequent automatic changes of the
isounit, with clearly added safety.

Finally, another application of Santilli isocryptograms permitted by their sim-
plicity is their use to protect the access to personal computers.

It is hoped this illustrates the industrial significance of Santilli isonumbers per
se, that is, independently from their basic character for hadronic mechanics.

We now pass to a mathematical presentation of the new numbers.

DEFINITION 5.2.1 [9]: Let F' = F(a,+, X) be a field of characteristic zero as
per Definition 2.1.1. Santilli’s isofields are rings F= F(a +, X) with: elements

a=axl, (3.2.32)

where a € F, I= l/T s a positive-definite quantity generally outside F' and X
is the ordinary product of F'; the isosum + coincides with the ordinary sum +,

atb=a+b, Vabel, (3.2.33)

consequently, the elementﬁ) € I coincides with the ordinary 0 € F; and the
isoproduct X is such that I is the right and left isounit of I,

Ixa=axl

Q>

VaeF. (3.2.34)

Santilli’s isofields verify the following propert@es
1) For each element a € F there is an element &~ L called isoinverse, for which

A

-1

axa'=1I, YaekF; (3.2.35)
2) The isosum is isocommutative
atb = bta, (3.2.36)
and isoassociative B L X A
(a+b) + ¢ = a+(b+¢), Va,b,¢ € F; (3.2.37)

3) The isoproduct is not necessarily isocommutative

axb # bxa, (3.2.38)
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but isoassociative

ax(bxe) = (axb)xeé, Va,b,é e F; (3.2.39)
4) The set F s closed under the isosum,

atb=¢eF, (3.2.40)

the isoproduct, A X
axb=e¢eF, (3.2.41)

and right and left isodistributive compositions,
ax(bté)=de F, (3.2.42a)
(a+b)xc=d e F, Va,b,é,de F; (3.2.42b)

5) The set F verifies the right and left isodistributive law

ax(b+eé) = (afb)xé=d, Va,b,é,de F. (3.2.43)

Santilli’s isofields are called of the first (second) kind when I is (is not) an
element of F.

The basic axiom-preserving character of the isotopies of numbers is illustrated
by the following;:

LEMMA 3.2.1 [9]: Isofields of first and second kind are fields (namely, they
verify all axioms of a field).

Note that the isotopic lifting does indeed change the operation of the multipli-
cation but not that of the sum because the isotopies here considered do change
the multiplicative unit I, but not the additive unit 0, Eq. (3.2.23). This is a
crucial property of hadronic mechanics best illustrated by the following property:

LEMMA 38.2. [9]: Nontrivial liftings of the additive unit O and related sum
violates the axioms of a field (for which reason, they are called “pseudoisofields”)

In fact, suppose that one wants to change the value of the element 0, e.g.,
0-0=K#0, KcF. (3.2.44)

Then, for 0 to remain the new additive unit, one must alter the sum into a new
form admitting 0 as left and right additive unit, e.g.,

atb=a+ (=0) +b, (3.2.45)
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under which

a+0=0+a=a, YVaeF. (3.2.46)
However, there is no single lifting of the product such that
Oxa#0, YaeF, (3.2.47)

under which there is the loss of the distributive axiom of a field, i.e.,
(atb) xc#axc + bxe. (3.2.48)

In turn, the loss of the distributive law causes very serious physical inconsis-
tencies, such as preventing experimental applications of the theory. Therefore,
being axiom-preserving, hadronic mechanics is solely based on the isotopic lifting
of the multiplicative unit and related product, but not on any lifting of the additive
unit and related sum.

Santilli’s isodual isonumbers for the characterization of antimatter can be
uniquely and unambiguously characterized via the isodual map (3.2.15). They
are characterized by the additive and multiplicative isodual isounit

0— 0% =0, (3.2.49a)
I"=—-I<o, (3.2.49b)

where one should recall that I is real valued and positive-definite, thus Hermitian.
Isodual isonumbers are then explicitly given by

ad = —al = I xal. (3.2.50)

The isodual isonumbers were first introduced by Santilli in Ref. [8] of 1985,
treated mathematically in Ref. [9] of 1993 and studied extensively in Vol. T of
this series [6].

The use of the same isodual map then identifies the isodual isosum

a bt = o 4 b, (3.2.51)
the isodual isoproduct
(axb)d = b x? T x? A = —pdad = bt xal, (3.2.52)
and the isodual isonorm o .
la|? = —a| = —|a| x 1. (3.2.53)

that is always negative-definite.
The above liftings result in: Santilli’s isodual isofield Rd(ﬁd, —T—d, §<d) of isodual
isoreal isonumbers; the isodual isofield C’d(éd, —T—d, %d) of isodual isocomplex ison-

umbers; and the isodual isofield Qd(qd, —T—d, >2d) of isodual isoquaternionic ison-
umbers; hereon represented with the unified notation
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Flad, 14 5%, a? = ad, ¢, g2, (3.2.54)
DEFINITION 3.2.3 [9]: Let F(a,+, ) be an isofield as per Definition 3.2.1.
Then Santilli isodual isofields Fd(dd —T— >2d) are the image of F' under the isodual

map (3.2.15).

LEMMA 3.2.3 [9]: Isodual isofields are fields (that is, they verify all axioms
of a field).

LEMMA 3.2.4 [9]: Isodual isofields are anti-isomorphic to isofields.

As we shall see in this chapter, the latter property, jointly with the anti-
isomorphic character of the isodual map, will result to be crucial for a consistent
treatment of antimatter composed of extended particles with potential and non-
potential internal forces.

The above properties establish the fact (first identified in Ref. [8]) that, by
no means, the axioms of a field require that the multiplicative unit to be the
trivial unit +1, because the basic unit can be a negative-definite quantity —1 as
it occurs for the isodual mathematics of Chapter 2, an arbitrary positive-definite
quantity I > 0 as occurring in isomathematics, or an arbitrary negative-definite
quantity I% < 0 as it occurs for the isodual isomathematics.

The reader should be aware that an in depth knowledge of Santilli’s isonumbers
and their isoduals requires an in depth study of memoir [9] or of Chapter 2 of Vol. I
of this series, Ref. [6], and that an in depth knowledge of Santilli’s isonumbers
theory requires a study of Jiang’s monograph [12].

Finally, the reader should meditate a moment on the viewpoint expressed sev-
eral times in this writing to the effect that there cannot be really new physical
theories without new mathematics, and there cannot be really new mathematics
without new numbers. The basic novelty of hadronic mechanics can, therefore,
be reduced to the novelty of Santilli’s isonumbers.

By remembering that all “numbers” have been fully identified centuries ago, the
novelty of hadronic mechanics can be reduced to the discovery that the axioms
of conventional fields admit new realizations with nonsingular, but otherwise
arbitrary multiplicative units.

3.2.3 Isospaces and Their Isoduals

Following the lifting of units, products and fields, the next necessary lifting
is that of N-dimensional metric or pseudo-metric spaces with local coordinates
r and Hermitian, thus diagonalized metric m over a field F', here written in the
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unified notation

S(rym, F): r=(r*), m = [my(r,...)] = Diag.(m11,ma2, ..., mnn), (3.2.55)
i 5, k=1,2,...,N,
basic invariant
= (r'xmy xr)xI=('xmxr)yxI € F(a,+,x), (3.2.56)
(where t stands for transposed) and fundamental N-dimensional unit”
I = Diag.(1,1,...,1). (3.2.57)

As now familiar, isotopies are based on the lifting of the above N-dimension-
al unit via a positive-definite noncanonical-nonunitary transform in the same
dimension with an otherwise unrestricted functional dependence

I = Diag.(1,1,...,1) = I(t,r,p,,0T,..) =U xIx U =1/T >0, (3.2.58)

The above liftings requires that of spaces S(r,m, R) into isotopic spaces, or
isospaces for short, for the treatment of matter, hereon denoted S (7, M, F), where
7 denotes the isocoordinates, and M denotes the isometric defined on the isofields
F = F(a,+, %) of Section 3.2.2.

Isospaces were first proposal by Santilli in Ref. [14] of 1983 for the axiom-
preserving isotopies of the Minkowskian spacetime and special relativity that are
at the foundations of hadronic mechanics. Isospaces were then used by Santilli
for the liftings of the various spacetime and internal symmetries (such as SU(2),
S0O(3), SO(3.1), SL(2.C), G(3.1), P(3.1), SU(3), etc.) as studied later on in this
chapter.

A comprehensive presentation of isospaces first appeared in monographs [15,16]
of 1991 and in the first edition of Volumes I and II of this series, Ref. [6,7] of
1993 (see the second edition of 1995 for various upgradings). A mathematical
study of isospaces by Santilli was presented in memoir [10] of 1996. In view of
all these contributions, the new spaces are today known as Santilli’s isospaces.

Following the appearances of these contributions, isospaces have been also
studied by a number of authors for both mathematical and physical applications
to be studied in subsequent sections, including the definition of isocontinuity,

"The basic character of the unit should be recalled here. For the case of the three-dimensional Euclidean
space, I = Diag.(1,1,1) is not only the basic geometric unit, but also the unit of the entire Lie theory
of the rotational and Euclidean symmetries. Similarly, for the case of the Minkowski spacetime, the
unit I = Diag.(1,1,1,1) is at the foundations of the entire Lie theory for the Lorentz and Poincaré
symmetries. We begin to see in this way the far reaching implications of isotopic generalization of the
basic unit.
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isotopology, isomanifolds, etc. The related literature will be presented in the
appropriate subsequent sections.

In this section we identify the basic notions of Santilli isospaces. Specific types
of isospaces needed for applications will be studied in subsequent sections.

The coordinates r of ordinary spaces S(r,m, F') are defined on the base field
F = F(a,+, x), thus being real numbers for F' = R, complex numbers for ' = C
and quaternionic numbers for F' = Q.

Consequently, the isocoordinates # on isospaces S (7,1, F) must be defined on
the isofields F' = F (@, +, ), namely, must be isonumbers and, more particu-
larly, be isoreal isonumbers for F= R, isocomplex isonumbers for F= é, and
isoquaternionic isonumbers for £ = Q.

Since isocoordinates are isonumbers, they can be easily constructed via the
same lifting used for isonumbers, resulting in the simple definition

r—i=UxrxUl=rx(UxU)=rxI. (3.2.59)

Similarly, the metric m on S(r,m, F') is an ordinary matrix in N-dimension
whose elements m;; are functions defined on the base field F', thus being real,
complex or quaternionic functions depending on the corresponding character of F'.

As we shall see shortly, a necessary condition for S (7, M, F ) to preserve the
geometric axioms of S(r,m, F') (that is, for S to be an isotope of S), is that,
when the unit is lifted in the amount I — I = 1/7', the metric is lifted by the
inverse amount m — 1 = T xm, thus yielding the transform (where the diagonal
character of m is taken into account)

m—-U"txmxUt=UxUNxm=
=T xm = (1) = (TF x my;), (3.2.60)

However, in this case the elements 772;; are not properly defined on S because
they are not isonumbers on F. For this purpose, the correct definition of the
isometric is given by

M =1 x I = (ry; x I) = (1hy;) x 1. (3.2.61)
As we shall see in the next section, the above definition is independently confirmed
by the isotopies of matrices. We, therefore, have the following

DEFINITION 3.2.3 [14]: Let S(r,m, F) be an N -dimensional metric or pseudo-

metric space with contravariant coordinates r = (r*), metric m = (m;;) and in-
variant r? = (ry, x r¥) x I = (r' x m;; x r9) x I over a field F' with trivial unit I.
Then, Santilli’s isospaces are the N-dimensional isovector spaces

S(F ML E): #= () =(*) x T eF, (3.2.62a)
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M=(Txm)xI=(TFxmy)xI € F, MY =[(My) Y7 eF, (3.2.62b)

= MPF S = mM xor x I, F = Mg <7t = g x rt x I, (3.2.62¢)
P2 = PRy = P M it = (' x g x ) x T € F, (3.2.62d)

/I:7j7k7p7q:172)"'7N?

and its projection on the original space S(r,m,F'), is characterized by

S(rym, F): r= (") =@F)xT e F; (3.2.63a)
m=Txm=(TF xmy;) €F, m=](ys) 1Y € F, (3.2.63b)
P =mMxr, € R, rp=1y xrt € F, (3.2.63¢)

2 =1l x g x 7)) x T =7 x (TF x my;) x ) x I € F. (3.2.634d)

As one can see, expression (3.2.62) is the proper formulation of the isoinvariant
on isospaces over the base isofield, and we shall write S (7, M, F’), while expression
(3.2.63) is the “projection” of the preceding space in the original space S, and
we shall write S (r,m, F'), because the latter space is defined with conventional
coordinates, units and products over the conventional field F' by construction.

It should be stressed that isospaces are mathematical spaces and, therefore, all
physical calculations and applications will be done in the projection of isospaces
over conventional spaces. In fact, experimental measurements and events can
only occur in our space time. Therefore, all physical applications of isospaces can
only occur in their projection in our spacetime.

A simple visual inspection of invariants (3.2.56) and (3.2.62) establish the
following

THEOREM 3.2.1 [10]: All line elements of metrics or pseudo-metric spaces
with metric m and unit I, and all their isotopes possess the following invariance
property

I>I=n’xI, m—m=n"2xm, (3.2.64)

where n is a non-null parameter.

This property too will soon acquire fundamental character, since it permits the
identification, for the first time, of the property that the Galilean and Poincaré
symmetries are “eleven” dimensional, and not ten-dimensional as believed through-
out the 20-th century.

In particular, the 11-th invariance is “hidden” in conventional line elements
and will permit the first and perhaps only known, axiomatically consistent grand
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unification of electroweak and gravitational interactions, as studied later on in
this chapter.
The nontriviality of isospaces is then expressed by the following

THEOREM 5.2.2 [14]: Even though preserving all topological properties of m
(fmm the positive-definiteness of I) the projection ™ of the isometric M on
S over F into the original space S over F acquires an unrestricted functional
dependence on any needed local variables or quantities,

M — = nm(t,r,p, 00 ). (3.2.65)

As we shall see, the above property has truly fundamental implications, since it
will permit the first and only known geometric unification of the Minkowskian and
Riemannian geometries with the consequential unification of special and general
relativities, and other applications of manifestly fundamental nature.

By recalling that the basic invariant r2 represents the square of the “distance”
in S, from Eqgs. (3.2.56) and (3.2.62) we derive the following additional property

THEOREM 3.2.83 [6,7,10]: The basic invariant of a metric or pseudometric
space has the structure:

Invariant = [Length]? x [Unit)? (3.2.66)

The above property will soon have deep geometric implications, such as per-
mitting different shapes, sizes and dimension for the same object under inspection
by different observers, all in a way compatible with our sensory perception.

Note that invariant structure (3.2.66) is indeed new because identified for the
first time by the isotopies, since the multiplication of the invariant by the unit is
trivial for conventional studies and, as such, it was ignored.

It is now important to indicate the differences between Santilli isospaces
S(r,M,F) or S(r,m,F) and deformed spaces that, as well known, are given
by the sole deformations of the metric, for which we use the notation S(r, m, F').

It is easy to see that deformed spaces S(r,m, F) have a conventional noncanon-
ical or nonunitary structure, thus activating the theorems of catastrophic incon-
sistencies of Section 3.4. By comparison, Santilli isospaces have been constructed
precisely to resolve these catastrophic inconsistencies via the reconstruction of
canonicity or unitarity on isospaces over isofields.

Moreover, deformed metric spaces S(r,m, F') necessarily break the symmetries
of the original spaces S(r,m, F'), while, as we shall soon see, isospaces S’(f, M, F)
reconstruct the exact symmetries of S(r, g, F).

The implications of the latter property alone are far reaching because all sym-
metries believed to be broken in the 20-th century can be proved to remain exact
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on suitable isospaces over isofields. In different terms, the “breakings of space-
time and internal symmetries” studies through the 20-th century are a direct
manifestation of the adaptation of new physical events to a rather limited, pre-
existent mathematics because, if the underlying mathematics is suitably lifted,
all believed breakings cease to exist, as already proved in Vol. II of this series [7]
and updated in this volume.

Santilli’s isodual isospaces for the treatment of antimatier are the anti-iso-
morphic image of isospaces under the isodual map (3.2.15) and can be written

Sa(pd, rd, fdy . pd = _pt Npd = (3.2.67a)
p2d _ pdgdyrdgdatd (3.2.67b)

Isodual isospaces were introduced in Vol. I of this series [6] and then treated in
various other works (see, e.g., [10,17,18]). As we shall see, they play a crucial role
for the treatment of antimatter in interior conditions. The tensorial product of
isospaces and their isoduals appears to be significant for basic advances in biology,
e.g., to achieve a quantitative mathematical representation of bifurcations and
other biological behavior.

As we shall see, all industrial applications of hadronic mechanics are based
on isospaces to such an extent that the new isogeometries have acquired evident
relevance for new patents assuredly without prior art, evidently in view of their
novelty.

3.2.4  Isofunctional Analysis and its Isodual

The lifting of fields evidently requires a corresponding lifting of functional
analysis into a form known as Kadeisvili isofunctional analysis since it was first
studied by J. V. Kadeisvili [19,20] in 1992. Additional studies were done by
A. K. Aringazin et al. [21] in 1995 and other authors.

A detailed study of isofunctional analysis was also provided in monographs
[6,7] of 1995. A knowledge of these studies is necessary for any application of
hadronic mechanics because all conventional functions and transforms have to
be properly lifted for consistent applications, while the use of conventional (or
improperly lifted) functions and transforms leads to catastrophic inconsistencies.

In essence, the consistent formulation of isofunctional analysis requires not
only the preservation of the original axioms, but also the preservation of the
original numerical values when formulated on isospaces over isofields, under which
conditions the broadening of conventional formulations emerge in the projection
of the isotopic treatment in the original space.

The latter mathematical requirement has deep physical implications, such as
the preservation of the speed of light in vacuum as the universal invariant on
isospaces over isofield, with consequential preservation under isotopies of all ax-
ioms of special relativity, while locally varying speeds of light within physical



HADRONIC MATHEMATICS, MECHANICS AND CHEMISTRY 289

media emerge in the projection of the isospace in our spacetime, as we shall see
in subsequent sections.

The scope of this section is essentially that of providing the guidelines for
the updating of Refs. [19,20,16,6,7] along the above requirements to achieve
compatibility with the main lines of this presentation.

DEFINITION 3.2.4 [19,20,21, 6,7] Let f(x) be an ordinary (sufficiently smoo-
th) function on a vector space S with local variable x (such as a coordinate) over
the reals R. The isotopic image of f(x), called isofunctions, can be constructed
via the use of a noncanonical-nonunitary transform

A

Ux fle)x Ul =fz)yxI € F, (3.2.68)

A~

reformulated on isospace S(Z, F) over the isofield F'

fla)yxT=f(Txz)xI= f(&)ekF, (3.2.69)
with projection in the original space S(x, F')

A

f(T xxz)€F. (3.2.70)

As one can see, expression (3.2.68) coincides with the definition of isofunction in
the quoted references. A feature identified since that time is the re-interpretation
in such a way that the function f(z) preserves its numerical value when for-
mulated as f () on the isospace S over the isofield E' because the variable 2 is
multiplied by T while the unit to which such a variable is referred to is multi-
plied by the inverse amount I=1 /T All numerical differences emerge in the
projection of f(fn) in the original space.

This is essentially the definition of isofunctions that will allow us to preserve the
basic axioms of special relativity on isospaces over isofields and actually expand
their applicability from motion in empty space to motion within physical media.

For the case of the simple function f(x) = = we have the lifting

i=UxaexUl=ex(UxU)=zxI=TxixI e F, (3.2.71)

with the projection in the original space S being simply given in this case by
T x .
More instructive is the lifting of the exponentiation into the isoexponentiation
given by
e > Uxe" xUl =

=Ux(T+z/I+zxz/2+..)xUl =
=T+3/l1+axa/2+..)=
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A

=% = (Y x [ = x (7% € F, (3.2.72)

with projection in the original space S given by

T (" xT)xI=1x (™) eF, (3.2.73)

>

where one should note that the function in isospace is computed over F while its
projection in the original space is computed in the original field F'.

The above lifting is nontrivial because of the appearance of the nonlinear
integro-differential quantity T'(t,z,1,0v,...) in the exponent. As we shall see
shortly, this feature permits the first known extension of the linear and local Lie
theory to nonlinear and nonlocal formulations.

Let M(z) = (M;j(x)) be an N-dimensional matrix with elements M;;(x) on a
conventional space S(x, F') with local coordinates x over a conventional field F’
with unit 7. Then, the isotopic image of M (x) or it isomatrix, is defined by

M(i) = (Mij()) = M(T x #) x I, M; € F, (3.2.74)
Similarly, the isodeterminant of M is defined by

DetM = [Det(T x M)] x I (3.2.75)

where Det represents the conventional determinant, with the preservation of the
conventional axioms, e.g.,

Det(M; % My) = Det(M;) x Det(Msy); (3.2.76a)
Det(M 1) = (Detdr) (3.2.76b)

Note that, by construction, isomatrices and isodeterminant preserve the orig-
inal values on isospaces over isofields, although show deviations when the same
quantities are observed from the original space, that is, referred to the original
unit.

Similarly, the isotrace of M is defined by®

TrM = [Tr(T x M)] x I, (3.2.77)

where T'r is the conventional trace, and it also verifies the conventional axioms,
such as o R o o
T?”(Ml >A<M2) = TTMl >A<T’I"M2, (3278@)

8The isodeterminant introduced in Ref. [6], Eq. (6.3.19) is the correct form as in Eq. (3.2.77) above.
However, the isotrace introduced in Eq. (6.3.20a) of Ref. [6] preserves the axioms of a trace, but not its

value, as a consequence of which it is not fully invariant, the correct definition of isotrace being given
by Eq. (3.2.77) above.
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~

Tr(M1) = (Tran) L. (3.2.78b)
The isologarithm is hereon defined by?
logsa = log, a x I, (3.2.79)
and admit the unique solution

logsi = log, (T x a) x I, (3.2.80)

under which the conventional axioms are preserved,

gloged — ¢, (3.2.81a)

logzé = I, log,I =0, (3.2.81b)
log:(axb) = logsd + log.b, (3.2.81c)
10g,(a/b) = 16g,a — 1og,b, (3.2.81d)
16g,(a~1) = —15g,a, (3.2.81¢)
bxlogsa = 1og,(ab). (3.2.81f)

The lifting of trigonometric functions is intriguing and instructive (see Chap-
ter 6 of Ref. [6] and Chapter 5 of Ref. [7] whose results in this case require no
upgrading). Let E(r,d, R) be a conventional two-dimensional Euclidean space
with coordinates r = (z,y) on the reals R and polar representation x = r x cos 6
and y = r x sinf, 22 + y?> = r2 x (cos?f + sin®?f) = r2. Consider now the
1s0-Fuclidean space in two dimension

E(#,0,R): 6 = Diag.(ny2,n52%), I = Diag.(n?,n3), (3.2.82a)

2= @2m2+ 22 x I € R (3.2.82b)

Then, the isopolar coordinates and related isotrigonometric functions on E are
defined by

&= Fxcoso, (3.2.830)
cosp = n1 X cos(¢/n1 X ny), (3.2.83b)
j = Fxsing, (3.2.83¢)
sing = ng X sin(¢/ny x ng), (3.2.83d)

and they preserve the axioms of conventional trigonometric functions, such as,

P2 = 22/ +y?md)xT =r*xIe R (3.2.84)
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Figure 3.4. A schematic view of the conventional sinus function in Euclidean and iso-Euclidean
spaces (top view) and of the projection of a possible example of the isosinus function in the
conventional space.

The isotopy of spherical coordinates are treated in detail in Section 5.5 of
Ref. [7]. For self-sufficiency of this volume we recall that their definition requires
a three-dimensional iso-Euclidean space

E(f,g, R) L h = Diag.(nl_Q,n2_2,n§2), I= Diag-(n?,ng,ng% (3.2.85a)
2= (2?0} + 12 + 23 x I € R (3.2.850)

The isotopies of the conventional spherical coordinates in E(r, d, R) then yields
the following isospherical coordinates here presented in the projected form on

E(r, 3, R)

x =1 X ny xsin(f/ng) x sin(¢/n1 X ng), (3.2.86a)
y =1 X ng X sin(f/n3) x cos(¢p/ny x ny), (3.2.86b)
z =1 X ng x cos(6/n3). (3.2.86¢)

Via the use of the above general rules, the reader can now construct all needed
isofunctions.

The reader should meditate a moment on the isotrigonometric functions. In
fact, they provide a generalization of the Pythagorean theorem to curvilinear tri-
angles. This is due to the fact that the projection of E (7,9, ﬁi) into the original
space E(r,d, R) characterizes indeed curvilinear triangles, trivially, because the
n-characteristic quantities are functions.

9Note, again, that a different definition of isologarithm was assumed in Eq. (6.7.5) of Ref. [6].
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Figure 3.5. An intriguing application of isotrigonometric functions, the generalization of the
conventional Pythagorean Theorem (left view) to triangles with curvilinear sides (right view).
This is due to the fact that conventional triangles and the Pythagorean theorem are preserved
identically on isospaces over isofields, but the projection on conventional Euclidean spaces of
straight lines in isospaces over isofields are curves. Therefore in isospace we have expressions
such as A = ﬁfdsosinus(ﬁ/) with projections in the conventional space for curvilinear sides
A = D X isosinus(y), where A and D are now the lengths of the curvilinear sides.

However, the reader is suggested to verify that the isotriangle, that is, the
image on E of an ordinary triangle on E coincides with the latter because the
changes caused by the lifting are compensated by the inverse changes of the unit.

By noting that their value must be isonumbers, the isointegral can be defined
by (here expressed for the simple case of isounits independent form the integration
variable)

/df:fx/fxd(rxf):fx/dr, (3.2.87)

whose extension to the case of isounits with an explicit functional dependence on
the integration variables has a complexity that goes beyond the elementary level
of this presentation.

Isointegrals and isoexponentiations then permit the introduction of the follow-
ing Fourier-Kadeisvili isotransforms, first studied in Ref. [19,20] (also represented
here to avoid excessive mathematical complexities for the simpler case of isounits

without an explicit dependence on the integration variables)!?
~ 400 »
f(@) = ()2m)% / ) %652 g (3.2.884)
— o0
A _l’_oo .
g(&) = (1/2m)x f(k)yxe™%dz, (3.2.88b)
—00

with similar liftings for Laplace transforms, etc. Other transforms can be defined
accordingly [6].

10The reader should be aware that in most applications of hadronic mechanics the isounits can be
effectively approximated into constants, thus avoiding the complex mathematics needed for isointegrals
and isotransforms with an explicit functional dependence on the integration variables.
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We confirm in this way a major feature of isomathematics, the fact that Hamil-
tonian quantities preserve not only their axioms, but also their numerical value
under isotopic lifting when defined on isospaces over isofields, and all deviations
occur in the projection of the lifting into the original space.

The explicit construction of the isodual isofunctional analysis is also instruc-
tive and intriguing because they reveal properties that have essentially remained
unknown until recently, such as the fact that the isofourier transforms are iso-
selfdual (see also Refs. [6,7]).

3.2.5 Isodifferential Calculus and its Isodual

As indicated in Chapter 1, the delay to complete the construction of hadronic
mechanics since its proposal in 1978 [5] was due to difficulties in identifying
the origin of the non-invariance of its initial formulation, that is, the lack of
prediction of the same numerical values for the same quantities under the same
conditions, but at different times, a fundamental invariance property fully verified
by quantum mechanics.

These difficulties were related to the lack of a consistent isotopic lifting of the
familiar quantum mechanical momentum. More particular, all aspects of quan-
tum mechanics could be consistently and easily lifted via a nonunitary transforms,
except the eigenvalue equation for the linear momentum, as shown by the follow-
ing lifting

p X (t,r) =—i X h x iw(t,r) =K x9(t,r) —

S Ux[pxot,r)=UxpxU)x (UxUNYx[Ux(t,r)] =
X

= —ix hx U[aa Wt )] = K x U x (t,r) = Kxi(t, 7), (3.2.89)

,
where K = K x [ is an isonumber.

As one can see, the initial and final parts of the lifting are elementary. The
problem rested in the impossibility of achieving a consisting lifting of the inter-
mediate step, that based on the partial derivative.

In the absence of a consistent isotopy of the linear momentum, the early stud-
ies of hadronic mechanics lacked consistent formulations of physical quantities
depending on the isomomentum, such as the isotopies of angular momentum,
kinetic energy, etc.

The origin of the above problem resulted in being where expected the least, in
the ordinary differential calculus, and this explains the delay in the resolution of
the impasse.

The above problem was finally resolved by Santilli in the second edition of
Refs. [6,7] of 1995 (see Section 5.4.B of Vol. I and Section 8.4.A of Vol. II) with
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a mathematical presentation in memoir [10] of 1996. The resulting generalization
of the ordinary differential calculus, today known as Santilli’s isodifferential cal-
culus, plays a fundamental role for these studies beginning with the first known
structural generalization of Newton’s equations in Newtonian mechanics, and
then passing to the correct invariant formulation of all dynamical equations of
hadronic mechanics.

For centuries, since its discovery by Newton and Leibnitz in the mid 1600,
the ordinary differential calculus had been assumed to be independent from the
basic unit and field, and the same assumption was kept in the earlier studies on
hadronic mechanics, resulting in the lack of full invariance, inability to formulate
physical models and other insufficiencies.

After exhausting all other possibilities, an inspection of the differential calculus
soon revealed that, contrary to an erroneous belief kept in mathematics for about
four centuries, the ordinary differential calculus is indeed dependent on the basic
unit and related field.

In this section we review Santilli’s isodifferential calculus in its version needed
for applications and verifications of hadronic mechanics. This update is recom-
mendable because of various presentations in which the role of I and T were
interchanged, resulting in possible ambiguities that could cause loss of invariance
even under the lifting of the differential calculus.

A main feature is that, unlike all other aspects of hadronic mechanics, the
isotopies of the differential calculus cannot be reached via the use of a noncanon-
ical or monunitary transform, and have to be built via different, yet compatible
methods.

Let S(r,m,R) an N-dimensional metric or pseudo-metric space with con-
travariant coordinates R = (r¥), metric m = (my;), i,5,k = 1,2,..., N, and
conventional unit I = Diag.(1,1,...,1) on the reals R. Let f(r) be an ordi-
nary (sufficiently smooth) function on S, let dr¥ be the differential in the local
coordinates, and let O f(r)/0r* be its partial derivative.

As it is well known, the connection between covariant and contravariant coor-
dinates is characterized by the familiar rules

r* = mh x i, Ti= Mg X ¥, (3.2.90a)

m = [(mgw) Y. (3.2.90b)

Let S(#, M, R) be an isotope of S with N-dimensional isounit I = (f]’), con-
travariant isocoordinates # = (%) x I and isometric M = (MU) — (T? x M) X I
on the isoreals R.

The connection between covariant and contravariant isocoordinates is then
given by

~

= MR r;, = Mg <, (3.2.91a)
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M9 = [(Mg,) ™44, (3.2.91b)

Therefore, on grounds of compatibility with the metric and subject to verifications
later on geometric grounds, we have the following:

LEMMA 3.2.5 [10]: Whenever the isounit of contravariant coordinates #* on
an isospace S(7, M, R) is given by
I=(Iitr,...)=1T=(T)", (3.2.92)

the isounit for the related covariant coordinates Ty, is given by its inverse

T = (Tj(t,r,...)) =1/1=(I})"", (3.2.93)

and viceversa.
The ordinary differential of the contravariant isocoordinates is given by di*
with covariant counterpart dry and they clearly do not constitute an isotopy.

The condition for the preservation of the original axioms and value for constant
isounits then leads to the following

DEFINITION 3.2.5 [6,7,10]: The isodifferentials of contravariant and covari-
ant coordinates are given respectively byt

di* = d(r¥ x I) = TF x d(r' x ), (3.2.94a)
diy = d(ry, x T) = I x d(r; x T). (3.2.94b)

LEMMA 3.2.6 [loc. cit.]: For one-dimensional isounits independent from the
local variables, isodifferentials coincide with conventional differentials,

di* = dr®,  diy = dry. (3.2.95)

Note that the above property constitutes a new invariance of the differential
calculus. Its trivial character explains the reason isodifferential calculus escaped
detection for centuries. Needless to say, the above triviality is lost for isounit

117t should be noted that the role of I and 7" in this definition and that of Ref. [10] are inverted. Also,
the reader should keep in mind that, since they are assumed to be Hermitian, isounits can always be
diagonalized. In fact, diagonal isounits are sufficient for the verifications and applications of hadronic
mechanics, while leaving to the interested reader the formulation of hadronic mechanics according to the
broader isodifferential calculus of Refs. [6,7,10].
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with nontrivial functional dependence from the local variables as it is generally
the case for hadronic mechanics.

The ordinary derivative of an isofunction of contravariant coordinates is evi-
dently given by

£k £k T2k _ F(nk
01 _ o G+ dit) = FGH) 5290
ork o drk
with covariant version

OFy dip—0 dry,

It is then simple to reach the following

DEFINITION 3.2.4 [loc. cit.]: The isoderivative of isofunctions on contravari-
ant and covariant isocoordinates are given respectively by

of(*) _a  0f (M)
o = kX 5 (3.2.98q)
O (k) _ i OF (7,;) (3.2.98b)
Of or

where the isoquotient is tacitly assumed.'?

A few examples are now in order to illustrate the axiom-preserving character
of the isodifferential calculus. Assume that the isounit is not dependent on r.
Then, for f(#*) = #* we have

dr' &i i 7
Similarly we have R
A" _5i ()1 (3.2.100)
i ) . 2.

It is instructive for the reader interested in learning Santilli isodifferential cal-
culus to prove that isoderivatives in different variables “isocommute” on isospace
over isofields,

o 9 o 0
ortord O ort

12Note that the isofunction in the numerator contains an additional isounit, f =fx f, that, however,
cancels out with the isounit of the isoquotient, 7 =/x I, resulting in expressions (3.2.98). Note also the
lack of presence of a factorized isounit in the definition of the isodifferentials and isoderivatives, and this
explains why the isodifferential calculus cannot be derived via noncanonical or nonunitary transforms.
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but their projections on ordinary spaces over ordinary fields do not necessarily
“commute”.

We are now sufficiently equipped to point out the completion of the construc-
tion of hadronic mechanics. First, let us verify the axiom-preserving character of
the isoderivative of the isoexponent in a contravariant coordinate for the simple
case in which the isounit does not depend on the local variables. In fact, we have
the expression

0 . .

géfzfx ﬁ[fxefx’*] = Ix T x [Ix el =¢. (3.2.102)

Consider now the isoplanewave as a simply isotopy of the conventional planewave
solution (again for the case in which the isounit does not depend explicitly on
the local coordinates),

SIXPXK _ F 6i><T><K><f’ (3.2.103)
for which we have the isoderivatives
;é%%ik — i x ;Ai % 6z‘><T><K><F] _
= i x K x [ x eXTxXExP _ 55 frgoixixK (3.2.104)

We reach in this way the following fundamental definition of isomomentum,
first achieved by Santilli in Refs. [6,7] of 1995, that completed the construction
of hadronic mechanics (its invariance will be proved later on in Section 3.5).

DEFINITION 8.2.7 [6,7,10]: The isolinear momentum on an iso-Hilbert space

over the wsofield of isocomplex numbers C (see Section 3.5 for details) is charac-
terized by

Comparing the above formulation with Eq. (3.2.89), and in view of invariance
(3.2.95),we reach the following

THEOREM 3.2.4 [6,7,10]: Planck’s constant h is the fundamental unit of
the differential calculus underlying quantum mechanics, i.e., quantum mechanical
etgenvalue equations can be identically reformulated in terms of the isodifferential
calculus with basic isounit h,

A~

p X Y(t,r) =—i X A X %w(t,r) =—i X ; W(t,r). (3.2.106)

r
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In conclusion, Santilli’s isodifferential calculus establishes that the isounit not
only is the algebraic unit of hadronic mechanics, but also replaces Planck’s con-
stant with an integro-differential operator I , as needed to represent contact, non-
linear, nonlocal and nonpotential effects.

More specifically, Santilli’s isodifferential calculus establishes that, while in
exterior dynamical systems such as atomic structures, we have the conventional
quantization of energy, in interior dynamical systems such as in the structure of
hadrons, nuclei and stars, we have a superposition of quantized energy level at
atomic distances plus continuous energy exchanges at hadronic distances.

Needless to say, all models of hadronic mechanics will be restricted by the
condition

lim I = h, (3.2.107)

T—00

under which hadronic mechanics recovers quantum mechanics uniquely and iden-
tically.

DEFINITION 8.2.8 [6,7,17]: The isodual isodifferentials are defined by
dpd = (=db) (=) = dp, (3.2.108)
while isodual isoderivatives are given by

gl fa(i) /2% = ~df (7)) dr. (3.2.109)

THEOREM 3.2.5 [6,7,17]: Isodifferentials are isoselfduals.

The latter new invariance constitutes an additional, reason why the isodual
theory of antimatter escaped attention during the 20-th century.

3.2.6 Kadeisvili’s Isocontinuity and its Isodual

The notion of continuity on an isospace was first studied by Kadeisvili [19] in
1992 and it is today known as Kadeisvili’s isocontinuity. A review up to 1995 was
presented in monographs [6,7]. Rigorous mathematical study of isocontinuity has
been done by Tsagas and Sourlas [22-23], R. M. Falcén Ganfornina and J. Ntinez
Valdés [24-26] and others. For mathematical studies we refer the interested reader
to the latter papers. For the limited scope of this volume we shall present the
notion of isocontinuity in its most elementary possible form.

Let f(7) = f(T x ) x I be an isofunction on an isospace S over the isofield R.
The isomodulus of said isofunction is defined by [19]

A N

[f@)] = /(T = #)| x . (3.2.110)
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DEFINITION 8.2.9 [19,20]: An infinite sequence of isofunctions fi(7), fao(7), ...

is said to be “strongly isoconvergent” to the isofunction f(f) when
kli_)n;onk(f) — f(#®)] = 0. (3.2.111)
while the “iso-Cauchy condition” can be defined by
[fn(#) = fu(P)] < d=06x1, (3.2.112)

where § is a sufficiently small real number, and m and n are integers greater than
a suitably chosen neighborhood of §.

The isotopies of other notions of continuity, limits, series, etc. can be easily
constructed (see Refs. [6,7] for physical treatments and Refs. [22-26] for mathe-
matical treatments).

Note that functions that are conventionally continuous are also isocontinuous.
Similarly, a series that is strongly convergent is also strongly isoconvergent. How-
ever, a series that is strongly isoconvergent is not necessarily strongly convergent.
We reach in this way the following important

THEOREM 8.2.6 [6,7]: Under the necessary continuity and regularity con-
ditions, a series that is conventionally divergent can always be turned into a
convergent isoform under a suitable selection of the isounit.

This mathematically trivial property has far reaching implications, e.g., the
achievement, for the first time in physics, of convergent perturbative series for
strong interactions, which perturbative treatments are conventionally divergent
(see Section 3.4).

Similarly, the reader may be interested in knowing that, given a function which
is not square-integrable in a given interval, there always exists an isotopy which
turns the function into a square-integrable form [6,7]. The novelty is due to the
fact that the underlying mechanism is not that of a weight function, but that of
altering the underlying field.

The isodual isocontinuity is a simple isodual image of the preceding notions of
continuity and will be hereon assumed.

3.2.7 TSSFN Isotopology and its Isodual

Topology is the ultimate foundation of quantitative sciences because it identi-
fies on rigorous mathematical grounds the limitations of the ensuing description.
Throughout the 20-th century, all quantitative sciences, including particle
physics, nuclear physics, astrophysics, superconductivity, chemistry, biology, etc.,
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have been restricted to the use of mathematics based on the conventional local-
differential topology, with the consequence that the sole admitted representations
are those dealing with a finite number of isolated point-like particles.

Since points are dimensionless, they cannot have contact interactions. There-
fore, an additional consequence is that the sole possible interactions are those of
action-at-a-distance type representable with a potential.

In conclusion, the very assumption of the conventional local-differential topol-
ogy, such as the conventional topology for the Euclidean space, or the Zeeman
topology for the Minkowski space, uniquely and unambiguously restrict the ad-
mitted systems to be local, differential and Hamiltonian.

This provided an approximation of systems that proved to be excellent when-
ever the mutual distances of particles are much greater than their size as it is the
case for planetary and atomic systems.

However, the above conditions are the exception and not the rule in nature,
because all particles have a well defined extended wavepacket and/or charge dis-
tribution of the order of 10~ c¢m. It is well known in pure and applied mathe-
matics that the representation of the actual shape of particles is impossible with
a local-differential topology.

Moreover, once particles are admitted as being extended, there is the emergence
of the additional contact, zero-range nonpotential interactions that are nonlocal
in the sense of occurring in a finite surface or volume that cannot be consistently
reduced to a finite number of isolated points.

Consequently, it is equally know by experts that conventional local-differen-
tial topologies cannot represent extended particles at short distances and their
nonlocal-nonpotential interactions, as expected in the structure of planets, strongly
interacting particles, nuclei, molecules, stars and other interior dynamical sys-
tems.

The need to build a new topology, specifically conceived and constructed for
hadronic mechanics was suggested since the original proposal [5] of 1978. It was
not only until 1995 that the Greek mathematicians Gr. Tsagas and D. S. Sourlas
[22,23] proposed the first isotopology on scientific record formulated on isospaces
over ordinary fields. In 1996, the Italian-American physicist R. M. Santilli [10]
extended the formulation to isospaces over isofields. Finally, comprehensive stud-
ies on isotopology were conducted by the Spanish Mathematicians R. M. Falcon
Ganfornina and J. Ninez Valdés [24,25]. As a result, the new topology is hereon
called the Tsagas-Sourlas-Santilli-Falcon-Nunez isotopology (or TSSFN Isotopol-
ogy for short).

The author has no words to emphasize the far reaching implications of the new
TSSFN isotopology because, for the first time in the history of science, math-
ematics can consistently represent the actual extended, generally nonspherical
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and deformable shape particles, their densities as well as their nonpotential and
nonlocal interactions.

As an example, Newton’s equations have remained unchanged in Newtonian
mechanics since the time of their conception to represent point-particles. No con-
sistent generalization was possible due to the underlying local-differential topol-
ogy and related differential calculus. As we shall see in the next section, the
isodifferential calculus and underlying isotopology will permit the first known
structural generalization of Newton’s equations in Newtonian mechanics for the
representation of extended particles.

New coverings of quantum mechanics, quantum chemistry, special relativity,
and other quantitative sciences are then a mere consequence. Perhaps more
importantly, the new clean energies and fuels permitted by hadronic mechanics
can see their origin precisely in the TSSEN isotopology, as we shall see later on
in this chapter.

In their most elementary possible form accessible to experimental physicists,
the main lines of the new isotopology can be summarized as follows. Being
nowhere singular, Hermitian and positive-definite, N-dimensional isounits can
always be diagonalized into the form

IA:Diag.(n%,ng,...,n?\;), ng = ng(t,r,v,...) >0, k=1,2,...,N. (3.2.113)

Consider N isoreal isofields Ry, (7, +, X) each characterized by the isounit I, = ni
with (ordered) Cartesian product

RN =Ry x Ry x ... x Ry. (3.2.114)

Since each isofield Ry is isomorphic to the conventional field of real numbers
R(n,+, x), it is evident that R" is isomorphic to the Cartesian product of N
ordinary fields

RN=RxRx...xR (3.2.115)

Let
r={RN K;} (3.2.116)

be the conventional topology on RV (whose knowledge is here assumed for brevity),
where K; represents the subset of RY defined by

K; ={P = (a1,a9,...,an)/n; < ai,az,...,any <m; n;,m;,a; € R}. (3.2.117)

We therefore have the following;:

DEFINITION 38.2.8 [10,22-25]: The isotopology can be defined as the simple
lifting on RN of the conventional topology on RY, and we shall simply write

#={RN K}, (3.2.118a)
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A~

K; = {P = (a1,a9,...,an)/Ri < a1, a0, ...,ax <1; A1, a; € R}, (3.2.118b)

As one can see, the above isotopology coincides everywhere with the conven-
tional topology of R except at the isounit I. In particular, 7 is everywhere
local-differential, except at I which can incorporate nonlocal integral terms.

It is evident that isotopology can characterize for the first time in scientific
history, extended, nonspherical and deformable particles. In fact, for the case
of three-dimensions in diagonal representation (3.2.113), we have the character-
ization of deformable spheroidal ellipsoids with variable semiaxes n?,n3,n3 de-
pending on local quantities, such as energy, density, pressure, etc. For the case of
four-dimension the quantity n? represents, for the first time in scientific record,
the density of the particle considered!®.

The reader should be aware that the above formulation of the isotopology is the
simplest possible one, being restricted to the description of one isolated isoparti-
cle, that is, an extended and nonspherical particle on isospace over isofields that,
as such, has no interactions.

Consequently, numerous generalizations of the above formulations are possible
and actually needed for hadronic mechanics. The first broadening is given by
the case of two or more isoparticles in which case the basic isounit is given by
the Cartesian product of two isounits of type (3.2.113). The second broadening
is given by exponential factors incorporating nonlinear integral terms as in the
general isounit (3.1.19). In the preceding formulation, these exponential factors
have been incorporated in the n’s since they are common factors.

A lesser trivial broadening of the above formulation of isotopology is given by
nondiagonal isounits that are capable of representing nonspheroidal shapes and
other complex geometric occurrences (see in Ref. [6], page 213 the case of a nondi-
agonal isotopy contracting the dimensions from three to one, also reviewed in the
next section). The study of the latter more general formulations of isotopology
is left to the interested reader.

DEFINITION 3.2.11 [22-25]: An isotopological isospace %(RN) is the isospace
RN equipped with the isotopology 7. An isocartesian isomanifold M(RN) is the
isotopological isospace M (RN ) equipped with a isovector structure, an isoaffine
structure and the mapping

F:RYN - RN; a— f(a), Vae RN, (3.2.119)

13The reader is encouraged to inspect any desired textbook in particle physics and verify the complete
lack of representation of the density of the particle considered.
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Figure 3.6. A schematic view of the “isosphere”, namely, the perfect sphere on isospace over
isofield represented by isoinvariant (3.2.121), that is assumed as the geometric representation of
hadrons used in this monograph. The actual nonspherical and deformable shape of hadrons is
obtained by projecting the isosphere in our Euclidean space, as illustrated in the last identify
of Eq. (3.2.122).

An iso-Buclidean isomanifold M(E(7,8, R)) occurs when the N-dimensional iso-

space E is realized as the Cartesian product (3.2.106) and equipped with isotopol-
ogy (3.2.118) with basic isounit (3.2.113).

The isodual isotopology and related notions can be easily constructed with the
isodual map (3.2.15) and its explicit study is left as an instructive exercise for
the interested reader.

3.2.8 Iso-Euclidean Geometry and its Isodual

The isotopies of the Euclidean space and geometry were introduced for the first
time by Santilli in Ref. [14] of 1983 as a particular case of the broader isotopies
of the Minkowski space and geometry treated in the next section.

The same isotopies were then studied in various works by the same author
and a comprehensive treatment was presented in Chapter 5 of Vol. I [6]. These
isotopies are today known as the Fuclid-Santilli isospace and isogeometry. The
presentation of Vol. I will not be repeated here for brevity. We merely limit our-
selves to outline the main aspects for minimal self-sufficiency of this monograph.

Consider the fundamental isospace for nonrelativistic hadronic mechanics, the
three-dimensional Fuclid-Santilli isospace with contravariant isocoordinates 7,
isometric & over the isoreals R = R(n, +, X) (see Section 3.3)

E(,6,R): 7= (f") = (&,9,2) = (rF)xI = (z,y,2)xI, k=1,2,3; (3.2.120a)

I = Diag.(n?,n3,n3) =1/T >0, nj =ng(t,r,v,a,p,7,...) >0, (3.2.120b)
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A=0x1I; §=Txé= Diag.(n;?,ny2,n3?), (3.2.120c¢)

with basic isoinvariant on F

P2 = P AT = 7 x by x 7 = (TF x Gy) x 7 =

SR RNCRE SR L
ny ny; N3
and projection on the conventional Euclidean space
2 2 2
x z
="+ 12 e R (3.2.122)
ny ny N3

where the scalar functions ny, besides being sufficiently smooth and positive-
definite, have an unrestricted functional dependence on time ¢, coordinates r,
velocities v, acceleration a, density u, temperature 7, and any needed local vari-
able.

The Fuclid-Santilli isogeometry is the geometry of the above isospaces. A
knowledge of the following main features is essential for an understanding of
nonrelativistic hadronic mechanics.

Since the isospaces F are all locally isomorphic to the conventional Euclidean
space E(r,d, R), it is evident that the Fuclid-Santilli isogeometry verifies all az-
ioms of the conventional geometry, as proved in detail in Section 5.2 of Vol. 1
[6]. In fact, the conventional and isotopic geometries coincide at the abstract,
realization free level to such an extent that they can be expressed with the same
abstract symbols, the differences between the conventional and the isotopic ge-
ometries emerging only in the selected realizations of said abstract axioms.

Note that, while the Euclidean space and geometry are unique, there exist
an infinite family of different yet isomorphic Fuclid-Santilli isospaces and isoge-
ometries, evidently characterized by different isometrics in three dimension and
signature (+, 4+, +).

Recall from Section 3.2.3 that the structure of the basic invariant is given by
Eq. (3.2.66). Therefore, the isosphere, namely, the image on E of the perfect
sphere on F remains a perfect sphere. However, the projection of the isosphere
on the original space F is a spheroidal ellipsoid, as clearly indicated by invariant
(3.2.121). Therefore, the isosphere on isospace over isofields unifies all possible
spheroidal ellipsoids on ordinary spaces over ordinary fields. These features are
crucial to understand later on the reconstruction of the exact rotational symmetry
for deformed spheres (see Fig. 3.6).

Since the functional dependence of the isometric is unrestricted except verify-
ing the condition of positive-definiteness, it is easy to see that the Fuclid-Santilli
isogeometry unifies all possible three-dimensional geometries with the signature)
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Figure 3.7. A schematic view of the “space isocube”, namely, an ordinary cube inspected
by two observers, an exterior observer in Euclidean space with basic units of measurements
I = Diag.(1 ¢cm,1 c¢m,1 c¢cm) and an interior observer on isospace with basic isounits I =

Diag.(nﬁ cm, ni cm, n? cm). It it then evident that, if the exterior observer measures, for

instance, the sides of the cube to be 3m, the interior observers measures different length that can
be bigger or smaller than 3m depending on whether the isounit is smaller or bigger, respectively,
than the original unit. Also, for the case of the Euclidean observer, the units in the three space
directions are the same, while the corresponding isounits have different values for different
directions. Therefore, the same object appears as a cube of a given size to the external observer,
while having a completely different shape and size for the internal observer.

(+,+,+), thus including as particular cases the Riemannian, Finslerian, non-
Desarguesian and other geometries. As an example, the Riemannian metric
gij(r) = ¢" is a trivial particular case of Santilli’s isometric &-j (t,r,...). This
occurrence has profound physical implications that will be pointed out in Sec-
tion 3.5.

Yet another structural difference between conventional and isotopic geome-
tries is that the former has the same unit for all three reference axes. In fact,
the geometric unit I = Diag.(1,1,1) is a dimensionless representation of the
selected units, for instance, I = diag.(lcm,1cm,1cm). In the transition to
the isospace, the units are different for different axes and we have, for instance,
I = Diag.(n3 cm,n? cm ,n3cm). It then follows that shapes detected by our sen-
sory perception are not necessarily absolute, in the sense that they may appear
basically different for an isotopic observer (see Fig. 3.7).

Note that in the conventional space E(r,d, R) there are two trivially different
trivial units, namely, the unit / = 41 of the base field R and the unit I =
Diag.(1,1,1) of the space, related geometry and symmetries. The isotopies have
identified for the first time the fact that the unit of the space must coincide with
the unit of the base field.
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Figure 3.8. A schematic view of the geometric propulsion studied in greater details in Chapter
12, here illustrated via the contraction of distances in the transition from our coordinmates to
the isotopiuc ones.
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In fact, the isounit of isospace E (7, 5, R) must coincide with the isounit of the
isofield R. It is then evident that, at the limit [ — I = Diag.(1,1,1) the unit
matrix I = Diag.(1,1,1) must be the unit of both the Euclidean space and of
the basic field. This implies a trivial reformulation of R that is ignored hereon.

Another important notion is that of isodistance between two points P, and P»
on E that can be defined by the expression

D} 5 = (&1 — #2)%/n + (i1 — 92)*/n3 + (31 — 22)*/n3. (3.2.123)

It then follows that local alterations of the space geometry cause a change in the
distance, an occurrence first identified in Ref. [6] as originating from a lifting of
the units, and today known as isogeometric locomotion studied in Chapter 13.
We are here referring to a new form of non-Newtonian locomotion in which ob-
jects can move without the application of a force or, equivalently, without any
application of the principle of action and reaction (see Figure 3.8).

Finally, it is important to point out that the dimensionality of the original Eu-
clidean space is not necessarily preserved under isotopies. This occurrence con-
stitutes another intriguing epistemological feature because isotopies are axiom-
preserving. Therefore, our senses based on the three Eustachian lobes perceive
no difference in dimension between a conventional and an isotopic shape.

The epistemological question raised by the isotopies is then whether our per-
ception of space as three-dimensional is real, in the sense of being intrinsic, or it
is a mere consequence of our particular sensory perception, with different dimen-
sions occurring for other observers.'4

14 As we shall see in Chapter 4, an even deeper epistemological issue emerges from our hyper-isotopies
in which the unit is characterized by a set of values. In this case, space can be “three-dimensional” yet
be “hyper-dimensional”, in the sense that each dimension can be multi-valued.
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The occurrence was discovered by Santilli in Ref. [6], page 213, via the follow-

ing isotopic element

0

0

-1

T= (3.2.124)

O O =
O = O

that is positive definite since Det7 = 1, thus being a fully acceptable isotopic
element.

It is easy to see that the isoinvariant of the Euclid-Santilli isospace character-
ized by the above non-diagonal isotopy is given by

fﬁzfixffxéijfj:
=IXZ+YXZ—Z2XYy=1XZ, (3.2.125)

namely, in this case the isotopic image of the three-dimensional Fuclidean space
is one dimensional.
This occurrence provides another illustration of the fact that, despite their
simplicity, the geometric implications of the isotopies are rather deep indeed.
The isodual Fuclid-Santilli isospace in three dimension can be represented by
the expressions

Edr? AT RYY ¢ = (=&, —g, —2); (3.2.1260)
I? = Diag.(—n2,—n3, —n2) = =1/T >0, ng =ng(t,r,...) >0,
Al =5 x I, §% =19 x%6? = Diag.(—n7?, —ny %, —n3?), (3.2.126b)

Wl‘h iSOdual isoinvariant on R
Adé adi LA Ad "dAdj

a2

y A
—a® g™ 2 ¢ RY (3.2.127)

and projection on the isodual Euclidean space
r& = (=22 /n? —y?/n2 — 22 /n2)x I e R4 (3.2.128)

A study of the isodual Euclid-Santilli isogeometry from Vol. 1 [6] is essential
for a study of antimatter in interior conditions.

3.2.9  Minkowski-Santilli Isogeometry and its Isodual

3.2.9A. Conceptual Foundations. The isotopies of the Minkowski space and
geometry are the main mathematical methods of relativistic hadronic mechanics,
because they are at the foundations of the Poincaré-Santilli isosymmetry, and
related broadening of special relativity for relativistic interior dynamical systems.
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The isotopies of the Minkowski space and geometry were first proposed by
Santilli in Ref. [14] of 1983 and then studied in numerous papers (see monographs
[6,7,14,15] and papers quoted therein) and are today known as Minkowski-Santilli
isospace and isogeometry.

Due to their fundamental character, the new spaces and geometry were treated
in great details in Refs. [6,7], particularly in the second edition of 1995, and that
presentation is here assumed as known for brevity.

The primary purpose of this section is to identify the most salient advances
occurred since the second edition of Refs. [6,7] with particular reference to the
geometric treatment of gravitation.

In essence, the original efforts in the construction of relativistic hadronic me-
chanics were based on two different isotopies, the isotopies of the Minkowskian
geometry for nongravitational profiles, and the isotopies of the Riemannian ge-
ometry for gravitational aspects. The presentation of Refs. [6,7] was based on
this dual approach.

Subsequently, it became known that the isotopies of the Riemannian geome-
try could not resolve the catastrophic inconsistencies of gravitation identified in
Chapter 1 because they are inherent in the background Riemannian treatment
itself, thus persisting under isotopies.

The resolution of these catastrophic inconsistencies was finally reached by San-
tilli in Ref. [26] of 1998 via the unification of the Minkowskian and Riemannian
geometries into Minkowski-Santilli isogeometry. In fact, the isometric of the lat-
ter geometry admits, as a particular cases, all possible Riemannian metrics.

Consequently, it became clear that the various methods used for the Rieman-
nian geometry (such as covariant derivative, Christoffel symbols, etc.) are inap-
plicable to the conventional Minkowski space evidently because flat, but the same
methods are fully applicable to the Minkowski-Santilli isogeometry.

The achievement of a geometric unification of the Minkowskian and Rieman-
nian geometries reached in memoir [26] permitted truly momentous advances,
such as the geometric unification of the special and general relativities, an ax-
iomatically consistent grand unification of electroweak and gravitational interac-
tions, the first known axiomatically consistent operator form of gravity, and other
basic advances reviewed in Section 3.5.

3.2.9B. Minkowski-Santilli Isospaces. We now review in this subsection the
foundations of the Minkowski-Santilli isospaces by referring interested readers to
volumes [6,7] for details.

DEFINITION 3.2.12 [26]: Consider the conventional Minkowski space
M = M(xz,n,R):x = (z") = (r,cot), (3.2.129a)

=" Xz, xp =1 xa”, (3.2.129%)
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Figure 8.9. A view of the three Eustachian lobes allowing us to perceive three-dimensional
shapes. The intriguing epistemological issue raised by the Euclid-Santilli isogeometry is whether
living organisms with different senses perceive the same object with different shape and size than
ours. As illustrated with the isobox of Figure 3.7, the same object can appear with dramatically
different shapes and sizes to a conventional and an isotopic observer, as well as in dimension
different than the original ones, as illustrated in the text. Another illustration of the meaning and
importance of isotopies is that being axiom-preserving, different shapes, sizes and dimensions
on isospaces are rendered compatible with our sensory perception.

where c, is the speed of light in vacuum, metric
n = (nu)Diag.(+1,+1,+1,—1), 0" = [(Na,5) """, (3.2.130)

basic unit
I = Diag.(+1,+1,+1,+1), (3.2.131)
and invariant on the reals

2 =2t xx, = (2" X x2”)x I € R=R(n,+, x), (3.2.132)

M7V7a7ﬂ = ]‘727374'
Then, the Minkowski-Santilli isospaces can be defined by isotopies

N

M = M(& G,R) : & = (i") = (r,cot) x I, (3.2.133a)

it = G iy, &y = G xi, (3.2.133b)
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with isometric on isospaces over isofields

A

G=ixI=(T0xnu) xI=

= Diag.(TH,TQQ, T33, T44) X f S R = R(fl, —T—, >A<)7 (32134@)
G = [(Gap) 1™, (3.2.134b)

and isounit A A A A R
I = Diag.(T}1", Tog', Taz', TidY), (3.2.135)
where T;w are positive-definite functions of spacetime coordinates x, velocities v,

accelerations a, densities u, temperature T, wavefunctions, their derivatives and
their conjugates and any other needed quantity

T;w = Tw,(x,v,a,,u, T,@D,d)T,@d), OT/JT, ) >0 (3.2.136)

isoinvariant on isospaces over the isofield of isoreal numbers

A ~

82 = 2h g, = (%G xi’) x I € R=R(h,+,%) (3.2.137)

with projection in our spacetime

M(z,7,R):xz = (z") x I, (3.2.138a)
ot =" xxy, x,=Nw xa’, (3.2.138b)

metric over the field of real numbers
i = () = (T¢ x np) = Diag.(T11, Tr2, Ts3,Taa) € R = R(n,+, x), (3.2.139a)

A = [(fap) M, (3.2.1390)

and invariant in our spacetime over the reals
2 ~ v
r° = Xxl/:l"u Xnul/(xaUaaauvT’wa¢Taa¢a8¢Ta"') XX =

=Ty x 22 +Thy x 23+ Ty3 x 22 — Tyy X 22 € R. (3.2.140)

Note that all scalars on M must be lifted into isoscalars to have meaning for
M , i.e., they must have the structure of the isonumbers n = n x I. This condition
requires the re-definition x — & = x X f, Ny — é;w = Nuv X f, 2 — 32, etc.

The reader interested in learning in depth the new isogeometry should also
study from the preceding sections the different realizations of the isometry whether
realized in the original Minkowskian coordinates or in the isocoordinates, since
the functional dependence is different in these two cases.
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Note however the redundancy in practlce for using the forms z = z X I and
G = 1) x I because of the identity &% = x“xGWx:c = (2" x A, x z) x I. For
simplicity we shall often use the conventional coordinates x and the isometric will
be referred to 1 = T x 7. The understanding is that the full isotopic formulations
are needed for mathematical consistency.

A fundamental property of the infinite family of generalized spaces (3.2.133)
is the lifting of the basic unit I — I while the metric is lifted of the inverse
amount, n — 7 = T x 7, I =171 This implies the preservation of all original
axioms, and we have the following:

THEOREM 3.2.7 [26/ All infinitely possible isominkowski spaces M(;U 7, R)
over the isofields R(n +, X) with a common positive-definite isounit I preserve
all original axioms of the Minkowski space M (xz,n, R) over the reals R(n,+, X).

The nontriviality of the lifting is that the Minkowskian axioms are preserved
under an arbitrary functional dependence of the metric 1 = f(z,v,a,u,T,...)
for which the sole x-dependence of the Riemannian metric g(z) is only a simple
particular case. As a matter of fact, we have the following

THEOREM 3.2.8 [26]: Minkowski-Santilli isospaces are “directly universal” in
spacetime, that is, they represent all infinitely possible spacetimes with signature
(+,4,+, =) (“universality”), directly with the isometric and without any use of
the transformation theory (“direct universality”).

Note that all possible “deformations” of the Minkowski space are also particular
cases of the above isospaces. However, the former are still referred to the old unit
I, thus losing the isomorphic between deformed and Minkowski spaces, while the
isotopies preserve the original axioms by construction.

A fundamental physical characteristic of the Minkowski-Santilli isospaces is
that it alters the units of space and time. Recall that the unit

I = Diag.({1,1,1},1)

of the Minkowski space represents in a dimensionless form the units of the three
Cartesian axes and time, e.g., I = (+1cm,+1cm,+1cm,+1sec). Recall also
that the Cartesian space-units are equal for all azes.

Consider now the isospaces, and recall that Iis positive-definite. Consequently,
we have the following lifting of the units in which the Tuu quantities are reinter-
preted as constants

I =(+1cm,+1cm,+1cm,+1sec) —
— I = Diag.(n?,n2,n2,n2) =1/T, fﬁ = ni,nu > 0. (3.2.141)
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Figure 3.10. A view of the “spacetime isocube” characterized by the “space isocube” of Figure
3.7 now inspected in two spacetimes, the conventional Minkowski spacetime in the exterior and
Santilli isospacetime in the interior. In addition to the variations of shape, size and dimensions
indicated in Figure 3.7, the same object can be in different times for the two observers, all in
a way fully compatible with our sensory perception. Consequently, seeing in a telescope a far
away quasar or galaxy it does not mean that astrophysical structure is necessarily in our time,
since it could be evolving far away in the future or in the past.

This means that, not only the original units are now lifted into arbitrary pos-
itive values, but the units of different space azxes generally have different values.

Jointly, the components of the metric are lifted by the inverse amounts n;2. This

implies the preservation on M over R of the original numerical values on M over
R, including the crucial preservation of the maximal causal speed c,, as we shall
see in Section 3.5.

Note also the necessary condition that the isospace and isofield have the same
tsounst I. This condition is absent in the conventional Minkowski space where
the unit of the space is the unit matriz I = Diag.(1,1,1,1), while that of the
underlying field is the number I = +1. Nevertheless, the latter can be trivially
reformulated with the common unit matrix I, by achieving in this way the form
admitted as a particular case by the covering isospaces

M(z,m,R): x={a x I}, 2* = (2" x nu x 2¥) x I € R. (3.2.142)

The structure of both the conventional and isotopic invariants is therefore given
by Theorem 3.2.66, namely

Basic Invariant = (Length)? x (Unit)?, (3.2.143)

which illustrates more clearly the preservation under the dual lifting n — 7 =
T xnand I — [ =1/T of the original axioms as well as numerical values.
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THEOREM 3.2.9 [6,7,26]: Conventional and isotopic symmetries of spacetime
are 11-dimensional.

Proof. In addition to the 10-dimensionality of the Poincaré symmetry, there
is an additional 11-th dimensionality characterized by the isotransform

n—A=n/m? I—I=n*>xI, (3.2.144)

where n is a non-null constant. q.e.d.

Note the crucial role of Santilli’s isonumbers in the above property. This
explains why the 11-th dimensionality remained undiscovered throughout the
20-th century.

A significant difference between the conventional space M and its isotopes M
is that the former admit only one formulation, the conventional one, while the
latter admit two formulations: that on isospace itself (i.e., expressed with respect
to the isounit / ) and its projection in the original space M (i.e., expressed with
respect to the conventional unit I).

Note that the projection of M(i’, M, }A%) into M (x,n, R) is not a conformal map,
but an inverse isotopic map because it implies the transition from generalized
units and fields to conventional units and fields.

The axiomatic motivation for constructing the isotopies of the Minkowskian
geometry is that any modification of the Minkowski metric requires the use of
noncanonical transforms r — z'(x),

. o' 9P
Nuy — Ny = Wﬁaﬂw ?é Ny (3.2.145)

and this includes the case of the transition from the Minkowskian metric n to the
Riemannian metric g(z).

In turn, all noncanonical theories, thus including the Riemannian geometry,
do not possess invariant units of space and time, thus having the catastrophic
inconsistencies studied in Chapter 1. A primary axiomatic function of the iso-
space is that of restoring the invariance of the basic units, as established by the
Poincaré-Santilli isosymmetry.

This is achieved by embedding all noncanonical content in the generalization
of the unit. Invariance for noncanonical structures such as Riemannian met-
rics is then assured by the fact indicated earlier that, whether conventional or
generalized, the unit is the basic invariant of any theory.

Stated in different terms, a primary axiomatic difference between the special
and general relativities is that the time evolution of the former is a canonical
transform, thus implying the majestic mathematical and physical consistency of
special relativity recalled in Chapter 1, while the time evolution of the latter
is a noncanonical transform, thus implying a number of unresolved problematic
aspects that have been lingering throughout this century.
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The reformulation of the Riemannian geometry in terms of the Minkowskian
axioms is the sole possibility known to this author for achieving axiomatic con-
sistency under a nontrivial functional dependence of the metric.

In summary, Minkowski-Santilli isospaces have the following primary applica-
tions. First, they are used for a re-interpretation of the Riemannian metrics g(z)
for the particular case

n=mn(x)=g(x) (3.2.146)
characterizing exterior gravitational problems in vacuum. Second, the same iso-

spaces are used for the characterization of interior gravitational problems with
isometrics of unrestricted functional dependence

n=n(x,v,aurT,...)=g(x,v,aurT,...) (3.2.147)

while preserving the original Minkowskian axioms.

Since the explicit functional dependence is inessential under isotopies, our stud-
ies will be generally referred to the interior gravitational problem. Unless oth-
erwise stated, only diagonal realizations of the isounits will be used hereon for
simplicity. An example of nondiagonal isounits inherent in a structure proposed
by Dirac is indicated in Section 3.5. More general liftings of the Minkowski space
of the so-called genotopic and multivalued-hyperstructural type will be indicated
in Chapter 4.

3.2.9C. Isoderivative, Isoconnection, and Isoflatness. In the preceding
subsections we have presented the Minkowskian aspects of the new isogeometry.
We are now sufficiently equipped to present the novel part of the Minkowski-
Santilli isogeometry, its Riemannian character as first derived in Ref. [26].

Our study is strictly in local coordinates representing the fized frame of the
observer without any un-necessary use of the transformation theory or abstract
treatments. Our presentation will be as elementary as possible without reference
to advanced topological requirements, such as Kadeisvili’s isocontinuity (Section
3.2.6), isomanifolds and related TSSFN isotopology (Section 3.2.7) .

Also, our presentation is made, specifically, for the (3+1)-dimensional iso-
spacetime, with the understanding that the extension to arbitrary dimensions
and signatures or signatures different than the conventional one (+,+, 4+, —) is
elementary, and will be left to interested readers. .

Let M(#, G, R) be a Minkowski-Santilli isospace and let M (z,7, R) be its pro-
jection in our spacetime as per Definition 3.2.12. To illustrate the transition
from isocoordinates Z to conventional spacetime coordinates x, we shall denote
the projection M = M (z,7, R). This notation emphasizes that the referral of the
isospace to the conventional units and field causes the reduction of the isometric
from the general form G= N X I to n= T x 71, where, as now familiar, I= 1/T
and n = Diag.(1,1,1,—1) is the familiar Minkowskian metric.
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According to this notation the Riemannian content of the Minkowski-Santilli
isogeometry can be unified in both its isospace formulation properly speaking
and its projection in our spacetime. All differences in the interpretations whether
occurring in isospace or in our spacetime are then deferred to the selection of the
basic unit.

Consider now the infinitesimal version of isoinvariant (3.2.137) permitted by
the isodifferential calculus

ds? = di,xdi* € R. (3.2.148)

The isonormal coordinates occur when the isometric 7 is reduced to the Minkowski
metric n as in conventional Riemannian geometry. Consequently, isonormal co-
ordinates coincide with the conventional normal coordinates, and the Minkowski-
Santilli isogeometry verifies the principle of equivalence as for the conventional
Riemannian geometry.

By using the isodifferential calculus, we now introduce the isodifferential of a
contravariant isovector field on M over R 1°

dXP = (0, XP)xdit = If, x (9,XP)x T x dz” =
= (0, XP) x di* = (0P XP) x o x d2°, (3.2.149)

where the last expression is introduce to recall that the contractions are in iso-
space. The preceding expression then shows that isodifferentials of isovector fields
coincide at the abstract level with conventional differentials for all isotopies of the
class here admitted (that with I > 0).

DEFINITION 3.2.13 [26]: The isocovariant isodifferential are defined by
DXP =dXP + T8 xX*%d”, (3.2.150)

with corresponding isocovariant derivative

Xi =9, XP +18,%xX% (3.2.151)

where the iso-Christoffel’s symbols are given by

2 (z,v,a,p,7,...) = 5% Oy + Orilag = Ogilan) X I =Topa,  (3:2:152a)
[0, =7 x Tapy = T2, (3.2.152b)

15We should note that the role of the isounit and of the isoelement in this presentation and in that of
Ref. [26] are interchanged for general compatibility with the various applications and developments.
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Note the unrestricted functional dependence of the connection which is noto-
riously absent in conventional treatments. Note also the abstract identity of the
conventional and isotopic connections. Note finally that local numerical values
of the conventional and isotopic connections coincide when computed in their re-
spective spaces. This is due to the fact that in Eq.s (3.2.152) 7 = g(«x) for exterior
problems, while the value of derivatives 9, and isoderivatives éu coincide when
computed in their respective spaces.

Note however that, when projected in the conventional spacetime, the conven-
tional and isotopic connections are different even in the exterior problem in which

i =g(z),

A~

1 . . . . . .
Loy = 3 % (I8 X 0pugpy + 18 X Opfiap — 1§ X Osgar) X I # Lapy x 1. (3.2.153)

The extension to covariant isovector fields and covariant or contravariant isoten-
sor fields is consequential.
Without proof we quote the following important result from Ref. [26]:

LEMMA 3.2.7 (Iso-Ricci Lemma) [26]: Under the assumed conditions, the
isocovariant derivatives of all isometrics on Minkowski-Santilli isospaces spaces

are identically null,

Nagly =00 By =1,2,3,4. (3.2.154)

The novelty of the isogeometry is then illustrated by the fact that the Ricci
property persists under an arbitrary dependence of the metric, as well as under
Minkowskian, rather than Riemannian axioms.

The isotorsion on M is defined by

=10, -17%,, (3.2.155)

and coincides again with the conventional torsion at the abstract level, although
the two torsions have significant differences in their explicit forms when both
projected in our space-time.

DEFINITION 3.2.14 [26]: The Minkowski-Santilli isogeometry is characterized
by the following isotensor: the isoflatness isotensor

Rg,yg = é(;f‘g,y — évfgg + f‘g(;;(fwgm — f57§<f55; (3.2.156)
the iso-Ricci isotensor A A
Ry = R s; (3.2.157)

the isoflatness isoscalar . .
R =7"% X Royp; (3.2.158)
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the iso-Einstein isotensor

G = Ry —

s Nuw = i x I (3.2.159)

NN
X >
=
=
N
X >
ny

and the isotopic isoscalar
O = NPXNP (L pos XI5 — Tpapxlls) =
=T pagx 05X (N X NP — NP N70Y; (3.2.160)

the latter being new for the Minkowski-Santilli isogeometry.

Note the lack of use of the term “isocurvature” and the use instead of the
term “isoflatness”. This is due to the fact that the prefix “iso-” represents the
preservation of the original axioms. The term “isocurvature” would then be
inappropriate because the basic axioms of the geometry are flat.

In any case, the main problem underlying the studies herein reported is, as
indicated in Chapter 1, that curvature is the ultimate origin of the catastrophic
inconsistencies of general relativity. Consequently, all geometric efforts are here
aimed at the replacement of the notion of curvature with a covering notion re-
solving the indicated catastrophic inconsistencies.

As we shall see better in Section 3.5, the notion of “isoflatness” does indeed
achieve the desired objectives because flatness and its related invariance of gravi-
tation under the Poincaré-Santilli isosymmetry is reconstructed on isospaces over
isofields, while the ordinary curvature emerge as a mere projection in our space-
time.

3.2.9D. The Five Identities of the Minkowski-Santilli Isogeometry. By
continuing our review of memoir [26], tedious but simple calculations yield the
following five basic identities of the Minkowski-Santilli isogeometry:

Identity 1: Antisymmetry of the last two indices of the isoflatness isotensor
RE.s = —Risy; (3.2.161)
Identity 2: Symmetry of the first two indices of the isoflatness isotensor

Ropys = Rpons; (3.2.162)

Identity 3: Vanishing of the totally antisymmetric part of the isoflatness isoten-

sor
Rg’ﬂ; + Rgéa + R?aw = 0; (3.2.163)
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Figure 3.11. Primary objectives of the Minkowski-Santilli isogeometry are the resolution of the
catastrophic inconsistencies of the Riemannian formulation of exterior gravitation (Section 1.4)
and a representation of interior gravitation as occurring for the Sun depicted in this figure and
any other massive object. These objectives are achieved via the isotopies of the Minkowskian
geometry since they are flat in isospace, thus admitting a well defined invariance for all possible
gravitation, by adding sources requested by the Freud identity and other reasons, and by unifying
exterior and interior gravitational problem in a single formulation in isospace that formally
coincides with that for the exterior problem, the interior effects being incorporated in the isounit
(see Section 3.5).

Identity 4: Iso-Bianchi identity

RO pe . P8 — ).

Identity 5: Iso-Freud identity

R§—§ ng—§x5§x®: 5 +0,V57, (3.2.165)
where O is the isotopic isoscalar and
A 1 96
U9 = —— 2= _poB 3.2.166
B 267??[’677'/6 ’ ( CL)
re%
. 1.. . .
Vit = 5[7775 (65145 — 65T05)+ (3.2.166b)

(05" = 0FIP s + 0 TGy = * TG, ], (3.2.166¢)
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Note that the conventional Riemannian geometry is generally thought to pos-
sess only four identities. In fact, the fifth identity (3.2.165) is generally unknown
in the contemporary literature in gravitation as the reader is encouraged to ver-
ify in the specialized literature in the Riemannian geometry (that is so vast to
discourage discriminatory listings).

The latter identity was introduced by Freud [27] in 1939, treated in detail by
Pauli in his celebrated book [28] of 1958 and then generally forgotten for a half
a century, apparently because of its evident incompatibility between Einstein’s
conception of exterior gravitation in vacuum as pure curvature without source
(see Section 3.4)

(o3 (6% 1 (0%

and the need for a source term also in exterior gravitation in vacuum mandated
by the Freud identity and other reasons

a 1 a 1 a a RV

Freud’s identity was rediscovered by the author during his accurate study of
Pauli’s historical book and studied in detail in Refs. [6,7] of 1992. Additional
studies of the Freud identity were done by Yilmaz [30]. Following a suggestion
by the author, the late mathematician Hanno Rund [29] studied the identity in
one of his last papers and proved that:

LEMMA 3.2.8 (Rund’s Lemma) [29]: Freud’s identity is a bona fide identity
for all Riemannian spaces irrespective of dimension and signature.

In this way, Rund confirmed the general need of a source also in vacuum (see
Sections 1.4 and 3.5).

Following Ref. [26], in this paper we have presented the isotopies of the Freud
identity on Minkowski-Santilli isospaces, as characterized by the isodifferential
calculus. Its primary functions for this monograph is to identify the geometric
structure of the interior gravitational problem. The persistence of the source
in vacuum as per the Freud identity, electrodynamics and other needs will then
be consequential, thus confirming the inconsistency of Einstein’s conception of
gravity in vacuum as pure curvature without source.

Note that all conventional and isotopic identities coincide at the abstract level.

3.2.9E. Isoparallel Transport and Isogeodesics. An isovector field XP on
M = M(z, M, R) is said to be transported by isoparallel displacement from a
point 7 (Z) on a curve C' on M to a neighboring point /(& + d) on C if

DXP = dXP + T8 xX*%di" =0, (3.2.169)
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or in integrated form

A A /m X0 dze . .
m

. — xds3, (3.2.170)
m 0T d§
where one should note the isotopic character of the integration. The isotopy of
the conventional case then yields the following:

LEMMA 3.2.9 [26]: Necessary and sufficient condition for the existence of an
isoparallel transport along a curve C' on a (3+ 1)-dimensional Minkowski-Santilli
isospace s that all the following equations are identically verified along C

RO ;%X =0, a,B,7,6=1,2,3,4. (3.2.171)

Note, again, the abstract identity of the conventional and isotopic parallel trans-
port. However, it is easy to see that the projection of the isoparallel transport in
ordinary spacetime is structurally different than the conventional parallel trans-
port.

Consider, as an example, an extended object in gravitational fall in atmo-
sphere (see Figure 3.12). Its trajectory is evidently irregular and depends on the
actual shape of the object, as well as its weight. The understanding of the new
Minkowski-Santilli isogeometry requires the knowledge of the fact that said tra-
jectory is represented on isospace over isofields as a straight line, that is, via the
trajectory in the absence of the resistive medium. The actual, irregular trajectory
appears only in the projection of said isotrajectory in our spacetime.

If the latter treatment is represented by a rocket, one would note a twist-
ing action as occurring in the reality of motion within physical media, which is
evidently absent in the exterior case.

Along similar lines, we say that a smooth isopath #, on M with isotangent
Vo = dZo/d$ is an isogeodesic when it is solution of the isodifferential equations

N8 15 a0 da
DT _db g B4, (3.2.172)
Ds ds d ds

It is easy to prove the following:

LEMMA 3.2.10 [26]: The isogeodesics of a Minkowski-Santilli isospace M are
the isocurves verifying the isovariational principle

5/[(“;@/3(@,@,@,#,77 L) xdiesda?)? = o, (3.2.173)

where again isointegration is understood.
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EUCLIDEAN, ) ISOEUCLIDEAN,
MINKOWSKIAN AND ISOMINKOWSKIAN AND
RIEMANNIAN ISORIEMANNIAN
GEODESIC GEODESIC

Figure 3.12. A schematic view of two objects released from the Pisa tower. The vertical trajec-
tory represents the approximate geodesic considered by Galileo, used by Einstein and adopted
until the end of the 20-th century, namely, the approximation under the lack of resistance due to
our atmosphere. The Minkowski-Santilli isogeometry has been built to represent as isogeodesics
actual trajectories within physical media.

Finally, we point out the property inherent in the notion of isotopies according
to which

COROLLARY 8.2.10A: [26]: Trajectories in an ordinary Riemannian space
coincide with the corresponding isogeodesic trajectories in Minkowski-Santilli iso-
space, but not with the projection of the latter in the original space.

For instance, if a circle is originally a geodesic, its image under isotopy in
isospace remains the perfect circle, the isocircle (Section 3.2.9), even though its
projection in the original space can be an ellipse. The same preservation in
isospace occurs for all other curves.

The differences between a geodesic and an isogeodesic therefore emerge only
when projecting the latter in the space of the former.

An empirical but conceptually effective rule is that interior physical media
“disappear” under their isogeometrization, in the sense that actual trajectories
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under resistive forces due to physical media (which are not geodesics of a Min-
kowski space) are turned into isogeodesics in isospace having the shape of the
geodesics in the absence of resistive forces.

The simplest possible example is given by the iso-Euclidean representation of
a straight stick partially immersed in water. In conventional representations the
stick penetrating in water with an angle o appears as bended at the point of
immersion in water with an angle v = a 4+ (3, where (§ is the angle of refraction.
In iso-Euclidean representation the stick remains straight also in its immersion
because the isoangle ¥ = ~y x f,y recovers the original angle o with f7 =a/(a+p).

The situation is essentially the same for our representation of interior gravita-
tion because the latter is represented in isospace over isofield via field equations
(this time necessarily with sources) that formally coincide with conventional equa-
tions on a conventional Riemannian spacetime. Being noncanonical, all interior
features are invariantly represented via generalized units.

3.2.9F. Isodual Minkowski-Santilli isospaces and isogeometry. The iso-
dual Minkowski-Santilli isospaces were introduced for the first time by Santilli in
Ref. [8] of 1985 and then studied in various works (see the references of Chap-
ter 1), and can be written

34 = {2 = {am) x (1) = {r?, ed x Tty x 49, (3.2.174a)
- (3.2.174b)

The isodual Minkowski-Santilli isogeometry is the geometry of isodual isospaces
M9 over R? and was studied for the first time by Santilli in Ref. [26] of 1998.

The physically and mathematically most salient property of the latter geometry
is that it is characterized by negative units of space, time, etc., and negative
norms. Therefore, in addition to a change in the sign of the charge, we also
have change of sign of masses, energies, and other quantities normally positive
for matter. Similarly, we have the isodual isospace and isotime coordinates

il =34xT = -, {?=¢Ix?]" =i (3.2.175)

Thus, motion under isoduality is in a time direction opposite to the conventional
motion. These features are necessary so as to have a classical representation of
antimatter in interior conditions whose operator image yields indeed antiparticles
(rather than particles with the wrong sign of the charge).

We also have the following important

LEMMA 3.2.12 [17]: Isodualities are independent from spacetime inversions
rr=naxr=-r t'=7xt=—t. (3.2.176)
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Proof. Inversions occur within the same original space and keep the unit
fixed, while isodualities require a map to a different space, and change the sign
of the unit. Therefore, in addition to maps in different spaces, isodualities have
numerical value different than the inversions. q.e.d.

These are the conceptual roots for the isodual theory of antimatter to predict
a new photon, the isodual photon emitted by antimatter [17]. When applied
to the photon, charge conjugation and, more generally, the PCT theorem, do
not yield a new photon, as well known. This is not the case under isoduality
because all physical characteristics change in sign and numerical value. As a
result, the isodual photon is indistinguishable from the ordinary photon under all
interactions except gravitation. In fact, as indicated in Chapter 1, the isodual
photon is predicted to experience antigravity in the field of matter, thus offering,
apparently for the first time, a possibility for the future study whether far away
galaxies and quasars are made up of matter or of antimatter.

Another important property of isoduality is expressed by the following:

LEMMA 3.2.13 [26]: The intervals of conventional and isotopic Minkowskian
spaces are invariant under the joint isodual maps I* — I¢ and 71 — 7%,

32 = (2" X M x ) x I = [z X (=) x 2] x (=1). (3.2.177)

As a result, all physical laws applying in conventional Minkowskian geometry
for the characterization of matter also apply to its isodual image for the charac-
terization of antimatter.

Note that, strictly speaking, the intervals are not isoselfdual because

82 = XMy, xdt — 3P0 =g ML )t = pP = 3% (3.2.178)

To outline the Riemannian characteristics of the isodual Minkowski-Santilli
isogeometry, we consider an isodual isovector isofield 'e 4(z4) on M9 which is
explicitly given by Xd(id) = —X!(—at Xf) x I. The isodual exterior isodifferential
of X%(2%) is given by

DIxrd(pd) = d Xm0 1P R0d 03P = DX (—¢t),  (3.2.179)

where the I'’’s are the components of the isodual isoconnection. The isodual
isocovariant isoderivative is then given by

X14(@),,, = 0XM(@N 0% TR X @) = ~ X (—ah),.

The interested reader can then easily derive the remaining notions of the new
geometry. It is an instructive exercise for the interested reader to prove the

(3.2.180)
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following isodualities:

Isodual isounit I — 1= —f,
Isodual isometric i — 7t=—n,
. . . al Ad _ al
Isodual isoconnection coefficients Logy — TG Gy = Copy,
Isoflatness isotensor Ra&@ — Ri 676 = TRamg,
Isodual iso-Ricci isotensor Rf“ﬁ — Rjﬁu = {%W,
Isodual iso-Ricci isoscalar R — R'=R, (3.2.181)
Isodual iso-Freud isoscalar © — 0¢=-0,
Isodual Iso-Einstein isotensor G — Gzl, =—Gu,
Isodual electromagnetic potentials Ay — Ag = Ay,
Isodual electromagnetic field Fo. — ng = —Fu,
Isodual elm energy-mom. isotensor Ty — T, iy =—-Tu.

More detailed isogeometric studies are left to interested readers. Specific ap-
plications to gravitational treatments of matter and antimatter are presented in
Section 3.5.

3.2.10 Isosymplectic Geometry and its Isodual

As it is well known, the symplectic geometry had an important role in the
construction of quantum mechanics because it permitted the mathematically rig-
orous verification, known as symplectic quantization, that original quantization
procedures, known also as naive quantization, were correct.

No broadening of quantum mechanics can be considered mature unless it ad-
mits fully equivalent procedures in the map from classical to operator forms
known as isoquantization also called hadronization (rather than quantization).

For this purpose. Santilli [31] presented in 1988 the first known isotopies of
the symplectic geometry, subsequently studied in various works, with a general
presentation available in Vols. I, II of this series (see in particular Chapter 5
of Vol. I [6]). The new geometry is today known as Santilli’s isosymplectic
geometry.

We cannot possibly review here the isosymplectic geometry in detail and have
to suggest interested readers to study Refs. [6,7]. Nevertheless, an indication of
the basic lines is important for the self-sufficiency of this monograph.

Let us ignore the global (also called abstract) formulation of the symplectic
geometry and consider for clarity and simplicity only its realization in a local chart
(or coordinates).!® A topological manifold M(R) on the reals R admits the local
realization as an Euclidean space E(r,dR) with local contravariant coordinates

16 Again, the literature on the conventional symplectic geometry is so vast to discourage discriminatory
quotations.
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r=(r"), i=14,2,...,N. The cotangent bundle T*M then becomes the ordinary
phase space with local coordinates (r, p) = (r*, p;), where p; represents the tangent
vectors (physically the linear momentum). The canonical one-form then admits

the local realization '
0 = p; x dr'. (3.2.182)

The fundamental (canonical) symplectic form is then given by the exterior deriva-
tive of the preceding one form

w=df =p; \dr, (3.2.183)

and one can easily prove that it is closed, namely, that dw = 0. o

Consider now the isotopological isomanifold (introduced earlier) M (R) on the
isoreals R with basic isounit I. Its realization on local coordinates is given by
the Euclid-Santilli isospace E(f,A,R) with local contravariant isocoordinates
P = (r") x I. Then, the 1socotangent isobundle T*M admits as local realization
the isophase isospace with local coordinates (7%, p;), where p is again a tangent
isovector. The novelty is given by the fact that the unit of p is the inverse of that
of 7 and we shall write

F=rxI, p=pxT, I=1/T. (3.2.184)

This property was identified for the first time by Santilli [31] (for a mathemat-

ical treatment see also Ref. [10]) because not identifiable in the conventional

symplectic geometry due to the use of the trivial unit for which I=! = I = +1.
Consequently, we have the isodifferentials

di =T xd(rx 1), dp=1xd(pxT). (3.2.185)
The isocanonical one-isoform is then given by
0= pxdi = (pxT) x I xd(#) =pxT xd(rxI). (3.2.186)
The fundamental isocanonical two-isoform is then given by
F=dp; Ndr' = w, (3.2.187)

from which the preservation of closure under isotopy, do=0=0 trivially follows.

LEMMA 3.2.14 [31,10]: The fundamental symplectic and isosymplectic two-
forms coincide.

The identity of the fundamental isocanonical and canonical two-forms explains
why isosymplectic geometry escaped detection by mathematicians for centuries.
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It is evident that, in view of the positive-definiteness of the isounit, the symplec-
tic and isosymplectic geometries coincide at the global (abstract) realization-free
level to such an extent that there is not even the need of changing formulae in
the literature of the symplectic geometry because the isosymplectic geometry can
be expressed with the pre-existing formalism and merely subject it to a broader
realization.

Despite this simplicity, the physical implications are by far non-trivial. In
fact, unlike the conventional two-form, and thanks to the background TSSFN
isotopology, the fundamental isocanonical two-form is universal for all possi-
ble (sufficiently smooth and regular but otherwise arbitrary) nonlocal and non-
Hamiltonian systems. To illustrate this feature, let us consider a vector field of
the cotangent bundle that must be strictly local-differential to avoid catastrophic
inconsistencies with the underlying local-differential Fuclidean topology, T M

X(r,p) = Ai(r,p) x % + B(r,p) x B (3.2.188)
or in unified notations
b= (") = (r',p;), p=1,2,...,2N, (3.2.189)
X(b) = X, (b) x i, (3.2.190)
obH

is said to be a Hamiltonian vector field when there exists a function H(r,p) =
H(b) on T*M, called the Hamiltonian, verifying the identity

A; x dr' + B' x dp; = —dH(r, p) (3.2.191)
or in unified notation
X |w = dH, (3.2.192)
that is
Wy X XH x db” = —dH, (3.2.193)
where the fundamental symplectic form has the components
|
w=dp; Ndr® = 5 X W X db* A db”, (3.2.194)
ONnxN —INxN
v) = . 3.2.195
() < Inxn  Onxn ) ( )

Eq. (3.2.192) can hold if and only if

vy OH
ww, X E = w, (32196)
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from which one recovers the familiar truncated Hamilton’s equations

drt  OH  dp; OH
i = = 2.1
dt  Op;’ dt ort (3.2.197)

The main physical limitations is that the condition for a wvector field to be
Hamiltonian constitutes a major restrictions because vector fields in the physical
reality are generally non-Hamiltonian, besides existing from the limitations of the
topology underlying the symplectic geometry.

As we shall see in Section 3.3, the above restrictions is removed for Santilli
isosymplectic geometry that acquire the character of direct universality, that is,
the capability of representing all sufficiently smooth and regular but otherwise
arbitrary vector fields (universality) in the local chart of the experimenter (direct
universality).

In fact, expression (3.2.192) is lifted into the form

YY)
dj,u,l/XT = ==, (32198)
dt obH

that, under the assumption for simplicity that ¢ = ¢, and by removing common
factors, reduces to

drt  OH .. OH
= =T — 2.1
dp;  OH .. OH

TR R X 57" (3.2.200)
As we shall see better in Section 3.3, direct universality then follows from the
number of free functions Tij as well as the arbitrariness of their functional depen-
dence.

We shall also show that the achievement of a direct isogeometric representa-
tion of nonlocal and non-Hamiltonian vector fields representing interior dynamical
problems permits their consistent map into an operator form, by therefore reach-
ing hadronic mechanics in a mathematically rigorous, unique and unambiguous
way. 17

The construction of the isodual isosymplectic geometry [6] is an instructive ex-
ercise for readers interested in serious studies of antimatter in interior dynamical
conditions.

17Note the crucial role of the isodifferential calculus for the isosymplectic geometry and its implications.
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3.2.11 Isolinearity, Isolocality, Isocanonicity and Their
Isodualities

In Section 3.1 we pointed out that the primary physical characteristics of par-
ticles and antiparticles in interior conditions (such as a neutron in the core of
a neutron star) are nonlinear, nonlocality and noncanonicity due to the mu-
tual penetration-overlapping of their wavepackets with those of the surrounding
medium.

In the preceding subsections we have identified isotopic means for mapping
linear, local and canonical systems into their most general possible nonlinear,
nonlocal and noncanonical form. In this section we show how the isotopies permit
the reconstruction of linearity, locality and canonicity on isospaces over isofields,
called isolinearity, isolocality and isocanonicity for the case of particles, with their
isodual counterpart for antiparticles.

The understanding of this seemingly impossible task requires the knowledge
that conventional methods have only one formulation. By contrast, all isotopic
methods have a dual formulation, the first in isospace over isofields, and the
second when projected in ordinary spaces over ordinary fields. Deviations from
conventional properties can only occur in the latter formulation because in the
former all original axiomatic properties are preserved by construction.

Let S(r, R) be a conventional real vector space with local coordinates r over
the reals R = R(n,+, x), and let

= A(w) xr, ' =r"x A'(w), w € R. (3.2.201)

be a conventional right and left linear, local and canonical transformation on .S,
where t denotes transpose. o

The isotopic lifting S(r, R) — S(#, R) requires a corresponding necessary iso-
topy of the transformation theory. In fact, it is instructive for the interested
reader to verify that the application of conventional linear transformations to the
isospace S(7, R) causes the loss of linearity, transitivity and other basic proper-
ties.

For these and other reasons, Santilli submitted in the original proposals [4,5] of
1978 (see monographs [6,7] for comprehensive treatments and applications) the
isotopy of the transformation theory, called isotransformation theory, which is
characterized by isotransforms (where we make use of the notion of isofunction
of Section 3.2.4)

~

= A()x7 = A

<5
X
~
X
>
I
o
—
N
X
S
S~—
X
~
X
N
X
o
X
~
S~—
I

= A[T(r,...) x w] X 7, (3.2.2020)
M=t Al = 7 x AT (r) x w. (3.2.202b)
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The most dominant aspect in the transition from the conventional to the iso-
topic transforms is that, while the former are linear, local and canonical, the latter
are nonlinear in the coordinates as well as other quantities and their derivatives
of arbitrary order, nonlocal-integral in all needed quantities, and noncanonical
when projected in the original spaces S(r, R). This is due to the unrestricted
nature of the functional dependence of the isotopic element T' = T'(r,...).

But the conventional and isotopic transforms coincide at the abstract level
where we have no distinction between the modular action A(w) x r and A() X7
Therefore, isotransforms (3.2.202) are isolinear when formulated on isospace S
over the isofield R, because they verify the conditions

AX(AXF +mxp) = Ax AXP +mxAxp, #,pe S, nmeR  (3.2.203)

Note that conventional transforms are characterized by a right modular asso-
ciative action A x r. Isotransforms are then characterized by the right isomodular
isoassociative action AXF?. Therefore, we do have the preservation of the origi-
nal axiomatic structure and isotransforms are indeed an isotopy of conventional
transforms.

The situation for locality and canonicity follows the same lines [4,5,6,7]. Con-
ventional methods are local in the sense that they are defined at a finite set of
isolated points. The isotopic methods are isolocal in the sense that they verify
the condition of locality in isospaces over isofields. However, their projection on
conventional space is nonlocal-integral, because that is the general characteristic
of the isotopic element 7, as illustrated, e.g., in Eq. (3.1.202).

Similarly, conventional methods are canonical in the sense that they can be
characterized via a first-order canonical action in phase space (or cotangent bun-
dle). The isotopic methods are isocanonical in the sense that, as we shall see in
Section 3.3, they are derivable from an isoaction that is first-order and canoni-
cal on isospaces over isofields, although, when projected on ordinary spaces over
ordinary fields, such an isoaction is of arbitrary order.

LEMMA 3.2.15 [6,7]: All possible nonlinear, nonlocal and noncanonical trans-
forms on a vector space S(r, R)
= B(w,r,...)xr, €S, weER, (3.2.204)

can always be rewritten in an identical isolinear, isolocal and isocanonical form,
that is, there always exists at least one isotopy of the base field, R — R, and a
corresponding isotopy of the space S(r, R) — S(7, R), such as

B(w,r,...) = AT x w), (3.2.205)
under which

' = B(w,r,...)xr=AT xw) xr = A(0)xr, (3.2.206)
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from which the isolinear form (3.2.202) follows.

COROLLARY 3.2.15A [6,7]: Under sufficient continuity and regularity con-
ditions, all possible ordinary differential equations that are nonlinear in ordinary
spaces over ordinary fields can always be turned into an identical form that is
isolinear on isospaces over isofields,

i —E(Fw,...) — 7 —A[T(rw,...) x 7 — B[T(f,w,..] =

=7 — A(0)x7 — B(w) = 0. (3.2.207)

The above properties are at the foundation of the direct universality of isotopic
methods, that is, their applicability to all possible (sufficiently smooth and regu-
lar) nonlinear, nonlocal and noncanonical systems (universality) in the frame of
the experimenter (direct universality).

In order to apply isotopic methods to a nonlinear, nonlocal and noncanoni-
cal system, one has merely to identity one of its possible isolinear, isolocal and
isocanonical identical reformulations in the same system of coordinates. The
applicability of the methods studied in this monograph then follows.

The isodual isotransforms are given by the image of isotransforms (3.2.202)
under isoduality, and, as such, are defined on the isodual isospace S’d(fd, ]:?,d) over
the isodual isofield R? with isodual isounit % = 1/7% = —It. [6,7] with evident
properties

Adx d(n x4 4 mdxdﬁd)
— pdxAds il Lt Adstpd 4l pd e §1 pd md e RY (3.2.208)
The definition of isodual isolinearity, isolocality and isocanonicity then follows.

From now on, we shall use isotransforms for the study of interior dynamical

systems of particles and their isodual for interior systems of antiparticles.

3.2.12 Lie-Santilli Isotheory and its Isodual

3.2.12A. Statement of the Problem. As it is well known, Lie’s theory has
permitted outstanding achievements in various disciplines throughout the 20-th
century. Nevertheless, in its current conception and realization, Lie’s theory is
linear, local-differential and canonical-Hamiltonian.!?

18The author has proposed for over a decade that mathematicians use the property of this Corollary
3.2.15A to identify simpler methods for the solution of nonlinear differential equations, but the request
has not been met as yet, to our best knowledge.

19The literature on Lie’s theory is also vast to discourage discriminatory listings. In any case, its
knowledge is a necessary pre-requisite for the understanding of this section.
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As such, Lie’s theory is exactly valid for exterior dynamical systems, but pos-
sesses clear limitations for interior dynamical systems since the latter are non-
linear, nonlocal and noncanonical. This occurrence mandates a suitable revision
of Lie’s theory such to be exactly valid for interior dynamical systems without
approximations.

Independently from that, Lie’s theory in its current formulation is solely ap-
plicable to matter, evidently because there exists no antiautomorphic version of
the conventional Lie’s theory as necessary for the correct treatment of antimatter
beginning at the classical level, as shown in Chapters 1 and 2.

Another central problem addressed in these studies is the construction of the
universal symmetry (and not “covariance”) of gravitation for matter and, in-
dependently, for antimatter, that is, a symmetry for all possible exterior and
interior gravitational line elements of matter and, under antiautomorphic image,
of antimatter.

Yet another need in physics is the identification of the exact symmetry that can
effectively replace broken Lie symmetries, which exact symmetry cannot possibly
be a conventional Lie symmetry due to the need of preserving the original di-
mensions so as to avoid the prediction on nonphysical effects and /or hypothetical
new particles.

It is evident that Lie’s theory in its current formulation is unable to solve the
above identified problems. In a memoir of 1978, Santilli [4] proposed a step-
by-step generalization of the conventional Lie theory specifically conceived for
nonlinear, nonlocal-integral and nonpotential-noncanonical systems.

The generalized theory was subsequently studied by Santilli in a variety of
papers (see monographs [1,2,6,7,14,15] and references quoted therein). The theory
was also studied by a number of mathematicians and theoreticians, and it is today
called the Lie-Santilli isotheory (see, e.g., monographs [32-37] and references
quoted therein, as well as specialized papers [38—43]).

A main characteristic of the Lie-Santilli isotheory, that distinguishes it from
other possible generalizations, is its isotopic character, that is, the preservation
of the original Lie axioms when formulated on isospaces over isofields, despite
its nonlinear, nonlocal and noncanonical structure when projected in ordinary
spaces. This basic feature is evidently permitted by the reconstruction of linearity,
locality and canonicity on isospaces over isofields studied in the preceding section.

To begin, let us recall that Lie’s theory is centrally dependent on the basic
N-dimensional unit I = Diag.(1,1,...,1) of the enveloping algebra. The main
idea of the Lie-Santilli isotheory [4] is the reformulation of the entire conventional
theory with respect to the most general possible isounit (x,&,&,...).

One can therefore see from the very outset the richness and novelty of the
isotopic theory since isounits with different topological features (such as Her-
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miticity, non-Hermiticity, positive-definiteness, negative-definiteness, etc.) char-
acterize different generalized theories.

In this section we outline the rudiments of the Lie-Santilli isotheory properly
speaking, that with positive-definite isounits and its isodual with negative-definite
isounits. A knowledge of Lie’s theory is assumed as a pre-requisite. A true
technical knowledge of the Lie-Santilli isotheory can only be acquired from the
study of mathematical works such as monographs [2,6,14,36,37].

In inspecting the literature, the reader should be aware that Santilli [4] con-
structed the isotopies of Lie’s theory as a particular case of the broader Lie-
admissible theory studied in Chapter 4 occurring for non-Hermitian generalized
units, and known as Lie-Santilli genotheory. As a matter of fact, a number of
aspects of the isotheory can be better identified within the context of the broader
genotheory.

The extension to non-Hermitian isounits (that was the main object of the
original proposal [4]) requires the exiting of Lie’s theory in favor of the covering
Lie-admissible theory, and will be studied in Chapter 4.

The isotopies of Lie’s theory were proposed by Santilli from first axiomatic
principles without the use of any map or transform. It is today known that
the isotheory cannot be entirely derived via the use of noncanonical-nonunitary
transforms since some of the basic structures (such as the isodifferential calculus)
are not entirely derivable via noncanonical-nonunitary transforms.

3.2.12B. Universal Enveloping Isoassociative Algebras. Let £ be an as-
sociative algebra over a field F' = F(a,+, x) of characteristic zero with generic
elements A, B, C, ..., trivial associative product A x B and unit I. The infinitely
possible isotopes & of £ were first introduced in Ref. [4] under the name of isoas-
soctative algebras. In the original proposal é coincides with £ as vector spaces but
is equipped with Santilli’s isoproduct so as to admit the isounit as the correct
left and right unit

I(x,&,@, ..)=1/T >0, (3.2.209q)

AxB=AxTx B, Ax(BxC) = (AxB)xC, (3.2.209b)
IxA=AxI=A, VA€, (3.2.209¢)

where /Al, B , ... denote the original elements A, B, ... formulated on isospace over

isofields.

Let & = &(L) be the universal enveloping associative algebra of an N-dim-
ensional Lie algebra L with ordered basis X;, £ = 1,2, ..., N, and attached
antisymmetric algebra isomorphic to the Lie algebras, [(L)]~ ~ L over F, and let
the infinite-dimensional basis I, X, X; x Xj, ¢ < 4, ... of £(L) be characterized
by the Poincaré-Birkhoff- Witt theorem.
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A fundamental property submitted in the original proposal [4] (see also [2],
pp. 154-163) is the following

THEOREM 3.2.11 (Poincaré-Birkhoff- Witt-Santilli isotheorem): Isocosets of
the isounit and the standard, isomonomials

AAAAA

I, Xy, XixXj,i<j, XixX;xXp, i<j<k, ..., (3.2.210)

form a basis of universal enveloping isoassociative algebra g(L) of a Lie algebra
L (also called isoenvelope for short).

The first application of the above infinite-dimensional basis is a rigorous char-
acterization of the isoexponentiation, Eq. (3.2.72), i.e.,

ixwxX _ éixwxX _

= [ x (exwxTxXy = (gixwxXxDy o f G — i x [ =wxTeF.  (3.2.211)

The nontriviality of the Lie-Santilli isotheory is illustrated by the emergence
of the nonlinear, nonlocal and noncanonical isotopic element T directly in the
exponent, thus ensuring the desired generalization.

The implications of Theorem 3.2.11 also emerge at the level of isofunctional
analysis because all structures defined via the conventional exponentiation must
be suitably lifted into a form compatible with Theorem 3.2.11, as illustrated by
the iso-Fourier transforms, Eq. (3.2.88).

It is today known that the main lines of isoenvelopes can indeed be derived
via the use of noncanonical-nonunitary transforms, such as

UxU #1, (3.2.212a)

I —-1=UxIxU, (3.2.212b)

Xix Xj — U x (X; x X;) x Ul = X; %X, (3.2.212¢)

Xix Xjx X — U x (X; x Xj x X3,) x Ul = X;%xX; %Xy, ete. (3.2.212d)

Nevertheless, the uncontrolled use of the above transforms may lead to misrep-
resentations. In fact, a primary objective of the Lie-Santilli isotheory is that of
preserving the original generators and parameters and change instead the associa-
tive and Lie products in an axiom-preserving way to accommodate the treatment
of nonlinear, nonlocal and noncanonical interactions.

The preservation of the generators is, in particular, necessary for physical con-
sistency because they represent conserved total quantities (such as the total en-
ergy, total angular momentum, etc.). These total quantities remain unchanged in
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the transition from closed Hamiltonian and non-Hamiltonian systems (see Sec-
tion 3.1.2). Equivalently, the generators of Lie’s theory cannot be altered by
non-Hamiltonian effects.

This physical requirement can only be achieved by preserving conventional
generators X}, and lifting instead their product X; x X; — X; >A<Xj = X; xT x X,
which is the original formulation of the Lie-Santilli isotheory [4] and remain the
formulation needed for applications to this day. It is essentially given by the
projection of the isotopic formulation on conventional spaces over conventional

fields.

3.2.12C. Lie-Santilli Isoalgebras. As it is well known, Lie algebras are the
antisymmetric algebras L ~ [£(L)]~ attached to the universal enveloping algebras
¢(L). This main characteristic is preserved although enlarged under isotopies (see
[4,2] for details). We therefore have the following

DEFINITION 3.2.15 [4]: A finite-dimensional isospace L with generic ele-
ments A,B, ..., over the isofield F with isounit I = 1/T > 0 s called a “Lie-
Santilli isoalgebra” over F when there is a composition [A:E] mn i}, called “iso-
commutator”, that is isolinear as an isovector space and such that all the following
axioms are satisfied

[A:B] = —[BA], (3.2.213a)
[A[BC)) + [BICA] + [Ci[A4;B]) = 0, (3.2.213b)
[AXB;C) = Ax[B;C] + [A,C)xB, VA,B,C € L. (3.2.213¢)

The isoalgebras are said to be: isoreal, isocomplex or isoquaternionic depending
on the assumed isofield and isoabelian when [A;B] =VA,B € L. A subset L° of
L is said to be an isosubalgebra of L when [L%L°] C L°. L° is called an isoideal
of L when [L°L] C L°. A mazimal isoideal verifying the property [L%L°] = 0 is
called the isocenter of L.

For the isotopies of additional conventional notions, theorems and properties
of Lie algebras, one may see monograph [2,6,36,37].

We merely recall the isotopic generalizations of the celebrated Lie’s First, Sec-
ond and Third Theorems introduced in the original proposal [4], but which we
do not review here for brevity. For instance, the Lie-Santilli Second Isotheorem
reads

=X xT(z,8,%,...) x X; — Xj x T(x,4,&,...) x X; = Ch(2,3,%,... )% Xp,
(3.2.214b)
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where the C’s, called the structure isofunctions, generally have an explicit de-
pendence on the underlying isovariable (see the examples later on), and verify
certain restrictions from the Isotopic Third Theorem.

It is today known that Lie-Santilli isoalgebras can be reached via a nonca-
nonical-nonunitary transform of conventional Lie algebras. In fact, we have

(X, X;] = ij X X —

U x [X;, X;] x Ul = [Xi3X;] =
U x (CF x Xg) x Ut = Ci(a,2,2,...)% X} (3.2.215)

However, again, this type of derivation of the isotheory may be misleading in phys-
ical applications due to the need to preserve the original generators unchanged,
in accordance with the original formulation [4] of 1978. In this case we shall use
the following projection of the isoalgebras on the original space over the original
field

(X Xj] = Xi x Tx Xj — X; x T x Xy = Cli(x,,...) x Xy. (3.2.216)

It has been proved (see, e.g., [2,4,6] for details) that Lie-Santilli isoalgebras L
are isomorphic to the original algebra L. In other words, the isotopies with I>0
cannot characterize any new algebra because all possible Lie algebras are known
from Cartan classification. Therefore, Lie-Santilli isoalgebras merely provide new
nonlinear, nonlocal and noncanonical realizations of existing algebras. It should
be stresses that the above isomorphism is lost for more general liftings as shown
in the next chapter.

3.2.12D. Lie-Santilli Isogroups. Under certain integrability conditions hereon
assumed, Lie algebras L can be “exponentiated” to their corresponding Lie trans-
formation groups G and, vice-versa, Lie transformation groups G admit their cor-
responding Lie algebra L when computed in the neighborhood of the identity I.

These basic properties are preserved under isotopies although broadened to
the most general possible nonlinear, nonlocal and noncanonical transformations
groups.

DEFINITION 8.2.16 /4] A right isomodular Lie-Santilli zsotmnsformatwn
group G on an 1s0space S(:r F) over an zsoﬁeld F with common isounit I =
l/T > 0 is a group mapping each element T € S into a new element &' € S via
the isotransformations

i =gw)xi, #,4 €S, wel, (3.2.217)

such that:
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1) The map §>A<S” into S is isodifferentiable Vg € G;
2) I is the left and right unit

Ixg=gxI=g, Vge, (3.2.218)

3) the isomodular action is isoassociative, i.e.,

1% (Gox2) = (G1XG2) X &, Yg1,02 € G; (3.2.219)
4) in correspondence with every element g(w) € G there is the inverse element
g1 = g(—w) such that
§(0) = g% g(—w) = I (3.2:220)
5) following composition laws are verified
G xg(a') = g xg(w) = (i + '), ¥g € G, w € F. (3.2.221)

The I left isotransformation group is defined accordingly.

The notions of connected or simply connected transformation groups carry over
to the isogroups in their entirety.

The most direct realization of the (connected) isotransformation groups is that
via isoexponentiation,

g(w) — Héiiwkf(k — (H einkXXkXT(x,i,i,...)) % j7 (32222)
k k

where the X’s and w’s are the infinitesimal generators and parameters, respec-
tively, of the original algebra L, with corresponding connected isotransformations

= g(w)xz = (Hé%%“}’“)&’f) xIxTxzxl=
k

_ (H eiXWXkXTA(m’fv-J) xz x 1. (3.2.223)
k

Equations (3.2.223) hold in some open neighborhood N of the isoorigin of
L and, in this way, characterize some open neighborhood of the isounit of G.
Consequently, under the assumed continuity and connectivity properties, Lie-
Santilli isoalgebras can be obtained as infinitesimal versions of finite Lie-Santilli
isogroups, as illustrated by the following finite isotransform

A(w) _ (ézxwif()%fi(());((é—iiwif() _

_ (eixwxf(xf“) > A(O) > (e—ixwaxX) (3.2.224)
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with infinitesimal version in the neighborhood of I

A~

A(dw) = (I 4 ixdiox X 4 .. )X A0)x(I —ixdioxX +...) =

= A(0) + ixdiox X x A(0) — ixdiwx A(0)x X, (3.2.225)
that can be written
iAW) _ Ao - %%A = [AX), (3.2.226)
w

Note the crucial appearance of the isotopic element T(m, &,%,...) in the expo-
nent of the isogroup. This ensures a structural generalization of Lie’s theory of
the desired nonlinear, nonlocal and noncanonical form.

Still another important property is that conventional group composition laws
admit a consistent isotopic lifting, resulting in the following Baker-Campbell-
Hausdorff-Santilli Isotheorem [4]

(X% (6%2) = &X3, (3.2.227a)

Xy =X+ Xo+ [X10X0]/2 + (X1 — X[ X0 X))/ 12+ ... . (3.2.227h)

Let G1 and Gg be two isogroups with respective isounits I 1 and Ig The direct
isoproduct G1x Gy is the i isogroup of all ordered pairs

(91,82), &1 € G142 € Ga, (3.2.228)

with isomultiplication
(91, 92) % (91, 93) = (91%31, G2 X 35), (3.2.229)
total isounit (17, ]) and inverse (j;” ,9512)

The following particular case is important for the isotopies of inhomogeneous
groups. Let G be an isogroup and G the isogroup of all its inner isoautomor-
phisms. Let Gg be a subgroup of Ga, and let A(g) be the image of g € G under
G4. The semidirect isoproduct GiGg is the isogroup of all ordered pairs

(9, 0)%(3°,8%) = (9, A(3°), (A, A?), (3.2.230)

with total isounit given by ftot =1 xI°.

The studies of the isotopies of the remaining aspects of the structure theory of
Lie groups is then consequential.

It is hoped that the reader can see from the above elements that the entire
conventional Lie theory does indeed admit a consistent and nontrivial lifting into
the covering Lie-Santilli formulation.
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3.2.12E. Isorepresentations of Lie-Santilli Isoalgebras. Despite consider-
able research on the Lie-Santilli isotheory over the past 26 years, the study of the
isorepresentations of the Lie-Santilli isoalgebras remains vastly unknown at this
writing (summer 2004), with the sole exception of the fundamental (or regular)
isorepresentations that were also identified by Santilli in the original proposal [4].

In this monograph we shall primarily use in the applications of hadronic me-
chanics the fundamental isorepresentations or other isorepresentations reducible
to the latter.

Let L be an N-dimensional Lie algebra with N-dimensional unit I =
Diag.(1,1,...,1). Let R be the fundamental, N-dimensional matrix representa-
tion of L. Let L be the isotope of L characterized by the N-dimensional isounit
I =U x U > 0. It is then evident that the fundamental isorepresentation of L
is given by

R=UxRxU', UxU'=1#1I,1>0. (3.2.231)

Interested colleagues are encouraged to study the isorepresentation theory be-
cause, as we shall see in the next sections, the fundamental notion of hadronic
mechanics, that of isoparticles, is characterized by an irreducible isorepresenta-
tion of the Poincaré-Santilli isosymmetry.

3.2.12F. Isodual Lie-Santilli Isotheory. As indicated Chapters 1 and 2, the
contemporary formulation of Lie’s theory is one of the most serious obstacles
for a consistent classical representation of antimatter, because it lacks an appro-
priate conjugate formulation that, after quantization, is compatible with charge
conjugation.?°

It is easy to verify that the isotheory presented above admits a consistent
antiautomorphic image under isoduality, thus permitting the treatment of anti-
matter under nonlinearity, nonlocality and noncanonicity as occurring in interior
conditions, such as for the structure of an antimatter star.

In fact, we have the isodual universal enveloping isoassociative isoalgebra éd
characterized by the isodual Poincaré-Birkhoff- Witt-Santilli isotheorem with in-
finite dimensional basis

1 xg, XExORE, i<, XEIRIIRE, i <<k, ... (3.2.232)

The isodual Lie-Santilli isoalgebra L% =~ (éd)_ attached to &7 is characterized

by the isodual Lie-Santilli Second Isotheorem

o o . Ak
A SRR = R - O (322)

20The reader is urged to verify that the classical treatment of antimatter via the so-called dual Lie
algebras does not achieve antiparticles under quantization, trivially, because of the uniqueness of the
quantization channel for both particles and antiparticles.
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Under the needed continuity and connectivity property, the isodual exponentia-
tion of L% characterizes the connected isodual Lie-Santilli transformation isogroup
T s

N N N At X w
x/d — (gd(wd) — erd

Interested readers can then easily derive any additional needed isodual prop-
erty.

)x4ad, (3.2.234)

3.2.13  Unification of All Simple Lie Algebras into
Lie-Santilli Isoalgebras

The original proposal [4] of 1978 included the conjecture that all simple Lie
algebras of dimension N can be unified into a single Lie-Santilli isoalgebra of the
same dimension, and gave an explicit example. The conjecture was subsequently
proved by the late mathematicians Gr. Tsagas [42] in 1996 for all simple Lie
algebras of type A, B, C and D. The premature departure of Prof. Tsagas while
working at the problem prevented him to complete the proof of the conjecture
for the case of all exceptional Lie algebras. As a result, the proof of the indicated
conjecture remain incomplete at this writing.

For the unification here considered it is important to eliminate the restriction
that the isounits are necessarily positive definite, while preserving all other char-
acteristics, such as nowhere singularity and Hermiticity. As a result, in its simple
possible form, the isounit can be diagonalized into the form whose elements can
be either positive or negative,

I = Diag.(n?,4n2,...,4n%) =1/T, np € R, n;; #0, k=1,2,...,N.
(3.2.235)

The example provided in the original proposal [4], subsequently studied in
detail in Refs. [8], consisted in the classification of all possible simple Lie algebra
of dimension 3. In this case, Cartan’s classification produces two non-isomorphic
Lie algebras, the compact rotational algebra in three dimension SO(3) and the
noncompact algebra SO(2.1).

The distinction between compact and noncompact algebras is lost under the
class of isotopies here considered. In fact, the classification of all possible, simple,
three-dimensional Lie-Santilli isoalgebras Ls for the case of diagonal isounits is
characterized by the isounit itself and can be written

I = Diag.(+1,+1,+1), L3~ SO(3), (3.2.236a
I = Diag.(+1,41,-1), Lz~ SO(2.1), (3.2.236b
I = Diag.(+1,—1,41), L3~ SO(2.1), (3.2.236¢

)
)
)
I = Diag.(—1,+1,+1), Lz ~ SOI(2.1), (3.2.236d)



HADRONIC MATHEMATICS, MECHANICS AND CHEMISTRY 341

I = Diag.(—1,-1,-1), Lz~ SO(3)%, (3.2.236¢)

I = Diag.(—1,—1,+1), Lz~ SO(2.1)¢, (3.2.236.f)
I = Diag.(—1,41,-1), Lz~ SO(2.1), (3.2.2369)

I = Diag.(+1,-1,—-1), Lz~ SO(2.1)¢, (3.2.236h)
I = Diag.(+n?,+n%,+n?), Lz~ SO(3), (3.2.2361)

f = Diag.(+n3,+n3, —n3), L3~ SO(2.1), (3.2.236)
= Diag.(+n2,—n3,+n2), L3~ SO(2.1), (3.2.236k)

= Diag.(—n3, +n2, +n2), Lz~ SOI(2.1), (3.2.2361)

= Diag.(—n?, —n2, —n2), Lz~ SO(3)¢, (3.2.236m)

f = Diag.(—n?, —n3, +n§), Ly~ SO(2.1)4, (3.2.236n)
I = Diag.(—n?,+n3, —n?), L3~ SO(2.1), (3.2.2360)
I = Diag.(+n?,—n%,—n?), Lz~ SO(2.1)¢, (3.2.236p)

In conclusion, when studying simple algebras from the viewpoint of the cover-
ing Lie-Santilli isoalgebras, there exist only one single isoalgebra in three dimen-
sions, L3 without any distinction between compact and noncompact algebras.

The realization of the simple isoalgebra L3 with diagonal isounits consists of 21
different Lie-Santilli isoalgebras in three dimension that can be reduced to 4 topo-
logically different Lie algebras, namely SO(3), SO(2.1), SO(3)% and SO(2.1)%.

All distinctions between these 21 different realizations are lost at the level of
abstract Lie-Santilli isoalgebra Ls.

It should be stressed that, by no means, the 21 realizations (3.2.236) exhaust
all possible forms of Lie-Santilli simple isoalgebras in three dimensions because in
realizations (3.2.236) we have excluded nondiagonal realizations of the isounit, as
well as imposed additional restrictions on the isounit, such as single valuedness
and Hermiticity.

Essentially the same results hold for the unification of the Lie Algebras of type
A, B, C, and D studied by Tsagas [42].

It is hoped that interested mathematicians can complete the proof of Santilli’s
conjecture for the remaining exceptional algebras. In considering the problem,
mathematicians are suggested to keep in mind that Hermitian and diagonal real-
izations of the isounit (3.2.135) are expected to be insufficient, thus implying the
possible use of nowhere singular, Hermitian, nondiagonal isounits, or mowhere
singular, Hermitian, nondiagonal and multivalued isounits, or nowhere singular,
non-Hermitian, nondiagonal and multivalued isounits.
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3.2.14 The Fundamental Theorem for Isosymmetries
and Their Isoduals

The fundamental symmetries of the 20-th century physics deal with point-like
abstractions of particles in vacuum under linear, local and potential interactions,
and are the Galilei symmetry G(3.1) for nonrelativistic treatment or the Poincaré
symmetry for relativistic formulations.

A central objective of hadronic mechanics is the broadening of these funda-
mental spacetime symmetries to represent extended, nonspherical and deformable
particles under linear and nonlinear, local and nonlocal and potential as well as
nonpotential interactions.

In fact, as we shall see, all novel industrial applications of hadronic mechanics
are crucially dependent on the admission of the extended character of particles
or of their wavepackets in conditions of deep mutual penetration. In turn, the
latter conditions imply new effects permitting basically new energies and fuels
that are completely absent for conventional spacetime and other symmetries.

Alternatively and equivalently a central problem of hadronic mechanics is the
construction in an explicit form of the symmetries of all possible nonsingular, but
otherwise arbitrary deformations of conventional spacetime and internal invari-
ants.

All these problems and others are resolved by the following important:

THEOREM 3.2.12 [6]: Let G be an N-dimensional Lie symmetry group of a
K-dimensional metric or pseudo-metric space S(x,m,F) over a field F,

G: ' =Aw)xz, v =Aw)xy, zyeb, 3.2.237a)

(
(' =y )P x AT xmxAx(z—y)=(x—1y) xmx (z—y), (3.2.237b)
Af(w) x m x A(w) = m. (3.2.237¢)

Then, all mﬁmtely posszble isotopies G of G acting on the isospace S(:U M F)
M=mxI= (Tk X mk]) x I characterized by the same generators and parameters
of G and new isounits I= 1/T > 0 leave invariant the isocomposition on the
projection S'(x,m, F) of 5'(33, M,F) on the original space S(x,m, F)

G: o' =Aw)xz, v =Aw)xy, zyeb, (3.2.238a)
(' =) x AT xmx Ax (z—y)=(x—y) xmx(@—y), (3.2.238b)
At () x i x A() = 7. (3.2.238¢)

Similarly,all infinitely possible isodual z'sotopjes Ge of G acting on the isodual
isospace Sd(:z: M® F), Md (T4 x m?) x I characterized by the isodual gen-
erators X parameters % and isodual isounit I = 1 / T < 0 leave invariant the
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isodual isocomposition on the projection gd(md, m?, F?)

A~

G 2= A x? g = AT x Tyl 2yt e 59 (3.2.239a)
(' =y xIAT i x4 Ad x4 (z—y)d = (z—y)1* x Tl x¥ (z—y)d, (3.2.239b)

AT x@gpd xd Ad = il (3.2.239¢)

Proof. Assume that N = K and the representation A is the fundamental one.
Recall that metrics, isometrics and isounits are diagonal. Then on S(x, 7, F') we
have the identities

I=UxU'#£1, T=UxUH, (3.2.240a)
Ux (AxmxA)xU" =
—(UxAxUNYx (U xmxUY)x(UxAxU) =
=Ax (T xm)xA=AxmxA=rm. (3.2.2400)

The proof of the remaining cases are equally trivial. q.e.d.

Note that the isotopic symmetries and their isoduals can be uniquely and
explicitly constructed with the methods summarized in this section via the sole
use of the original symmetry and the isounit characterizing the deformation of
the original metric m.

Under our assumptions, the isosymmetries can be constructed in the needed,
explicit, nonlinear, nonlocal and noncanonical forms. In fact, the existence of
the original symmetry transformations plus the condition I > 0 ensure the con-
vergence of the infinite isoseries of the isoexponentiation, resulting in the needed
explicit form, as we shall see in various examples in the next sections.

3.3 CLASSICAL LIE-ISOTOPIC MECHANICS FOR
MATTER AND ITS ISODUAL FOR
ANTIMATTER

3.3.1 Introduction

One of the reasons for the majestic consistency of quantum mechanics is the
existence of axiomatically consistent and invariant classical foundations, given by
classical Lagrangian and Hamiltonian mechanics, namely, the discipline based on
the truncated analytic equations

d OL(t,r,v) OL(t,r,v)
G or  ar =0 (3.3.1a)
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drk  OH(t dpq H(t
ri _ OH(trp)  dpux __OH(t1p) (3.3.1b)
dt Opak dt org

k=1,2,3 a=1,23,...,N,

with a unique and unambiguous map into operator forms.

Following the original proposal [5] of 1978 to build hadronic mechanics, this
author did not consider the new discipline sufficiently mature for experimen-
tal verifications and industrial applications until the new discipline had equally
consistent and invariant classical foundations with an equally unique and unam-
biguous map into operator formulations.

Intriguingly, the operator foundations of hadronic mechanics were sufficiently
identified in the original proposal [5], as we shall see in the next section. However,
the identification of the classical counterpart turned out to be a rather complex
task that required decades of research.

The objective, fully identified in 1978, was the construction of a covering of clas-
sical Lagrangian and Hamiltonian mechanics, namely, a covering of Eqs. (3.3.1),
admitting a unique and unambiguous map into the already known Lie-isotopic
equations of hadronic mechanics.

The mandatory starting point was the consideration of the true Lagrange and
Hamilton equations, those with external terms

d OL(t,r,v)  OL(t,r,v)

=F, 3.2
dt 81}5 87“5 akz(tara U)7 (33 CL)
drk  OH(t,r,p)  dpar OH (t,r,p)
e — L = — L F.(t 3.3.2b
dt 8pa,k ) dt 87“’; + k( 7T7p)7 ( )

since they were conceived, specifically, for the interior dynamical systems treated
by hadronic mechanics.

In fact, the legacy of Lagrange and Hamilton is that classical systems cannot
be entirely represented with one single function today called a Lagrangian or a
Hamiltonian used for the representation of forces derivable from a potential, but
require additional quantities for the representation of contact nonpotential forced
represented precisely by the external terms.

As such, the true Lagrange and Hamilton equations constitute excellent can-
didates for the classical origin of hadronic mechanics.

3.3.2 Insufficiencies of Analytic Equations with
External Terms
It was indicated by Santilli [4] also in 1978 (see the review in Chapter 1 for more

details) that the true analytic equations cannot be used for the construction of a
consistent covering of conventional analytic equations because the new algebraic
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brackets of the time evolution of a generic quantity A(r,p) in phase space

dA 0A
_0A _OH OH _9A  0A

8rkX87m_WX87m+WXFk’ (3.3.3)
violate the right distributive and scalar laws, Eqgs. (3.2.5) and (3.2.6). Conse-
quently, the true analytic equations in their original formulation lose “all” possible
algebras, let alone all possible Lie algebras. No axiomatically consistent covering
can then be build under these premises.?!

The above insufficiency essentially established the need of rewriting the true
analytic equations into a form admitting a consistent algebra in the brackets of
the time evolution laws and, in addition, achieves the same invariance possessed
by the truncated analytic equations.

Even though its main lines were fully identified in 1978, the achievement of the
new covering mechanics resulted to require a rather long and laborious scientific
journey.

This section is intended to outline the final formulation of the classical mechan-
ics underlying hadronic mechanics in order to distinguish it from the numerous
attempts that were published with the passing of time.

As a brief guide to the literature, the reader should be aware that the true
analytic equations (3.3.2) are generally set for open nonconservative systems.
These systems require the broader Lie-admissible branch of hadronic mechanics
that will be studied in the next chapter.

Therefore, the reader should be aware that several advances in Lie-isotopies
have been obtained and can be originally identified as particular cases of the
broader Lie-admissible theories.

This chapter is dedicated to the study of classical and operator closed-isolated
systems verifying conventional total conservation laws while having linear and
nonlinear, local and nonlocal as well as potential and nonpotential internal forces.

The verification of conventional total conservation law requires classical brack-
ets that, firstly, verify the right and left distributive and scalar laws (as a con-
dition to characterize an algebra), and, secondly, the brackets are necessarily
antisymmetric.

The brackets of conventional Hamiltonian mechanics are Lie. Therefore, a
necessary condition to build a true covering of Hamiltonian mechanics is the
search of brackets that are of the broader Lie-isotopic type. As a matter of

21For additional problematic aspects of the true analytic equations, one may consult Ref. [4] or the
review in Chapter 1.
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fact, this feature, fully identified in 1978 [4,5], was the very motivation for the
construction of the isotopies of the Lie theory reviewed in Section 3.2.12.

In summary, the construction of a covering of the conventional Hamiltonian
mechanics as the classical foundations of the Lie-isotopic branch of hadronic me-
chanics must be restricted to a reformulation of the true analytic equations (3.3.2)
in such a way that the underlying brackets are Lie-isotopic, and the resulting me-
chanics is invariant.

3.3.3 Insufficiencies of Birkhoffian Mechanics

Santilli dedicated the second volume of Foundations of Theoretical Mechanics
published by Springer-Verlag [2] in 1982 to the construction of a covering of
classical Hamiltonian mechanics along the above indicated requirement. The
resulting new mechanics was released under the name of Birkhoffian mechanics
to honor G. D. Birkhoff who first discovered the underlying analytic equations in
1927.22

Conventional Hamiltonian mechanics is based on the canonical action principle

JA° = (5/(pk x dr® — H x dt) = 0, (3.3.4)

and, via the use of the unified notation
b= (") = (r',pj), (3.3.5a)
R’ = (R}) = (px,0), p=1,2,...,6, (3.3.5b)
can be written
5A":<5/(RZ><db“—H><dt)E
= 6/(pk x dr¥ — H x dt) = 0. (3.3.6)

from which the conventional Hamilton’s equations (3.3.1b) acquire the unified
form

v OH
(.AJHV X E = W, (337)
where
oR, OR,

Wpy = Obi - b (338)

is the fundamental (canonical) symplectic tensor (3.2.187).

22Interested readers should consult, for brevity, the historical notes of Ref. [2].
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The fundamental (conventional Poisson) brackets of the time evolution then
acquire the unified form

dA 0A OH
— _ p
o [A, H| g <X o (3.3.9)
where
W = [(wag) 1M (3.3.10)

is the fundamental (canonical) Lie tensor.
Santilli [2] based the construction of a covering isotopic (that is, axiom-pre-
serving) mechanics on the most general possible Pfaffian action principle

A = 6/(Ru X dbt — B x dt) = 0, (3.3.11)

where the R, (b) functions are now arbitrary functions in phase space, e.g., of the
type '
R(b) = (R,u) = (EZ'(’I“,])),DJ (Tap))v (33]‘2)
verifying certain regularity conditions [2].
It is easy to see that principle (3.3.11) characterizes the following analytic

equations?®3
v 0B
Q;U'V X E = @, (33130/)
OR, OR,
Gw = 0 ~ o (3.3.13b)

is the most general possible symplectic tensor in local coordinates. Eqs. (3.3.12)
were called Birkhoff’s equations because, following a considerable research, they
resulted to have been first identified by D. G. Birkhoff in 1927. The function
B was called the Birkhoffian in order to distinguish it from the conventional
Hamiltonian, since the latter represent the total energy, while the former does
not.

The fundamental brackets of the time evolution then acquire the unified form

dA DA OB

= 214 _

7= QY x o (3.3.14a)
QM = [(Qup) 1. (3.3.14b)

The covering nature of Egs. (3.3.11)—(3.3.14) over the conventional Egs.
(3.3.4)—(3.3.10) is evident. In particular, brackets (3.3.14) are antisymmetric
and verify the Lie axioms, although in the generalized Lie-Santilli isotopic form.

23The equations are called “analytic” in the sense of being derivable from a variational principle.
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Moreover, Birkhoffian mechanics was proved in Ref. [2] to be “directly uni-
versal”, that is, capable of representing “all” possible (sufficiently smooth and
regular) Newtonian systems directly in the “frame of the observer” without any
need for the transformation theory.

Therefore, at the time of releasing monograph [2] in 1982, the Birkhoffian
mechanics appeared to have all the necessary pre-requisites to be the classical
foundation of hadronic mechanics.

Unfortunately, subsequent studies established that Birkhoffian mechanics can-
not be used for consistent physical applications because it is afflicted by the catas-
trophic inconsistencies studied in Section 1.4.1, with particular reference to the
lack of invariance, namely, the inability to predict the same numbers for the same
physical conditions at different times owing to the noncanonical character of the
time evolution.

Moreover, canonical action (3.3.4) is independent from the momenta, A° =
A°(r), while this is not the case for the Pfaffian action (3.3.11) for which we
have A = A(r,p). Consequently, any map into an operator form implies “wave-
functions” dependent on both coordinates and momenta, 1 (r, p). Therefore, the
operator image of Birkhoffian mechanics is beyond our current knowledge, and
its study is deferred to future generations.

The above problems requested the resumption of the search for the consistent
classical counterpart of hadronic mechanics from its beginning.

Numerous additional generalized classical mechanics were identified but they
still missed the achievement of the crucial invariance (for brevity, see monographs
[15,16] of 1991 and the first edition of monograph [6,7] of 1993).

By looking in retrospect, the origin of all the above difficulties resulted to be
where one would expect them the least, in the use of the ordinary differential
calculus.

Following the discovery in 1995 (see the second edition of monographs [6,7]
and Ref. [10]) of the isodifferential calculus, the identification of the final, ax-
iomatically consistent and invariant form of the classical foundations of hadronic
mechanics emerged quite rapidly.

3.3.4 Newton-Santilli Isomechanics for Matter and its
Isodual for Antimatter

The fundamental character of Newtonian Mechanics for all scientific inquiries is
due to the preservation at all subsequent levels of treatment (such as Hamiltonian
mechanics, Galileo’s relativity, special relativity, quantum mechanics, quantum
chemistry, quantum field theory, etc.) of its main structural features, such as:

1) The underlying local-differential Euclidean topology;

2) The ordinary differential calculus; and

3) The consequential point-like approximation of particles.
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Nevertheless, Newton’s equations have well known notable limitations to main-
tain such a fundamental character for the entirely of scientific knowledge without
due generalization for so many centuries.

As indicated in Chapter 1, the point-like approximation is indeed valid for very
large mutual distances among particles compared to their size, as occurring for
planetary and atomic systems (exterior dynamical systems). However, the same
approximation is excessive for systems of particles at short mutual distances, as
occurring for the structure of planets, hadrons, nuclei and stars (interior dynam-
ical systems).

Also, dimensionless particles cannot experience any contact or resistive in-
teractions. Consequently, dissipative or, more generally, nonconservative forces
used for centuries in Newtonian mechanics are a mere approximation of contact
nonpotential nonlocal-integral interactions among extended constituents, the ap-
proximation being generally achieved via power series expansion in the velocities.

It should be finally recalled on historical grounds that Newton had to construct
the differential calculus as a pre-requisite for the formulation of his celebrated
equations.

No genuine structural broadening of the disciplines of the 20-th century is pos-
sible without a consistent structural generalization of their foundations, Newton’s
equations in Newtonian mechanics.

Santilli’s isomathematics has been constructed to permit the first aziomatically
consistent structural generalization of Newton’s equations in Newtonian mechan-
ics since Newton’s time, for the representation of extended, monspherical and
deformable particles under linear and nonlinear, local and nonlocal and potential
as well as nonpotential interactions as occurring in the physical reality of interior
dynamical systems.

By following Newton’s teaching, the author has dedicated primary efforts to the
isotopic lifting of the conventional differential calculus, topology and geometries
[6,10] as a pre-requisite for the indicated structural generalization of Newton’s
equations.

To outline the needed isotopies, let us recall that Newtonian mechanics is
formulated on a 7-dimensional representation space characterized by the following
Kronecker products of Euclidean spaces

Siot = E(t, Ry) x E(r,0,R,) x E(v,0, Ry;), (3.3.15)

of the one dimensional space E(t, R;) representing time t, the tree dimensional
Euclidean space E(r,d, R,) of the coordinates r = (r¥) (where k = 1,2, 3 are the
Euclidean axes and a = 1,2,..., N represents the number of particles), and the
velocity space E(v,0d, Ry),v = dr/dt.

It is generally assumed that all variables ¢,r, and v are defined on the same
field of real numbers R. However, the unit of time is the scalar I = +1, while the
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unit of the Euclidean space is the matriz, and the same happens for the velocities,
I, = I, = Diag.(1,1,1).

Therefore, on rigorous grounds, the representation space of Newtonian me-
chanics must be defined on the Kronecker product of the corresponding fields

Rtot = Rt X Rr X Rv (3316)
with total unit
Itot = 1; X Diag.(1,1,1), x Diag.(1,1,1),. (3.3.17)

The above total unit can be factorized into the production of seven individual
units for time and the two sets of individual Euclidean axes a,y,a with corre-
sponding factorization of the fields

Tiot = 1¢ X 1pg X 1y X 1y X Lyg X 1oy X 1z, (3.3.18a)

Riot = Ry X Ryy X Rpy X Ry X Ryp X Ryy X Ry, (3.3.180)

that constitute the foundations of the conventional Fuclidean topology here as-
sumed as known.

Via the use of Eqgs. (3.1.5), Newton’s equations for closed-non-Hamiltonian
systems can then be written

dvka
dt

= Fralt,m,v) = Fot + FS4, (3.3.19q)

Mg X Akg = Mg X a

> FY5 =0, (3.3.19b)

a
Y ra(HF =0, (3.3.19¢)
a
> ra NFY =0, (3.3.19d)

a

where SA (NSA) stands for variational selfadjointness (variational nonselfad-
jointness), namely, the verification (violation) of the integrability conditions for
the existence of a potential [1], and conditions (3.3.xx), (3.3.xx) and (3.3.xx)
assure the verification of conventional total conservation laws.

The isotopies of Newtonian mechanics, today known Newton-Santilli isome-
chanics, were first submitted in the second edition of monograph [5] and in the
mathematical treatment [10].

They require the use of: the isotime t=1tx ft with isounit ft = 1/Tt > 0 and
related isofield R;; the isocoordinates 7 = (ﬁj) =rx fr, with isounit I, = 1/TT >0
and related isofield Rr; and the isovelocities v = (vgq) = v X fU with isounit
I, =1 / T, > 0 and related isofield R,.
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The Newton-Santilli isomechanics is then formulated on the 7-dimensional iso-
space

~ A~

Siot = E(, R;) x E(#,0,, Ri) X E(0,0,, Ry), (3.3.20)

with isometrics
op =T x 8§ = (TE x 615), 0y =T, x § = (TF x &), (3.3.21)
over the Kronecker product of isofields
Riot = Ry X R, X Ry, (3.3.22)

with total isounit R A A R
ItOtZItXITXIU:

= n? x Diag.(n?,, ngy,ngz) X Diag.(ngz,n?]y, n2). (3.3.23)

Consequently, the isounit can also be factorized into the product of the follow-
ing seven distinct isounits, with related product of seven distinct isofields

? 2., 2 2 2 2 2 2
Tiot =My X My X Mgy X Mgy X Mgy X Mgy, X Ny (3.3.24a)
Riot = Rt X Rpp X Ryy X Ry X Ryp X Ryy X Ry, (3.3.24b)

and consequential applicability of the fundamental Tsagas-Sourlas-Santilli-Fal-
con-Nunez isotopology (or TSSFN Isotopology) that allows, for the first time to
the author’s best knowledge, a consistent representation of extended, nonspherical
and deformable shapes of particles in newtonian mechanics, here represented via
the semiaxes n2 = n2(t,r,v,...), a =t,r,v.

Note that the isospeed is the given by

dI,
dt

b B dox )

= yr =v x I, (3.3.25)

:vxftxfT—i—rxftx

thus illustrating that the isounit of the isospeed cannot be the same as that for
the isocoordinates, having in particular the value

. 1 di,
Iv:th,ﬂx<1—|—r><A>< ) (3.3.26)

v ] dt

T

The Newton-Santilli isoequation [6,10] can be written

g ke __OV(P) (3.3.27)
dt ork

a

namely, the equations are conceived in such a way to formally coincide with the
conventional equations for selfadjoint forces when formulated on isospace over
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isofields, while all nonpotential forces are represented by the isounits or, equiva-
lently, by the isodifferential calculus.

Such a conception is the only one known permitting the representation of
extended particles with contact interactions that is invariant, thus avoiding the
catastrophic inconsistencies of Section 1.4.1 and, in addition, achieves closure,
namely, the verification of all conventional total conservation laws.

An inspection of Eqgs. (3.3.27) is sufficient to see that the Newton-Santilli
isomechanics reconstructs linearity, locality and canonicity on isospaces over isofields,
as studied in Section 3.2.11. Note that this would not be the case if nonselfadjoint
forces appear in the right hand side of Egs. (3.3.27) as in Egs. (3.3.2).

Note the truly crucial role of the isodifferential calculus for the above structural
generalization of Newtonian mechanics (as well as of the subsequent mechanics),
that justifies a posteriori its construction.

The verification of conventional total conservation laws is established by a
visual inspection of Eqs. (3.3.27) since their symmetry is the Galileo-Santilli
isosymmetry [14,15] that is isomorphic to the conventional Galilean symmetry,
only formulated on isospace over isofields. By recalling that conservation laws
are represented by the generators of the underlying symmetry, conventional total
conservation laws then follow from the indicated invariance.

When projected in the conventional representation space Sio, Eqgs. (3.3.27)
can be explicitly written

. d
mx}i:mxltxi(vx ”):
dt dt
dv . . . dl v (7 A%
:mxd—:xltxlv—l—mxvxltxd—;:— éy):—bxar, (3.3.28)
that is
d L 1% . di
mxd—::thxTvxIrxE—mxvxTvxd—:. (3.3.29)

The necessary and sufficient conditions for the representation of all possible
SA and NSA forces are given by

I, =T, x1T,, (3.3.30a)

(3.3.300)

and they always admit a solution, since they constitute a system of 6n algebraic
(rather than differential) equations in the 6N 4+ 1 unknowns given by I;, and the
diagonal 3/N-dimensional matrices I, and I,.



HADRONIC MATHEMATICS, MECHANICS AND CHEMISTRY 353

_ Note that for T, = 1 we recover from a dynamical viewpoint the condition
I, = 1/I, obtained in Section 3.2.4 and 3.2.10 on geometric grounds.

As a simple illustration among unlimited possibilities, we have the following
equations of motion of an extended particle with the ellipsoidal shape experiencing

a resistive force FNS4 = —v x v because moving within a physical medium
dv
mx o = doT(o,r,p,...) =~ —y X v, (3.3.31a)
I, = Diag.(n?,n3,n?) x t/™, (3.3.31b)

where the nonlocal-integral character with respect to a kernel I' is emphasized.
Interested readers can then construct the representation of any desired non-
Hamiltonian Newtonian system (see also memoir [10] for other examples).

Note the natural appearance in the NSA forces of the velocity dependence,
as typical of resistive forces. Note also that the representation of the extended
character of particles occurs only in isospace because, when Eqs. (3.3.xx) are
projected in the conventional Newtonian space, factorized isounits cancel out
and the point characterization of particles is recovered.

Note finally the direct universality of the Newton-Santilli isoequations, namely,
their capability of representing all infinitely possible Newton’s equations in the
frame of the observer.

As now familiar earlier, Egs. (3.3.27) can only describe a system of parti-
cles. The isodual Newton-Santilli isoequations for the treatment of a system of
antiparticles are given by [6,10]

jdad AdY7d (ad
il e _ V) (3.3.32)
datd adﬁ:d

The explicit construction of the remaining isodualities of the above isomechanics
are instructive for the reader seriously interested in a classical study of antimatter
under interior dynamical conditions.

3.3.5 Hamilton-Santilli Isomechanics for Matter and its
Isodual for Antimatter

3.3.5A. Isoaction Principle and its Isodual. The isotopies of classical
Hamiltonian mechanics were first introduced by Santilli in various works (see
monographs [6,7] and references quoted therein), and are today known as the
Hamilton-Santilli isomechanics.

To identify its representation space, recall that the conventional Hamiltonian
mechanics is represented in a 7-dimensional space of time, coordinates and mo-
menta (rather than velocity), the latter characterizing phase space (or cotangent
bundle of the symplectic geometry).
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Correspondingly, the new isomechanics is formulated in the 7-dimensional iso-
space of isotime ¢, isocoordinates 7 and isomomenta p

~ N ~ N A~

St = E(t, R;) x E(,0,, Rs) x E(p, 0y, Rp), (3.3.33)
with isometrics
Op = Tp x 6 = (T x 045), 05 = Ty x & = (T1h x yy), (3.3.34)
over the Kronecker product of isofields and related isounits
Riot = Ry X R, x Ry, (3.3.35a)
foop = I x Iy 1y =
= n? X Diag.(n%x,nzy,ngz) X Dz’ag.(nfm niy, nIQ,Z) (3.3.350)

The following new feature now appears. The isophasespace, or, more tech-
nically, the isocotangent bundle of the isosymplectic geometry in local isochart
(7,p) requires that the isounits of the variables 7 and p are inverse of each others
(Section 3.2.3 and 3.2.10)

I =1/T; = fﬁ—l =75 > 0. (3.3.36)

Consequently, by ignoring hereon for notational simplicity the indices for the
N particles, the total isounit of the isophase space can be written

Tror = I; x I x Ty = I; x I, (3.3.37a)

Ig = (I}) = I; x T. (3.3.37b)

The fundamental isoaction principle for the classical treatment of matter in
interior conditions can be written in the explicit form in the # and p isovariables

to to
§Ae =3 / (scdi® — Bdl) = 3 / o x TEETP) it B Fy x df] = o,
t1 t1
(3.3.38)
where R " X
H = p%/2%m — V(7), (3.3.39)
is the isohamiltonian or simple the Hamiltonian because its projection on con-
ventional spaces represents the orginary total energy except an inessential multi-
plicative factor.
By using the unified notation

b= (") = (#,p;) = (r',pj) x Is = b x I, (3.3.40)
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and the isotopic image of the canonical R functions, Egs. (3.3.xx),
R’ = (R}) = (7,0), (3.3.41)

the fundamental isoaction principle can be written in unified notation

to to
SA‘):é/(ﬁk%ch’“—Fl%df) :8/(1%2%({6“—161%&{) _
t1

t1

to
= 3/(R; x T x db’ — H x T; x df) = 0. (3.3.42)
t1

A visual inspection of principle (3.3.38) establishes the isocanonicity of Hamilton-
Santilli isomechanics (Section 3.2.11), namely, the reconstruction of canonicity on
isospaces over isofield that is crucial for the consistency of hadronic mechanics.

In fact, the conventional action principle (3.3.4) and isoprinciple (3.3.38) coin-
cide at the abstract, realization-free level by conception and construction.

The direct universality of classical isomechanics can be seen from the arbitrari-
ness of the integrand of isoaction functional (3.3.38) once projected on conven-
tional spaces over conventional fields.

An important property of the isoaction is that its functional dependence on
isospaces over isofields is restricted to that on isocoordinates only, i.e., A = A(#).
However, when projected on conventional spaces, the functional dependence is
arbitrary, i.e., A(#) = A(r x I) = A(t,r,p,...). This feature will soon have a
crucial role for the operator image of the classical isomechanics.

It should finally be noted that isoprinciple (3.3.38) essentially eliminates the
entire field of Lagrangian and action principles of orders higher than the first,
e.g., L= L(t,r,7,#,...) because of these higher order formulations can be easily
reduced to the isotopic first-order form (3.3.38).

Recall that the action principle has the important application via the use of
the optimal control theory of optimizing dynamical systems, However, the latter
can have only been Hamiltonian until now due to the lack of a universal action
functional for non-Hamiltonian systems (that constitute, by far, the system most
significant for optimization). Recall also that the optimal control theory can only
be applied for local-differential systems due to the underlying Euclidean topology,
thus secluding from the optimization process the most important systems, those
of extended, and, therefore, of nonlocal type.

Note that isoaction principle (3.3.38) occurs for all possible non-Hamiltonian
as well as nonlocal-integral systems, thanks also to the underlying TSSFN iso-
topology (Section 3.2.7). We, therefore, have the following important:
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THEOREM 3.3.1 [6,10]: Isoaction principle (3.3.38) permits the (first known)
optimization of all possible nonpotential/non-Hamiltonian and nonlocal-integral
systems.

The isodual isoaction principle [10] for the classical treatment of antimatter in
interior conditions is given by

t2

d
i = [ i) =

_ 5d/ (R4 ddpmn — Frisdiity = o. (3.3.43)

Additional isodual treatments are left to the interested reader.

3.3.5B. Hamilton-Santilli Isoequations and their Isoduals. The discovery
of the isodifferential calculus in 1995 permitted Santilli [6,10] the identification
of the following classical dynamical equations for the treatment of matter at
the foundations of hadronic mechanics, today known as the Hamilton-Santilli
1soequations. They are easily derived via the isovariational principle and can be
written from isoprinciple (3.3.38) in disjoint notation

. _OH - Opy _ _OH (3.3.44)
i op,  di o

The same equations can be written in unified notation from principle (3.3.40)

~dbv* OH
CDIU,I/XT = X~ (3345)

dt ObH

where A
Gy = Wy X Ig (3.3.46)

is the isocanonical isosymplectic tensor that coincides with the conventional canon-
ical symplectic tensor w,, except for the factorization of the isounit (Section
3.2.10).

To verify the latter property from an analytic viewpoint, it is instructive for
the reader to verify the following identify under isounits (3.3.37)

~

Wpy =

dR  OR;, .
o o T (3:3.47)
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A simple comparison of the above isoanalytic equations with the isotopic and
conventional Newton’s equations established the following;:

THEOREM 3.3.2: Hamilton-Santilli isoequations (3.3.5) are “directly univer-
sal” in Newtonian mechanics, that is, capable of representing all possible, conven-
tional or isotopic, hamiltonian and non-Hamiltonian Newtonian systems directly
in the fized coordinates of the experimenter.

It is now important to show that Egs. (3.3.45) provide an identical reformu-
lation of the true analytic equations (3.3.2). For this purpose, we assume the
simple case in which isotime coincide with the conventional time, that is, ¢ = ¢,
I, = +1 and we write isoequations (3.3.45) in the explicit form

dr¥/dt \ [ O3xs —I3x3 dr¥/dt ) _
(w) x < dpy/dt > B < s Osxs ) "\ dppdt )~
—dpp/dt \ [ OH/Or* \ _ ([ I.x OH/or
drfjat )~ \ 0H/dpy, )~ \ Tk x 0H/op; )

It is easy to see that Eqgs. (3.3.xx) coincide with the true analytic equations
(3.3.2) under the trivial algebraic identification

(3.3.48)

I; = Diag.[I — F/(0H/dr)). (3.3.49)

As one can see, the main mechanism of Eqs. (3.3.45) is that of transforming
the external terms F = FN94 into an explicit realization of the isounit fg. As a
consequence, reformulation (3.53.45) constitutes direct evidence on the capability
to represent non-Hamiltonian forces and effects with a generalization of the unit
of the theory.

Note in particular that the external terms are embedded in the isoderivatives.
However, when written down explicitly, Eqgs. (3.3.2) and (3.3.45) coincide. Note
that I3 as in rule (3.3.49) is fully symmetric, thus acceptable as the isounit of
isomathematics. Note also that all nonlocal and nonhamiltonian effects are em-
bedded in 1.

The reader should note the extreme simplicity in the construction of a rep-
resentation of given non-Hamiltonian equations of motion, due to the algebraic
character of identifications (3.3.49).

Recall that Hamilton’s equations with external terms are not derivable from a
variational principle. In turn, such an occurrence has precluded the identification
of the operator counterpart of Egs. (3.3.2) throughout the 20-th century.

We now learn that the identical reformulation (3.3.45) of Egs. (3.3.2) becomes
fully derivable from a variational principle. In turn, this will soon permit the
identification of the unique and unambiguous operator counterpart.
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It should be noted that the Hamilton-Santilli isoequations are generally irre-
versible due to the general irreversibility of the external forces,

F(t,...)# F(~t,...), or (3.3.50a)
I(t,...) = Diag.[I — F(t,...)/(0H/dt)] # I(—t,...). (3.3.500)

In particular, we have irreversibility under the conservation of the total energy
(see next chapter for full treatment). This feature is important to achieve com-
patibility with thermodynamics, e.g., to have credible analytic methods for the
representation of the internal increase of the entropy for closed-isolated systems
such as Jupiter.

The study of these thermodynamical aspects is left to the interested reader. In
this chapter we shall solely consider reversible closed-isolated systems that occur
for external forces not explicitly dependent on time and verify other restrictions.

An important aspect is that the Hamilton-Santilli isoequations coincide with
the Hamilton equations without external terms al the abstract level. In fact, all
differences between I and I, x and x, d and 9, etc., disappear at the abstract
level. This proves the achievement of a central objective of isomechanics, the
property that the analytic equations with external terms can indeed be identically
rewritten in a form equivalent to the analytic equations without external terms,
provided, however, that the reformulation occurs via the broader isomathematics.

The isodual Hamilton-Santilli isoequations for the classical treatment of anti-
matter, also identified soon after the discovery of the isodifferential calculus, are
given by

L addiin Hip

wwjx CZd-Ed = m, (3351)
where .
@, = wl, x Ig (3.3.52)

is the isodual isocanonical isosymplectic tensor. The derivation of other isodual
properties is instructed for the interested reader.

3.3.5C. Classical Lie-Santilli Brackets and their Isoduals. It is important
to verify that Egs. (3.3.44) or (3.3.45) resolve the problematic aspects of external
terms indicated in Section 3.3.2 [4]. In fact, the isobrackets of the time evolution
of matter are given by

dA . . OA.0H OH.O0A
o :[A:H = = X5x— — = X—%—,
dt ork  Op,,  Ork  Opy,
and they verify the left and right distributive and scalar laws, thus characterizing

a consistent algebra. Moreover, that algebra results to be Lie-isotopic, for which
reasons the above brackets are known as the Lie-Santilli isobrackets.

(3.3.53)
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When explicitly written in our spacetime, brackets (3.3.53) recover the brackets
(3.3.3) of the true analytic equations (3.3.2)

dH OH OH O0H O0H OH . OH &
— = X ——— X—+— X F'=—xF'=0, 3.3.54
dt  ork " Op, Op, Ork + Opi Opx ( )
where the last identity holds in view of Egs. (3.3.49). Therefore, the Hamilton-
Jacobi isoequations do indeed constitute a reformulation of the true analytic
equations with a consistent Lie-isotopic algebraic brackets, as needed (Section
3.3.3).
Note that, in which of their anti-isomorphic character, isobrackets (3.3.53)
represent the conservation of the Hamiltonian,
dH . . OH.OH OH .O0H
dt ork  0Op,  ork  Opy
This illustrates the reason for assuming closed-isolated Newtonian systems (3.3.19)
at the foundations of this chapter.
Basic isobrackets (3.3.53) can be written in unified notation
o OA. . . 0B
[A:B] = == XOT)MVXﬁ, (3356)
ObH ob¥
where @, is the Lie-Santilli isotensor. By using the notation oM = 3/(%“, the
isobrackets can be written

[A;B] = 9,A x TF x w8,0,B, (3.3.57)

and, when projected in our spacetime, the isobrackets can be written

[A;B] = 0,A x W' x IV x 9, B, (3.3.58)

where w*” is the canonical Lie tensor.

The isodual Lie-Santilli isobrackets for the characterization of antimatter can
be written

IS AT AT Ad . AT AT A
[A%BY) = 0t A" ™ 040l B (3.3.59)
where O is the isodual Lie-Santilli isotensor. Other algebraic properties can

be easily derived by the interested reader.

3.3.5D. Hamilton-Jacobi-Santilli Isoequations and their isoduals. An-
other important consequence of isoaction principle (3.3.38) is the characterization
of the following Hamilton-Jacobi-Santilli isoequations for matter [6,10]

— +H=0, (3.3.60a)
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0A°

— — pr =0, 3.3.600

ek ( )
(9{1 =0, (3.3.60¢)
P

which will soon have basic relevance for isoquantization.

Note the independence of the isoaction A from the isomomenta that will soon
be crucial for consistent isoquantization.

The isodual equations for antimatter are then given by

édAod -

5aid + H® =0, (3.3.61a)

édAod d

B kd —pr =0, (3.3.61b)
AdAod
aAiAd = 0. (3.3.61c¢)
0%p¢

The latter equations will soon result to be essential for the achievement of
a consistent operator image of the classical treatment of antimatter in interior
conditions.

3.3.5E. Connection Between Isotopic and Birkhoffian Mechanics. Since
the Hamilton-Santilli isoequations are directly universal, they can also represent
Birkhoff’s equations (3.3.13) in the fixed b-coordinates. In fact, by assuming for
simplicity that the isotime is the ordinary time, we can write the identities

b+ OH (b)

= QM (h
o (b) x

oH
ob”

= whf x fﬁ”p X (3.3.62)

Consequently, we reach the following decomposition of the Birkhoffian tensor
QP (b) = wh? x I¥,(b). (3.3.63)

Consequently, Birkhoff’s equations can indeed be identically rewritten in the
isotopic form, as expected. In the process, the reformulation provides additional
insight in the isounit.

The reformulation also carries intriguing geometric implications since it con-
firms the direct universality in symplectic geometry of the canonical two-form,
since a general symplectic two-form can always be identically rewritten in the
isocanonical form via decomposition of type (3.3.xx) and then the embedding of
the isounit in the isodifferential of the exterior calculus.
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As an incidental note, the reader should be aware that the construction of
an analytic representation via Birkhoff’s equations is rather complex, inasmuch
as it requires the solution of nonlinear partial differential equations or integral
equations [2].

By comparison, the construction of the same analytic equations via Hamilton-
Santilli isoequations (3.3.44) or (3.3.45) is truly elementary, and merely requires
the identification of the isounit according to algebraic rule (3.3.49) for arbitrarily
given external forces Fy(t,r,p).

3.3.6 Simple Construction of Classical Isomechanics

The above classical isomechanics can be constructed via a simple method which
does not need any advanced mathematics, yet it is sufficient and effective for
practical applications.

In fact, the Hamilton-Santilli isomechanics can be constructed via the system-
atic application of the following noncanonical transform to all quantities and
operations of the conventional Hamiltonian mechanics

~1/2
U= < 130 T?/2 ) 7 (3.3.64a)
3
UxUt=1s#1, (3.3.64b)
. F F

Iy = (3.3.64¢)

I— -7 .
OH /0p p/m

The success of the construction depends on the application of the above non-
canonical transform to the totality of Hamiltonian mechanics, with no exceptions.
We have in this way the lifting of: the 6-dimensional unit of the conventional
phase space into the isounit

Is — Ig = U x I x Ut; (3.3.65)
numbers into the isonumbers,
n—n=UxnxU=nx(UxU"=nx I (3.3.66)

associative product A x B among generic quantities A, B into the isoassociative
product with the correct expression and property for the isotopic element,

AxB—AXxB=Ux (AxB)xU'=A"xT x B, (3.3.67a)

A=UxAxU', B=UxBxU', T=UxU)1t=T,%  (3.3.67)
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Euclidean into iso-Euclidean spaces (where we use only the space component of
the transform)

P=atxdxr—o2=Uxa?xUt=

=@ xUYx (Ut xoxU ) x (Uxx)x (UxU) = (3.3.68)
= &' x (T x &) x 2] x I;

and, finally, we have the following isotopic lifting of Hamilton’s into Hamilton-
Santilli isoequations (here derived for simplicity for the case in which the trans-
form does not depend explicitly on the local coordinates),

db/dt —w x 0H/0b =0 —

— U xdb/dt x U —U x w x 0H/0b x U =
=db/dt x (U xU") — (U xwx Ul x (U "t x U Hx
x(U x 0H/0b x U") x (U x U") =
=db/dt x I —w x (OH/db) x I =0, (3.3.69)

where we have used the important property the reader is urged to verify
UxwxU=w. (3.3.70)

As one can see, the seemingly complex isomathematics and isomechanics are
reduced to a truly elementary construction. e its universality.

3.3.7 Invariance of Classical Isomechanics

A final requirement is necessary for a physical consistency, and that is, the
invariance of isomechanics under its own time evolution, as it occurs for conven-
tional Hamiltonian mechanics.

Recall that a transformation b — ¥'(b) is called a canonical transformation
when all the following identities hold

ob# ab”
abi/a X ww, X W = waﬁ. (3371)

The invariance of Hamiltonian mechanics follows from the property that its time
evolution constitutes a canonical transformation, as well known.

The proof of the invariant of isomechanics is elementary. In fact, an isotransfor-
mation b — b'(b) constituted an isocanonical isotransform when all the following
identities old . .

ot . . . ob”
— Xw,w X ==

iy é[;/ﬂ = (Ijag = Wap X IA6' (3372)
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But the above expression can be written

b’ e, O .
(It x X s X & x 35,5) x Is = wp x I, (3.3.73)

and they coincide with conditions (3.3.xx) in view of the identities
I X wp x IS = wpe. (3.3.74)

Consequently, we have the following important

THEOREM 3.3.3 [6,10]: Following factorization of the isounit, isocanonical
transformations are canonical.

The desired invariance of the Hamilton-Santilli isomechanics then follows.

It is an instructive exercise for the reader interested in learning isomechanics
to verify that all catastrophic mathematical and physical inconsistencies of non-
canonical theories pointed out in Chapter 1 (see Section 1.4.1 in particular) are
indeed resolved by isomechanics as presented in this section.

3.4 OPERATOR LIE-ISOTOPIC MECHANICS FOR
MATTER AND ITS ISODUAL FOR
ANTIMATTER

3.4.1 Introduction

We are finally equipped to present the foundations of the Lie-isotopic branch
of nonrelativistic hadronic mechanics for matter and its isodual for antimatter,
more simply referred to as operator isomechanics, and its isodual for antimatter
referred to as isodual operator isomechanics. The new mechanics will then be
used in subsequent sections for various developments, experimental verifications
and industrial applications.

The extension of the results of this section to relativistic operator isomechanics
is elementary and will be done in the following sections whenever needed for
specific applications. the case of operator genomechanics with a Lie-admissible,
rather than the Lie-isotopic structure, will be studied in the next chapter.

A knowledge of Section 3.2 is necessary for a technical understanding of op-
erator isomechanics. For the mathematically non-inclined readers, we present in
Section 3.4.8 a very elementary construction of operator isomechanics via nonuni-
tary transforms.

Unless otherwise specified, all quantities and operations represented with con-
ventional symbols A, H, x, etc., denote quantities and operations on conventional
Hilbert spaces over conventional fields. All quantities and symbols of the type A,
H, X, etc., are instead defined on isohilbert spaces over isofields.
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Note the use of the terms “operator” isomechanics, rather than “quantum”
isomechanics, because, as indicated in Chapter 1, the notion of quantum is fully
established within the arena of its conception, the transition of electrons between
different stable orbits of atomic structure (exterior problem), while the assump-
tion of the same quantum structure for the same electrons when in the core of
a star (interior problems) is a scientific religion at this writing deprived of solid
experimental evidence.

3.4.2 Naive Isoquantization and its Isodual

An effective way to derive the basic dynamical equations of operator isome-
chanics is that via the isotopies of the conventional map of the classical Hamilton-
Jacobi equations into their operator counterpart, known as naive quantization..
More rigorous methods, such as the isotopies of symplectic quantization, essen-
tially yields the same operator equations and will not be treated in this section
for brevity (see monograph [7] for a presentation).

Recall that the naive quantization can be expressed via the following map of
the canonical action functional

to
Ao:/(pk x dr¥ — H x dt) — —i x h x In[4)), (3.4.1)

t1

under which the conventional Hamilton-Jacobi equations are mapped into the
Schrédinger equations,

—A° =H — i x h x 0oy = H x |1), (3.4.2a)

Pk = OpA? = pp X |1h) = =i X B X Op|¥)), (3.4.20)

where [1)) is the wavefunction, or, more technically, a state in a Hilbert space H.
Isocanonical action (3.3.38) is evidently different than the conventional canon-
ical action, e.g., because it is of higher order derivatives. As such, the above naive
quantization does not apply.
In its place we have the following naive isoquantization first introduced by An-
imalu and Santilli [44] of 1990, and here extended to the use of the isodifferential
calculus

~ A~

A° = /(ﬁk%dfck — Hxdi) — —ix I x In|))), (3.4.3)

where 1 = i x I , ]z/?) is the ospwavefunction, or, more precisely, a state of the
iso-Hilbert space H outlined in the next section, and we should note that ixI x
In |¢) =i X isoln|t)).
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The use of Hamilton-Jacobi-Santilli isoequations (3.3.60) yields the following
operator equations (here written for the simpler case in which 7" has no depen-
dence on 7, but admits a dependence on velocities and higher derivatives)

—OA° = H —ix O0) = HxT x ) =Hx|y), (3.4.4a)

Pr = Ok A — P x T x |§) = ppx|h) = —ixk|h), (3.4.4b)

that constitutes the fundamental equations of operator isomechanics, as we shall
see in the next section.

As it is well known, Planck’s constant h is the basic unit of quantum mechanics.
By comparing Egs. (3.4.xx) and (3.4.xx) it is easy to see that I is the basic unit of
operator isomechanics. Recall also that the isounits are defined at short distances
as in Egs. (3.1.xxx). We therefore have the following important

POSTULATE 3.4.1 [5]: In the transition from quantum mechanics to operator
isomechanics Planck’s unit h is replaced by the integrodifferential unit I under
the condition of recovering the former at sufficiently large mutual distances,

lim [ =h=1. (3.4.5)

r—00

Consequently, in the conditions of deep mutual penetration of the wavepackets
and/or charge distributions of particles as studied by operator isomechanics there
is the superposition of quantized and continuous exchanges of energy.

3.4.3 Isohilbert Spaces and their Isoduals

As it is well known, the Hilbert space H used in quantum mechanics is ex-
pressed in terms of states |¢), |¢),..., with normalization

(W] x ) =1, (3.4.6)
and inner product

(6] x ) = / drt (r) x u(r), (3.4.7)

defined over the field of complex numbers C = C(c, +, x).
The lifting C(c, +, x) — C(é,+, X), requires a compatible lifting of H into the

isohilbert space H with isostates |1ﬁ), ]<13>, ..., isoinner product and isonormaliza-
tion
A
(Wh|x|) x T = /cff3 O (#) x T x ()| x I e, (3.4.80)

(X [) =1, (3.4.8b)
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first introduced by Myung and Santilli in 1982 [45] (see also monographs [6,7] for
a comprehensive study).

It is easy to see that the isoinner product is still inner (because T> 0). Thus,
H is still Hilbert and the lifting H — H is an isotopy. Also, it is possible to prove
that iso-Hermiticity coincides with conventional Hermiticity,

(DX (R[) = (DI AN %[), (3.4.9a)

at=ft=1. (3.4.9b)

As a result, all quantities that are observable for quantum mechanics remain
so for hadronic mechanics.

For consistency, the conventional eigenvalue equation H x |¢)) = E X [¢)) must
also be lifted into the isoeigenvalue form [7]

Hx|)) =H xT x |¢p) = Ex|[¢)) = (Ex 1) x T x |¢) = E x [¢)),  (3.4.10)

where, as one can see, the final results are ordinary numbers. .
Note the necessity of the isotopic action H x|}, rather than H x |¢). In fact,
only the former admits I as the correct unit,

Ix|py =T~V x T x |¢h) = |4). (3.4.11)
It is possible to prove that the isoeigenvalues of isohermitian operators are
isoreal, i.e., they have the structure £ = E x I, E € R(n,+, X). As a result all
real elgenvalues of quantum mechanics remain real for hadronic mechanics.
We also recall the notion of isounitary operators as the isooperators UonH
over C satisfying the isolaws

~ N

UxUt =UTxU =1, (3.4.12)

where we have used the identity Ut =0t R
 We finally indicate the notion of isoexpectation value of an isooperators H on

H over C .
IS
It is easy to see that the isoexpectation values of isohermitian operators coincide

with the isoeitgenvalues, as in the conventional case.
Note also that the isoexpectation value of the isounit is the isounit,

(3.4.131)

(I =1, (3.4.14)

provided, of course, that one uses the isoquotient (otherwise (I) = I).
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The isotopies of quantum mechanics studied in the next sections are based on
the following novel invariance property of the conventional Hilbert space [xxx],
here expressed in term of a non-null scalar n independent from the integration
variables,

(O x |9) x T = (@ x n2 x [ x (2 x I) = (g|%[) x L. (3.4.15)

Note that new invariances (3.4.15) remained undetected throughout the 20-th
century because they required the prior discovery of new numbers, those with
arbitrary units.

3.4.4 Structure of Operator Isomechanics and its
Isodual

The structure of operator isomechanics is essentially given by the following
main steps [47]:

1) The description of closed-isolated systems is done via two quantities, the
Hamiltonian representing all action-at-a-distance potential interactions, plus the
isounit representing all nonlinear, nonlocal and non-Hamiltonian effects,

H(t,r,p) = p*/2m + V(r), (3.4.16a)
I=1I(trp,ap,Vip,...). (3.4.16b)

The explicit form of the Hamiltonian is that conventionally used in quantum
mechanics although written on isospaces over isofields,

H = pkp/2xim + V(7). (3.4.17)
A generic expression of the isounit for the representation of two spinning particles
with point-like change (such as the electrons) in conditions of deep penetration of
their wavepackets (as occurring in chemical valence bonds and many other cases)

is given by

N

I=exp [rw, YT x /dv w](rm(r)] , (3.4.18)

where the nonlinearity is expressed by I'(+, 1') and the nonlocality is expressed by
the volume integral of the deep wave-overlappings [dv ¢I("”)¢T (r). All isounits
will be restricted by the conditions of being positive-definite (thus everywhere
invertible) as well as of recovering the trivial unit of quantum mechanics for
sufficiently big mutual distances r,

lim [ dv ! (r)iy(r) = 0. (3.4.19)

rT—00

2) The lifting of the multiplicative unit I > 0 — I = 1/7" > 0 requires the
reconstruction of the entire formalism of quantum mechanics into such a form to
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admit I as the correct left and right unit at all levels of study, including numbers
and angles, conventional and special functions, differential and integral calcu-
lus, metric and Hilbert spaces, algebras and groups, etc., without any exception
known to the authors. This reconstruction is “isotopic” in the sense of being
axiom-preserving. Particularly important is the preservation of all conventional
quantum laws as shown below.

3) The mathematical structure of nonrelativistic hadronic mechanics is char-
acterized by [6]:

3a) The isofield C =C(é+, x) with isounit I= I/T > 0, isocomplex numbers
and related isoproduct

~ ~

e=cxl=(ni+ixny)xI, éxd=(cxd)xI, ¢,deC, c,deC, (3.4.20)

the isofield R(ﬁ, +, x) of isoreal numbers i = n x I, n €R, being a particular
case; R

3b) The iso-Hilbert space H with isostates [¢)),|¢),..., isoinner product and
isonormalization

(GIx|9) x I €8, (%) = (3.4.21)

and related theory of isounitary operators;
3¢) The Euclid-Santilli isospace E(7,8,R) with isocoordinates, isometric and
isoinvariant respectively given by

P={r*} x I, (3.4.22a

3.4.22b
3.4.22¢

6="T(t,r,p, 0, V,...) x4,
0 = Diag.(1,1,1),
72 = (r' x 0y x ) x I € R; (3.4.22d

3d) The isodifferential calculus and the isofunctional analysis (see Section 3.2);

3e) The Lie-Santilli isotheory with enveloping isoassociative algebra { of op-
erators A, B, ..., with isounit I, isoassociative product AxB = A x T' x B,
Lie-Santilli zsoalgebm with brackets and isoexponentiation

)
)
)
)

[AB] = AXB — BXA, (3.4.23a)
U=eX =Ty x [ =1x (%), Xx=XxT, (3.4.13b)

and related isosymmetries characterizing groups of isounitary transforms on H

over C,
UxUt =00 =1. (3.4.24)

As we shall see in Sections 3.4.8 and 3.4.9, the above entire mathematical
structure can be achieved in a truly elementary way via nonunitary transforms



HADRONIC MATHEMATICS, MECHANICS AND CHEMISTRY 369

of quantum formalisms. Their isotopic reformulations then proves the invariance
of hadronic mechanics, namely, its capability of predicting the same numbers for
the same conditions at different times.

Under the above outlined structure we have the following main features:

I) Hadronic mechanics is a covering of quantum mechanics, because the latter
theory is admitted uniquely and unambiguously at the limit when the isounit
recovers the conventional unit, I—1 ;

IT) Said covering is further characterized by the fact that hadronic mechanics
coincides with quantum mechanics everywhere except for (as we shall see, gen-
erally small) non-Hamiltonian corrections at short mutual distances of particles
caused by deep mutual overlapping of the wavepackets and/or charge distribu-
tions of particles;

IIT) Said covering is finally characterized by the fact that the indicated non-
Hamiltonian corrections are restricted to verify all abstract axioms of quan-
tum mechanics, with consequential preservation of is basic laws for closed non-
Hamiltonian systems as a whole, as we shall see shortly.

Note that composite hadronic systems, such as hadrons, nuclei, isomolecules,
etc., are represented via the tensorial product of the above structures. This can
be best done via the identification first of the total isounit, total isofields, total
isohilbert spaces, etc.,

ftot:flegx..., Ctot:élxégx..., ﬂtot:ﬂlxﬂgx.... (3.4.25)

Note also that some of the units, fields and Hilbert spaces in the above ten-
sorial products can be conventional, namely, the composite structure may imply
local-potential long range interactions (e.g., those of Coulomb type), which re-
quire the necessary treatment via conventional quantum mechanics, and nonlocal-
nonpotential short range interactions (e.g., those in deep wave-overlappings),
which require the use of operator isomechanics.

3.4.5 Dynamical Equations of Operator Isomechanics
and their Isoduals
The formulations of the preceding sections permit the identification of the
following fundamental dynamical equations of the Lie-isotopic branch of hadronic
mechanics, known under the name of iso-Heisenberg equations or Heisenberg-
Santilli isoequetionsthat were identified in the original proposal of 1978 to build
hadronic mechanics [5], are can be presented in their finite and infinitesimal forms,

AAAAAA

A() = UxA@0)x Ut = (6B A(0)x {e~ >, (3.4.26a)
ixdAJdi = [AH) = AXH —HXA=AxTxH—HxTxA, (3.4.26b)
with the corresponding fundamental hadronic isocommutation rules

(D7) = ixoM =i x W x Ig, b= (#*pp), (3.4.27)
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with corresponding iso-Schridinger equations for the energy, also known as
Schrédinger-Santilli isoequations identified by Myung and Santilli [45] and
Mignani [48] in 1982 over conventional fields and first formulated in an invariant
way by Santilli in monograph [7] of 1995

ix0i ) = HxX |y = H x T x |¢p) = EX[{)) = E x |1), (3.4.28a)

@) = UXIH0)) = {15} 110(0)), (3.4.280)
and isolinear momentum first identified by Santilli in Ref. [7] of 1995 thanks to
the discovery of the isodifferential calculus

PrX[) = P x T x 1) — iX o) = —i x I, x Bilab), (3.4.29)

It is evident that the iso-Heisenberg equations in their infinitesimal and expo-
nentiated forms are a realization of the Lie-Santilli isotheory of Section 3.2, which
is therefore the algebraic and group theoretical structure of the isotopic branch
of hadronic mechanics.

Note that Egs. (3.4.26) and (3.4.28) automatically bring into focus the general
need for a time isounit and related characterization of the time isodifferential and
isoderivative

Li(t,r,..)=T,>0, (3.4.30a)
dt = I, x d, 0; =1, x ;. (3.4.300)

Note also that w*” in Egs. (3.4.xxx) is the conventional Lie tensor, namely, the
same tensor appearing in the conventional canonical commutation rules, thus
confirming the axiom-preserving character of isomechanics.

The limited descriptive capabilities of quantum models should be kept in mind,
purely Hamiltonian and, as such, they can only represent systems which are
linear, local and potential. By comparison, we can write Eq. (3.4.28a) in its
explicit form

A~ ~

xOph =i x I; x ) = Hx|) = H x T x |ih) =

.

= {pr X Pr/2x10 + Uy (E, 7)ok +
(3.4.31)

thus proving the following

THEOREM 3.4.1 [7]: Hadronic mechanics id “directly universal” for all in-
finitely possible, sufficiently smooth and regular, closed non-Hamiltonian systems,
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namely, it can represent in the fized coordinates of the experimenter all infinitely
possible closed-isolated systems with linear and nonlinear, local and nonlocal, and
potential as well as nonpotential internal forces verifying the conservation of the
total energy.

A consistent formulation of the isolinear momentum (3.4.29) escaped identifica-
tion for two decades, thus delaying the completion of the construction of hadronic
mechanics, as well as its practical applications. The consistent and invariant form
(3.4.29) with consequential isocanonical commutation rules were first identified
by Santilli in the second edition of Vol. II of this series, Ref. [7] of 1995 and
memoir [10], following the discovery of the isodifferential calculus.

3.4.6 Preservation of Quantum Physical Laws

As one can see, the fundamental assumption of isoquantization is the lifting of
the basic unit of quantum mechanics, Planck’s constant A, into a matrix I with
nonlinear, integro-differential elements which also depend on the wavefunction
and its derivatives

h=1>0—1=1I(trp,,..)=1I >0. (3.4.32)

It should be indicated that the above generalization is only internal in closed
non-Hamiltonian because, when measured from the outside, the isoexpectation
values and isoeigenvalues of the isounit recover Planck’s constant identically [46],

Iy = M =1=h, (3.4.33a)
(] x[4)
Ix|)y =TV x T x [fh) =1 x |ih) = |1)). (3.4.33b)

Moreover, the isounit is the fundamental invariant of isomechanics, thus preserv-
ing all axioms of the conventional unit I = h, e.g.,

I"=IxIx..xI=1, (3.4.34a)
~1 A~
iz =1, (3.4.34b)
ixdljdt = [ILH] = IxH — HxI = 0. (3.4.34¢)

Despite their generalized structure, Egs. (3.4.26) and (8.4.28) preserve con-
ventional quantum mechanical laws under nonlinear, nonlocal and nonpotential
interactions [7].

To begin an outline, the preservation of Heisenberg’s uncertainties can be easily
derived from isocommutation rules (3.4.27):

1 fonn 1
Azk x Apy, > g % ([#Fpr]) = 3 (3.4.35)
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To see the preservation of Pauli’s exclusion principle, recall that the regular
(two-dimensional) representation of SU(2) is characterized by the conventional
Pauli matrices o, with familiar commutation rules and eigenvalues on H over C,

[Ui,(Tj] =0y X0 —05 X0;= 2 X Z'Eijk X Ok, (3.4.36@)
o x [ih) = op x F x |ih) = 3 x ), (3.4.36D)
o3 X [th) = £1 x [1). (3.4.36¢)

The isotopic branch of hadronic mechanics requires the construction of nonuni-
tary images of Pauli’s matrices first constructed in Ref. [49] that, for diagonal
nonunitary transforms and isounits, can be written (see also Section 3.3.6)

br=Uxo,xUl, UxU'=T+1, (3.4.37a)
U— anl . 0 : UJr: —anl .0 ,
0 1 X N9 0 —1 XNy

2 -2
- (n7 O - (g 0
() 1= ()

where the n’s are well behaved nowhere null functions, resulting in the reqular
Pauli-Santilli isomatrices [49]

. (0 n? A 0 —ixn? . (n? 0
g1 = <TL% 0 ), o9 — <2Xn§ 0 , 03 = 0 n% . (3438)
Another realization is given by nondiagonal unitary transforms [loc. cit.],
o= 0 ) =0 W)
2 -2
e _ 77,1 0 ~ _ nl 0
(8 ) = )
with corresponding regular Pauli-Santilli isomatrices,
G = 0 N1 Xng 5o — 0 —iX?’LanQ
1= N1 Xng 0 » 927 ixnlxng 0 ’

N n? 0
o3 = < 01 n% > R (3440)

(3.4.37b)

(3.4.39)

or by more general realizations with Hermitian nondiagonal isounits I [15].
All Pauli-Santilli isomatrices of the above regular class verify the following
isocommutation rules and isoeigenvalue equations on H over C

656] =6i x T x 6 — 65 x T X 6; =2 X i X g4 X G, (3.4.41a)
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G2X D) = (61%61 + GaXa + G3%G3)X|P) = 3 x [4), (3.4.41b)
G3x|ih) = +£1 x [¢)), (3.4.41c¢)

thus preserving conventional spin 1/2, and establishing the preservation in iso-
chemistry of the Fermi-Dirac statistics and Pauli’s exclusion principle.

It should be indicated for completeness that the representation of the isotopic
SU (2) also admit irregular isorepresentations, that no longer preserve conven-
tional values of spin [49]. The latter structures are under study for the char-
acterization of spin under the most extreme conditions, such as for protons and
electrons in the core of collapsing stars and, as such, they have no known relevance
for isomechanics.

The preservation of the superposition principle under nonlinear interactions
occurs because of the reconstruction of linearity on isospace over isofields, thus
regaining the applicability of the theory to composite systems.

Recall in this latter respect that conventionally nonlinear models,

Ht,z,p,,...) % |) = E x i), (3.4.42)

violate the superposition principle and have other shortcomings (see Section 1.5).
As such, they cannot be applied to the study of composite systems such as
molecules. All these models can be identically reformulated in terms of the iso-
topic techniques via the embedding of all nonlinear terms in the isotopic element,

H(t,z,p,0,...) x |0) = Ho(t,z,p) x T(,...) x [) = E x [¢),  (3.4.43)

by regaining the full validity of the superposition principle in isospaces over
isofields with consequential applicability to composite systems.

The preservation of causality follows from the one-dimensional isounitary group
structure of the time evolution (3.4.28) (which is isomorphic to the conventional
one); the preservation of probability laws follows from the preservation of the ax-
ioms of the unit and its invariant decomposition as indicated earlier; the preser-
vation of other quantum laws then follows.

The same results can be also seen from the fact that operator isomechanics
coincides at the abstract level with quantum mechanics by conception and con-
struction. As a result, hadronic and quantum versions are different realizations
of the same abstract axioms and physical laws.

Note that the preservation of conventional quantum laws under nonlinear, non-
local and nonpotential interactions is crucially dependent on the capability of
isomathematics to reconstruct linearity, locality and canonicity-unitarity on iso-
spaces over isofields.

The preservation of conventional physical laws by the isotopic branch of had-
ronic mechanics was first identified by Santilli in report [47]. It should be indi-
cated that the same quantum laws are not generally preserved by the broader
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genomechanics, evidently because the latter must represent by assumption non-
conservation laws and other departures from conventional quantum settings.

With the understanding that the theory does not receive the classical deter-
minism, it is evident that isomechanics provides a variety of “completions” of
quantum mechanics according to the celebrated E-P-R argument [50], such as:

1) Isomechanics “completes” quantum mechanics via the addition of nonpo-
tential-nonhamiltonian interactions represented by nonunitary transforms.

2) Isomechanics “completes” quantum mechanics via the broadest possible
(non-oriented) realization of the associative product into the isoassociative form.

3) Isomechanics “completes” quantum mechanics in its classical image.

In fact, as proved by well known procedures based on Bell’s inequalities, quan-
tum mechanics does not admit direct classical images on a number of counts. On
the contrary, as studied in details in Refs. [51], the nonunitary images of Bell’s
inequalities permit indeed direct and meaningful classical limits which do not
exist for the conventional formulations.

Similarly, it is evident that isomechanics constitutes a specific and concrete
realization of “hidden variables” [52] A which are explicitly realized by the isotopic
element, \ = T, and actually turned into an operator hidden variables. The
“hidden” character of the realization is expressed by the fact that hidden variables
are embedded in the unit and product of the theory. X R

In fact, we can write the iso-Schrodinger equation HX[¢)) = H x A x [¢) =
E x \zﬁ}, A =T. As a result, the “variable” X (now generalized into the opera-
tor T ) is “hidden” in the modular associative product of the Hamiltonian H and
the state |1)).

Alternatively, we can say that hadronic mechanics provides an explicit and
concrete realization of hidden variables because all distinctions between H X |1))
and H X [1) cease to exist at the abstract realization-free level.

For studies on the above and related issues, we refer the interested reader to
Refs. [51] and quoted literature.

3.4.7 Isoperturbation Theory and its Isodual

We are now sufficiently equipped to illustrate the computational advantages
in the use of isotopies.

THEOREM 3.4.2 [7]: Under sufficient continuity conditions, all perturbative
and other series that are conventionally divergent (weakly convergent) can be
turned into convergent (strongly convergent) forms via the use of isotopies with
sufficiently small isotopic element (sufficiently large isounit),

T <1, |I]>1. (3.4.44)
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The emerging perturbation theory was first studied by Jannussis and Mignani
[53], and then studied in more detail in monograph [7] under the name of isoper-
turbation theory.

Consider a Hermitian operator on H over C of the type

H(k)=Hy+kxV, Hyx|p)=Eyx|¥), (3.4.45a)
Hk) % [o(k)) = E(k) x [0(k)), k> 1. (3.4.45b)

Assume that Hp has a nondegenerate discrete spectrum. Then, conventional
perturbative series are divergent, as well known. In fact, the eigenvalue E(k) of
H (k) up to second order is given by

E(k‘):Eo—l-k,‘XEl—i-kzXEg:

2
C Botkx (6 x V x |9+ k2 x 3 Kl XV X ()7 (3.4.46)
p#n Eon _EOp

But under isotopies we have
H(k)=Ho+kxV, HyxTx|)=FEyx|b), Eo# FEo, (3.4.47a)

H(k) x T x [¢(k)) = E(k) x [{(k)), E+#E, k>1. (3.4.47b)

A simple lifting of the conventional perturbation expansion then yields
E(k):Eo—l-kXEl—l-k‘Q XE2+O(k2) =

=Ey+kx | xTxVxT x|+ (3.4.48q)

w2 3 Wl X T XV X T x i)

: , (3.4.48b)
EOn - EOp

p#n

whose convergence can be evidently reached via a suitable selection of the isotopic
element, e.g., such that |T| < k.

As an example, for a positive-definite constant T < k=1, expression (3.4.46)
becomes

E(k)zéo-i-kXTZX(iﬁ\xVx]z/;*)+k;2><T5><
S [(Yp| X V' x |¢n>\2. (3.4.49)

pF#EN EOn - EOp
This shows that the original divergent coefficients 1,k,k?,... are now turned
into the manifestly convergent coefficients 1,k x T2, k% x T°, ..., with k > 1 and

~

T<1 /k, thus ensuring isoconvergence for a suitable selection of 7" for each given
k and V.
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A more effective reconstruction of convergence can be seen in the algebraic
approach. At this introductory stage, we consider a divergent canonical series,

A(k) = A(0) + k x [A, H]/1! + +k* x [[A, H], H] /2! + ... — 00, k> 1, (3.4.50)

where [A, H]| = A x H — H x A is the familiar Lie product, and the operators A
and H are Hermitian and sufficiently bounded. Then, under the isotopic lifting
the preceding series becomes [7]

A(k) = A(0) + k x [AJH] /1! + k? x [[A;H];H]/2! + - < [N| < 00, (3.4.51a)

[AH| = AxT x H—HxT x A, (3.4.51b)

which holds, e.g., for the case T = ¢ x k™!, where ¢ is a sufficiently small positive-
definite constant.

In summary, the studies on the construction of hadronic mechanics have indi-
cated that the apparent origin of divergences (or slow convergence) in quantum
mechanics and chemistry is their lack of representation of nonlinear, nonlocal,
and nonpotential effects because when the latter are represented via the isounit,
full convergence (much faster convergence) can be obtained.

As we shall see, all known applications of hadronic mechanics verify the cru-
cial condition |I| > 1, \T! < 1, by permitting convergence of perturbative series.
For instance, in the case of chemical bonds, hadronic chemistry allows computa-
tions at least one thousand times faster than those of quantum chemistry, with
evident advantages, e.g., a drastic reduction of computer time (see Chapter 9).
Essentially the same results are expected for hadronic mechanics and hadronic
superconductivity.

The reader should meditate a moment on the evident possibility that hadronic
mechanics offers realistic possibilities of constructing a convergent perturbative
theory for strong interactions. As a matter of fact, the divergencies that have
afflicted strong interactions through the 20-th century originates precisely from
the excessive approximation of hadrons as points, with the consequential sole
potential interactions and related divergencies.

In fact, whenever hadrons are represented as they actually are in reality, ex-
tended and hyperdense particles, with consequential potential as well as nonpo-
tential interactions, all divergencies are removed by the isounit.

3.4.8 Simple Construction of Operator Isomechanics
and its Isodual

Despite their mathematical equivalence, it should be indicated that quantum
and hadronic mechanics are physically inequivalent, or, alternatively, hadronic
mechanics is outside the classes of equivalence of quantum mechanics because
the former is a nonunitary image of the latter.
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As we shall see in the next chapters, the above property provides means for
the explicit construction of the new model of isomechanics bonds from the con-
ventional model. The main requirement is that of identifying the nonhamiltonian
effects one desires to represent, which as such, are necessarily nonunitary. The
resulting nonunitary transform is then assumed as the fundamental space isounit
of the new isomechanics [46]

UxUl =1+#1, (3.4.52)
under which transform we have the liftings of: the quantum unit into the isounit,
I ->I=UxIxU" (3.4.53)

numbers into isonumbers,
a—a=UxaxUl=ax(UxU)=ax1I; a=n,c (3.4.54)

associative products A x B into the isoassociative form with the correct isotopic

element, o o
AxB — AxB=AxT x B, (3.4.55a)

A=UxAxU', B=UxBxU", T=UxU)1=1t (3.4.55b)
Schrodinger’s equation into the isoschrodinger’s equations
Hx ) =E X |¢p) = U(H x [)) =
=(UxHxUY)x(UxUN)x(Ux|¢)) = (3.4.56)
= H x T x |{) = HX[¢);
Heisenberg’s equations into their isoheisenberg generalization
ixdAjdt —AxH—-HxA=0—
—Ux (ixdA/dt)x U —UAx H—-HxA)xU = (3.4.57)
ikdAjdt— ASKH — B%A =0,
the Hilbert product into its isoinner form

(Y| x|) — Ux (Y| x|y xUT =

. . . (3.4.58)
= (YIxUN) < (UxU)" > (Ux[)) < (UxU) ™" = (] x|dh) x I;
canonical power series expansions into their isotopic form
A(k) = A(0) + kx[A H|+ E2x[[A,H,|,H| +... = UxA(k) x U =
= U x |A(0) + & x [A, H] + k2 x [[A, H], H] +] x Ut =
(3.4.59)

= A(k) = A(0) + kx[A; H) + B2 [[A H H) + .. .,
E>1, |T)<1;
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Schrodinger’s perturbation expansion into its isotopic covering (where the usual
summation over states p # n is assumed)

([ xV x| .
Eon—Eop + ...
— UxE(k)xUt =Ux E(O)—l—k><<¢]><V><]1/1>+...] xUT =

E(k) = E(0) + k x (4| x V x |[¢p) + k2

(3.4.60)
= B(k) = E(0) + kx| x T xV xT x|§) +...,

k>1, |T|<1;

etc. All remaining aspects of operator isomechanics can then be derived accord-
ingly, including the isoexponent, isologarithm, isodeterminant, isotrace, isospecial
functions and transforms, etc. The isodual isomechanics can then be constructed
via the now famil kiar isodual map.

Note that the above construction via a nonunitary transform is the correct
operator image of the derivability of the classical isohamiltonian mechanics from
the conventional form via noncanonical transforms (Section 3.2.12).

The construction of hadronic mechanics via nonunitary transforms of quantum
mechanics was first identified by Santilli in the original proposal [5e], and then
worked out in subsequent contributions (see [12] for the latest presentation).

3.4.9 Invariance of Operator Isomechanics and of its
Isodual

It is important to see that, in a way fully parallel to the classical case (Sec-
tion 3.3.7), operator isomechanics is indeed invariant under the most general
possible nonlinear, nonlocal and nonhamiltonian-nonunitary transforms, provided
that, again, the invariance is treated via the isomathematics. In fact, any given
nonunitary transform U x UT # I can always be decomposed into the form [12]

U=UxTY?,
under which nonunitary transforms on H over C' are identically reformulated as
isounitary transforms on the isohilbert space H over the isofield

UxU =UxU =0%U =1. (3.4.61)

The form-invariance of operator isomechanics under isounitary transforms then
follows,

P P = O%IR0T = 1, A%B — UX(AXB)XUT = A%B, ete,  (3.4.62a)

= (U x Hx UYx(Ux|{)) = H'%|¢') = (3.4.62b)
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where one should note the preservation of the numerical values of the isounit,
isoproducts and isoeigenvalues, as necessary for consistent applications. The
invariance of isodual isomechanics then follows rather trivially.

Note that the invariance in quantum mechanics holds only for transformations
U x Ut = I with fized I. Similarly, the invariance of isomechanics holds only for
all nonunitary transforms such UxUT = I with fized I, and not for a transform

WxWwit =1 #* I because the change of the isounit I implies the transition to a
different physical system.

The form-invariance of hadronic mechanics under isounitary transforms was
first studied by Santilli in memoir [46].

3.5 SANTILLI ISORELATIVITY AND ITS ISODUAL
3.5.1 Limitations of Special and General Relativities

Special and general relativities are generally presented in contemporary
academia as providing final descriptions of all infinitely possible conditions exist-
ing in the universe.

The scientific reality is basically different than the above academic posture. In
Section 1.1 and Chapter 2, we have shown that special and general relativities
cannot provide a consistent classical description of antiparticles because they
admit no distinction between neutral matter and antimatter and, when used for
charged antiparticles, they lead to inconsistent quantum images consisting of
particles (rather than charge conjugated antiparticles) with the wrong sign of the
charge. Hence, the entire antimatter content of the universe cannot be credibly
treated via special and/or general relativity.>*

A widespread academic posture, studiously conceived for adapting nature to
preferred doctrines, is the belief that the university can be effectively reduced
to point-particles solely under action-at-a-distance, potential interactions. This
posture is dictated by the facts that: the mathematics underlying special and
general relativities, beginning with their local-differential topology, can only rep-
resent (dimensionless) point-like particles; special and genera;l relativity are no-
toriously incompatible with the deformation theory (that is activated whenever
extended particles are admitted); and said relativities are strictly Lagrangian or
Hamiltonian, thus being only able to represent potential interactions.

However, in Section 1.3 and in this chapter, we have established the ”No Reduc-
tion Theorems,” according to which a macroscopic extended system in noncon-
servative conditions (such as a satellite during re-entry in our atmosphere) cannot

24Particularly political is the academic posture that ”antigravity does not exist because not predicted
by Einstein’s gravitation,” when such a gravitational theory has no means for a credible representation
of antimatter. As we shall see in Chapter 14, Volume II, when a credible quantitative representation of
antimatter is included, antigravity (defined as gravitational repulsion) between matter and antimatter
is unavoidable.
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be consistently reduced to a finite number of point-particles all under potential
forces and, vice versa, a finite number of quantum (that is, point-like) particles all
under potential interactions cannot consistently recover a macroscopic noncon-
servative system. Hence, all macroscopic systems under nonconservative forces,
thus including all classical interior problems, cannot be consistently treated with
special or general relativity.?

Another posture in academia, also intended for adapting nature to a preferred
doctrine, is that irreversibility is a macroscopic event that ”disappears” (sic)
when systems are reduced to their elementary constituents. This widespread
academic belief is necessary because special and general relativities are struc-
turally reversible, namely, their mathematical and physical axioms, as well as all
known Hamiltonians are invariant under time reversal. This posture is comple-
mented with manipulations of scientific evidence, such as the presentation of the
probability of the synthesis of two nuclei into a third one, nq + no — ng while
studiously suppressing the time reversal event that is simply unavoidable for a
reversible theory, namely, the finite probability of the spontaneous decomposition
ns — nineo following the synthesis. The latter probability is suppressed evidently
because it would prove the inconsistency of the assumed basic doctrine. 26

Unfortunately for mankind, the above academic postures are also used for all
energy releasing processes despite the fact that they are irreversible. The vast
majority of the research on energies releasing processes such as the ”cold” and
“hot” fusions, and the use of the vast majority of public fund,s are restricted
to verify quantum mechanics and special relativity under the knowledge by ex-
perts that reversible theories cannot be exactly valid for irreversible processes/
In any case, the ”No reduction theorems” prevent the consistent reduction of an
irreversible macroscopic event to an ideal ensemble of point-like abstractions of

25 Another political posture in academia is the treatment of the entire universe, thus including interior
problems of stars, quasars and black-hole, with Einstein gravitation when it is well known that such
a doctrine is purely ”external,” namely, can only represent point-like masses moving in vacuum in the
gravitational field of a massive body. One can then understand the political backing needed for the
credibility, e.g., of studies on black holes derived via a purely exterior theory.

26Serious physicists should not even redo the calculations for the probability of the spontaneous decay
following the synthesis, because it is unavoidable under the assumption of the same Hilbert space for
all initial and final nuclei and Heisenberg’s uncertainty principle. In fact these assumptions imply
that the nucleus n1 or mo has a finite [probability of being outside of n3 due to the coherence of the
interior and interior Hilbert spaces. At this point, numerous additional manipulations of science are
attempted to salvage preferred doctrines when inapplicable, rather than admitting their inapplicability
and seeking covering theories. One of these manipulations is based on the ”argument” that n3 is
extended, when extended sizes cannot be represented by quantum mechanics. Other manipulations are
not worth reporting here. The only scientific case of a rigorously proved, identically null probability
of spontaneous disintegrations of a stable nucleus following its synthesis occurs when the initial and
final Hilbert spaces are incoherent. This mandates the use of the conventional Hilbert space (quantum
mechanics) for the initial states and the use of an incoherent iso-Hilbert space (hadronic mechanics)
for the final state. This is the only possibility known to this author following half a century of studies
of the problem.
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particles all in reversible conditions. Hence, special and general relativities are
inapplicable for any and all irreversible processes existing in the universe.”

When restricting the arena applicability to those of the original conception
(propagation of point particles and electromagnetic waves in vacuum), special
relativity remains afflicted by still unresolved basic problems, such as the pos-
sibility that the relativity verifying one-way experiments on the propagation of
light could be Galilean, rather than Lorentzian; the known incompatibility of
special relativity with space conceived as a universal medium; and other unset-
tled aspects. Independently from that, we have shown in Section 1.4 that general
relativity has no case of unequivocal applicability for numerous reasons, such as:
curvature cannot possibly represent the free fall of a body along a straight radial
line; the "bending of light” is due to Newtonian gravitation (and if curvature is
assumed one gets double the bending experimentally measured); gravitation is a
noncanonical theory, thus suffering of the Theorems of Catastrophic Inconsisten-
cies of Section 1.5; etc.

In summary, on serious scientific grounds, and contrary to vastly
popular political beliefs, special and general relativities have no un-
contested arena of exact valid.

Far from pretending final knowledge, in this section we primarily claim the
scientific honesty to have identified the above open problems and initiated quan-
titative studies for their resolution. Our position in regard to special relativity is
pragmatic, in the sense that, under the conditions limpidly identified by Einstein,
such as particles in accelerators, etc., special relativity works well. Additionally,
special relativity has a majestic axiomatic structure emphasized various times by
the author.

Hence, we shall assume special relativity at the foundation of this section and
seek its isotopic liftings, namely, the most general possible formulations verifying
at the abstract level the original axioms conceived by Lorentz, Poincaré, Einstein,
Minkowski, Weyl and other founders. The first, and perhaps basic understanding
of this section is the knowledge that special relativity and isorelativity coincide at
the abstract, realization-free level, to such an extent that we could use the same
formulae and identify the special or isotopic relativity via different meanings
of the same symbols. Alternatively, to honor the memory of the founders, it
is necessary to identify the widest possible applicability of their axioms before
abandoning them for broader vistas.

An additional, century-old, unresolved issue is the incompatibility of special
relativity with the absolute reference frame at rest with the universal substratum

27To honor the memory of Albert Einstein and other founders of our knowledge, it should be stressed that
the use of the word ”violation” would be nonscientific, since quantum mechanics and special relativity
were not conceived for irreversible processes. Said disciplines have been applied to irreversible processes
by Einstein’s followers seeking money, prestige and power via the abuse of Einstein’s name.
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(also called ether) that appears to be needed for the very characterization of all
visible events in the Universe [54,55[. This latter aspect is fundamental for the
studies of Volume II and are treated there to avoid unnecessary repetitions.

In regard to general relativity, our position is rather rigid: no research on gen-
eral relativity can be considered scientifically serious unless the nine theorems s of
catastrophic inconsistencies of Ref. [75] are disproved, not in academic corridors,
but in refereed technical publications. Since this task appears to be hopeless, we
assume the position that general relativity is catastrophically inconsistent and
seek an alternative formulation.

As we shall see, when the memory of the founders is honored in the above
sense, the broadest possible realization of their axioms include gravitation and
there is no need for general relativity as a separate theory. Thus, another basic
understanding of this section is the knowledge that we shall seek a unification of
special and general relativity into one single formulation based on the axioms of
special relativity, known as Santilli isorelativity. Needless to say, such a unifica-
tion required several decades of research since it required the construction of the
needed new mathematics, the achievement of the unification of the Minkowskian
and Riemannian geometries, and the achievement of a universal invariance for all
possible spacetime line elements prior to addressing the unification itself.

A further aspect important for the understanding of this section is that, by no
means isorelativity should be believed to be the final relativity of the universe be-
cause it is structurally reversible due to the Hermiticity of the isounit and isotopic
element.?

This creates the need for a yet broader relativity studied in the next chapte,
and known under the name of Santilli genorelativity, this time, based on geno-
topic liftings of special relativity or isorelativity, namely, broadening requiring a
necessary departure from the abstract axioms of special relativity into a form that
is structurally irreversible, in the sense of possessing mathematical and physical
axioms that are irreversible under all possible reversible Lagrangians or Hamil-
tonians.

The resolution of the above indicated problems for antimatter is achieved by
the isodual image of the studies of this section.

3.5.2 Minkowski-Santilli Isospaces and their Isoduals

As studied in Section 1.2, the “universal constancy of the speed of light” is
a philosophical abstraction, particularly when proffered by experts without the

28 As we shall see in the next chapter, despite its Hermiticity, the isounit can depend on time in such
a way that I(t,...) = If(¢,...) # I(—t,...). In this case isotopic theories represent systems verifying
total conservation laws when isolated (because of the antisymmetry of the Lie-Santilli isobrackets), yet
being structurally irreversible in their interior processes, as it is the case for all interior problems when
considered isolated from the rest of the universe.
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additional crucial words ”in vacuum”, because the constancy of the speed of light
has been solely proved in vacuum while, in general, experimental evidence estab-
lishes that the speed of light is a local variable depending on the characteristics of
the medium in which it propagates, with well known expression

c=co/n, (3.5.1)

where the familiar index of refraction n is a function of a variety of time ¢,

coordinates r, density u, temperature 7, frequency w, etc., n = n(t,r, p, 7,w,...).
In particular, the speed of light is generally smaller than that in vacuum when

propagating within media of low density, such as atmospheres or liquids,

c<K o, n>1, (3.5.2)

while the speed of light is generally bigger than that in vacuum when propagating
within special guides, or within media of very high density, such as the interior
of stars and quasars,

c> o, n<Kl. (3.5.3)

Academic claims of recovering the speed of light in water via photons scattering
among the water molecules are afflicted by numerous inconsistencies studied in
Section 1.2, and the same holds for other aspects.

Assuming that via some unknown manipulation special relativity is shown
to represent consistently the propagation of light within physical media, such a
representation would activate the catastrophic inconsistencies of Theorem 1.5.1.

This is due to the fact that the transition from the speed of light in vacuum to
that within physical media requires a noncanonical or nonunitary transform.

This point can be best illustrated by using the metric originally proposed by
Minkowski, which can be written

n = Diag.(1,1,1, —c2). (3.5.4)

Then, the transition from ¢, to ¢ = ¢o/n in the metric can only be achieved via
a noncanonical or nonunitary transform

n= Dzag(l, 17 17 —Cg) - 77 =
= Diag.(1,1,1,—¢co/n?) =U x n x UT, (3.5.5a)
U x U' = Diag.(1, 1, 1, 1/n?) # I. (3.5.5b)

An invariant resolution of the limitations of special relativity for closed and
reversible systems of extended and deformable particles under Hamiltonian and
non-Hamiltonian interactions has been provided by the lifting of special rela-
tivity into a new formulation today known as Santilli isorelativity, where: the
prefix “iso” stands to indicate that relativity principles apply on isospacetime
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over isofields; and the characterization of “special” or “general” is inapplicable
because, as shown below, isorelativity achieves a geometric unification of special
and general relativities.

Isorelativity was first proposed by R. M. Santilli in Ref. [58] of 1983 via
the first invariant formulation of iso-Minkowskian spaces and related iso-Lorentz
symmetry. The studies were then continued in: Ref. [59] of 1985 with the first
isotopies of the rotational symmetry; Ref. [49] of 1993 with the first isotopies
of the SU(2)-spin symmetry; Ref. [60] of 1993 with the first isotopies of the
Poincaré symmetry; Ref. [51] of 1998 with the first isotopies of the SU(2)-isospin
symmetries, Bell’s inequalities and local realism; and Refs. [61,62] on the first
isotopies of the spinorial covering of the Poincaré symmetry.

The studies were then completed with memoir [26] of 1998 presenting a com-
prehensive formulation of the iso-Minkowskian geometry and its capability to
unify the Minkowskian and Riemannian geometries, including its formulation via
the mathematics of the Riemannian geometry (such iso-Christoffel’s symbols, iso-
covariant derivatives, etc.). The author then dedicated various monographs to
the field through the years.

Numerous independent studies on Santilli isorelativity are available in the lit-
erature, one can inspect in this respect Refs. [32-43] and papers quoted therein;
Aringazin’s proof [63] of the direct universality of the Lorentz-Poincaré-Santilli
isosymmetry for all infinitely possible spacetimes with signature (+, +, +, —);
Mignani’s exact representation [64] of the large difference in cosmological red-
shifts between quasars and galaxies when physically connected; the exact repre-
sentation of the anomalous behavior of the meanlives of unstable particles with
speed by Cardone et al. [65-66]; the exact representation of the experimental
data on the Bose-Einstein correlation by Santilli [67] and Cardone and Mignani
[68]; the invariant and exact validity of the iso-Minkowskian geometry within the
hyperdense medium in the interior of hadrons by Arestov et al. [69]; the first
known exact representation of molecular features by Santilli and Shillady [70,71];
and numerous other contributions.

Evidently we cannot review isorelativity in the necessary details to avoid a pro-
hibitive length. Nevertheless, to achieve minimal self-sufficiency of this presenta-
tion, it is important to outline at least its main structural lines (see monograph
[55] for detailed studies).

The central notion of isorelativity is the lifting of the basic unit of the Min-
kowski space and of the Poincaré symmetry, I = Diag.(1,1,1,1), into a 4 x 4-
dimensional, nowhere singular and positive-definite matrix I = f4x4 with an
unrestricted functional dependence on local spacetime coordinates x, speeds v,
accelerations a, frequencies w, wavefunctions v, their derivative dv, and/or any
other needed variables,

I = Diag.(1,1,1) — f(a:,v,a,w,¢,8¢, )=
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= 1/T(z,v,w,,0¢,...) > 0. (3.5.6)
Isorelativity can then be constructed via the method of Section 3.4.6, namely,

by assuming that the basic noncanonical or nonunitary transform coincides with
the above isounit

UxUl=7= Diag.(g11, 922, 933, 944),

Gup = Guu(x,v,w,10,00,...) >0, n=1,2,34, (3.5.7)
and then subjecting the totality of quantities and their operation of special rela-
tivity to the above transform.

This construction is, however, selected here only for simplicity in pragmatic
applications, since the rigorous approach is the construction of isorelativity from
its abstract axioms, a task we have to leave to interested readers for brevity (see
the original derivations [7]).

This is due to the fact that the former approach evidently preserves the original
eigenvalue spectra and does not allow the identification of anomalous eigenval-
ues emerging from the second approach, such as those of the SU(2) and SU(3)
isosymmetries [51].

Let M (x,n, R) be the Minkowski space with local coordinates x = (z#), metric
n = Diag.(1,1,1,—1) and invariant

2% = (2" X nu x 2¥) x [ € R, (3.5.8)

The fundamental space of isorelativity is the Minkowski-Santilli isospace [58] and

~ ~

related topology [10,22-25], M (&,7, R) characterized by the liftings
I = Diag.(1,1,1,1) = U x I xU' =1 =1/T, (3.5.9a)
n = Diag.(1,1,1,-1) x I —» (Ul ' xnx U Y)Y x I =5 =
=T xn= Diag.(g11, 922, 933, —ga4) X I, (3.5.90)
with consequential isotopy of the basic invariant
2= (2" X x2¥) x [ € R —
S Uxa?x Ul =42 = (# Xy, x 2¥) x T € R, (3.5.10)
whose projection in conventional spacetime can be written

72 = [ X N (2,0, a,w,1, 01, . ..) x x¥] x I. (3.5.11)
The nontriviality of the above lifting is illustrated by the following:%’

29Fabio Cardone, Roberto Mignani and Alessio Marrani have uploaded a number of papers in the section
hep-th of Cornell University arXiv copying ad litteram the results of paper [83], including the use of the
same symbols, without any quotation at all of Santilli’s preceding vast literature in the field. Educators,
colleagues and editors of scientific journals are warned of the existence on ongoing legal proceedings one
can inspect in the web site http://www.scientificethics.org/
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THEOREM 3.5.1: The Minkowski-Santilli isospaces are directly universal, in
the sense of admitting as particular cases all possible spaces with the same signa-
ture (4+,+,+,—), such as the Minkowskian, Riemannian, Finslerian and other
spaces (universality), directly in terms of the isometric within fized local variables
(direct universality).

Therefore, the correct formulation of the Minkowski-Santilli isogeometry re-
quires the isotopy of all tools of the Riemannian geometry, such as the iso-
Christoffel symbols, isocovariant derivative, etc. (see for brevity Ref. [15]).

Despite that, one should keep in mind that, in view of the positive-definiteness
of the isounit [34,79], the Minkowski-Santilli isogeometry coincides at the ab-
stract level with the conventional Minkowski geometry, thus having a null tsocur-
vature (because of the basic mechanism of deforming the metric K by the amount
T(z,...) while deforming the basic unit of the inverse amount I = 1/T").

The geometric unification of the Minkowskian and Riemannian geometries
achieved by the Minkowski-Santilli isogeometry constitutes the evident geometric
foundation for the unification of special and general relativities studied below.

It should be also noted that, following the publication in 1983 of Ref. [58],
numerous papers on “deformed Minkowski spaces” have appeared in the physical
and mathematical literature (generally without a quotation of their origination
in Ref. [58]).

These “deformations” are ignored in these studies because they are formulated
via conventional mathematics and, consequently, they all suffer of the catas-
trophic inconsistencies of Theorem 1.5.1.

By comparison, isospaces are formulated via isomathematics and, therefore,
they resolve the inconsistencies of Theorem 1.5.1, as shown in Section 3.5.9. This
illustrates again the necessity of lifting the basic unit and related field jointly
with all remaining conventional mathematical methods.

3.5.3 Poincaré-Santilli Isosymmetry and its Isodual

Let P(3.1) be the conventional Poincaré symmetry with the well known ten
generators .J,,,,, P, and related commutation rules hereon assumed to be known.

The second basic tool of isorelativity is the Poincaré-Santilli isosymmetry
P (3.1) studied in detail in monograph [55] that can be constructed via the isothe-
ory of Section 3.2, resulting in the isocommutation rules [58,60]

[J;W:Jozﬁ] =1iX (ﬁua X Jﬁu - ﬁua X Jﬁy - ﬁyﬁ X Ja# + ’f/uﬁ X Ja,j), (3512&)
[J,ul/:Pa] =1 X (ﬁua x P, — ﬁya X PH)? (3512[))
I:P/J,:Pl/] = 07 (35126)
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where we have followed the general rule of the Lie-Santilli isotheory according
to which isotopies leave observables unchanged (since Hermiticity coincides with
iso-Hermiticity) and merely change the operations among them.

The iso-Casimir invariants of P(3.1) are given by

P? = P,XP" = PF x fj,, x P* = Py X gup X Py — pa X gaa x Py, (3.5.13a)

W2 = W, XWH, W, = &0, X PP, (3.5.13D)

and they are at the foundation of classical and operator isorelativistic kinematics.

Since I > 0, it is easy to prove that the Poincaré-Santilli isosymmetry is iso-
morphic to the conventional symmetry. It then follows that the isotopies increase
dramatically the arena of applicability of the Poincaré symmetry, from the sole
Minkowskian spacetime to all infinitely possible spacetimes.

Next, the reader should be aware that the Poincaré-Santilli isosymmetry char-
acterizes “isoparticles” (and not particles) via its irreducible isorepresentations.

A mere inspection of the isounit shows that the Poincaré-Santilli isosymme-
try characterizes actual nonspherical and deformable shapes as well as internal
densities and the most general possible nonlinear, nonlocal and nonpotential in-
teractions.

Since any interaction implies a renormalization of physical characteristics, it is
evident that the transition from particles to isoparticles, that is, from motion in
vacuum to motion within physical media, causes an alteration (called isorenormal-
ization), in general, of all intrinsic characteristics, such as rest energy, magnetic
moment, charge, etc.

As we shall see later on, the said isorenormalization has permitted the first
exact numerical representation of nuclear magnetic moments, molecular binding
energies and other data whose exact representation resulted to be impossible for
nonrelativistic and relativistic quantum mechanics despite all possible corrections
conducted over 75 years of attempts.

The explicit form of the Poincaré-Santilli isotransforms leaving invariant line
element (3.5.11) can be easily constructed via the Lie-Santilli isotheory and are
given:

(1) The isorotations [11]
0@3): % =R(O)xx, 6=0xIye Ry, (3.5.14)
that, for isotransforms in the (1, 2)-isoplane, are given by
2! = 2! x cos[f x (g11 X g22)"/?] — 2® X ga2 X gy xsin[f x (g11 X 922)"%, (3.5.15a)

2 =z x gy x oo X sinff x (g11 % 922) 2]+ 22 x cos[0 % (g11 X ga2)*/?]. (3.5.15b)
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For the general expression in three dimensions interested reader can inspect
Ref. [7] for brevity.

Note that, since 0(3) is isomorphic to O(3), Ref. [59] proved, contrary to a
popular belief throughout the 20-th century, that

LEMMA 8.5.1: The rotational symmetry remains exact for all possible signa-
ture-preserving (+,+, +) deformations of the sphere.

The rotational symmetry was believed to be “broken” for ellipsoidal and other
deformations of the sphere merely due to insufficient mathematics for the case
considered because, when the appropriate mathematics is used, the rotational
symmetry returns to be exact, and the same holds for virtually all “broken”
symmetries.

The above reconstruction of the exact rotational symmetry can be geometri-
cally visualized by the fact that all possible signature-preserving deformations of
the sphere are perfect spheres in isospace called isosphere.

This is due to the fact that ellipsoidal deformations of the semiaxes of the per-
fect sphere are compensated on isospaces over isofields by the inverse deformation
of the related unit

Radius 1y — 1/n32, (3.5.16a)

Unit 1 — ni. (3.5.16b)

We recover in this way the perfect sphere on isospaces over isofields
72 = 73 4 73+ 72 (3.5.17)

with exact 0(3) symmetry, while its projection on the conventional Euclidean
space is the ellipsoid
r?/n? + 13 /n3 +ri/n3, (3.5.18)

with broken O(3) symmetry.

(2) The Lorentz-Santilli isotransforms [26,29]

O(3.1) : &' = A(D,...)x&, 0 =vx I, € Ry, (3.5.19)

that, for isotransforms in the (3,4)-isoplane, can be written

2l (3.5.20a)
2 (3.5.200)
2% = 27 x coshv x (g33 X gas)"/?]—

—2* X gaa % (g33 X gaa) V2 x sinh[v x (g33 X gaa)V/?] =
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1/2
=4 x (28— B x g‘;—‘;? x 24, (3.5.20¢)
933
o = —2® X gs3 X (g33 X gaa) /% x sinh[v(gs3 x gaa)'/?]+
+zt x cosh[v x (g33 X g44)1/2] =
) 1/2
=4 x (21— B x gﬁ—% x 2), (3.5.200)
944
where
A2:Uk><gkk><’0k’3/: 1 (3521)
Co X G44 X Co (1-— 32)1/2

For the general expression interested readers can inspect Ref. [7].
Contrary to another popular belief throughout the 20-th century, Ref. [58]
proved that

LEMMA 38.5.2: The Lorentz symmetry remains exact for all possible signature
preserving (+,+,+, —) deformations of the Minkowski space.

Again, the symmetry remains exact under the use of the appropriate mathe-
matics.

The above reconstruction of the exact Lorentz symmetry can be geometrically
visualized by noting that the light cone

w3422 — 2 xt? =0, (3.5.22)

can only be formulated in vacuum, while within physical media we have the light
1s0Cc0oME

2 2 2 2
T T co Xt
2439 =0, (3.5.23)

ns n;3 n?(w,...)

that, when formulated on isospaces over isofield, is also a perfect cone, as it is the
case for the isosphere. This property then explains how the Lorentz symmetry is
reconstructed as exact according to Lemma 3.5.2 or, equivalently, that 0(3.1) is
isomorphic to O(3.1).

(3) The isotranslations [29]
TA4):# =T(a,.. ) xz=02+A(a,z,...), a=axl, € Ry, (3.5.24)

that can be written )
o =t 4+ A a,...), (3.5.25a)

At = al (g + a® X [gips Pa] /1M + .. ), (3.5.25b)
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and there is no summation on the p indices.
We reach in this way the following important result:

LEMMA 3.5.3 [55]: Isorelativity permits an axiomatically correct extension of
relativity laws to noninertial frames.

In fact, noninertial frames are transformed into frames that are inertial on iso-
spaces over isofields, called isoinertial, as established by the fact that isotransla-
tions (3.5.25) are manifestly nonlinear and, therefore, noninertial on conventional
spaces while they are isolinear on isospaces, according to a process similar to the
reconstruction of locality, linearity and canonicity.

The isoinertial character of the frames can also be seen from the isocommu-
tativity of the linear momenta, Eqs. (3.5.12c), while such a commutativity is
generally lost in the projection of Egs. (3.5.12¢) on ordinary spaces over ordi-
nary fields, thus confirming the lifting of conventional noninertial frames into an
isoinertial form.

This property illustrates again the origin of the name “isorelativity” to indicate
that conventional relativity axioms are solely applicable in isospacetime.

(4) The novel isotopic transformations [60]

TQ): & = ki =wtxg, I'=w?x1, (3.5.26)
where w is a constant,
I-T'=w?xl=w?x1=1/T, (3.5.27a)

Q:(m“xﬁwxx”)xfzi’i:
= [z x (w? X f) x 2] x (w? x I). (3.5.27b)
Contrary to another popular belief throughout the 20-th century, we therefore
have the following

THEOREM 3.5.2: The Poincaré-Santilli isosymmetry, hereon denoted with
P(3.1) = O(3.1)xT (4)xZ(1), (3.5.28)

and, therefore, the conventional Poincaré symmetry, are eleven dimensional.

The increase of dimensionality of the fundamental spacetime symmetry as, pre-
dictably, far reaching implications, including a basically novel and axiomatically
consistent grand unification of electroweak and gravitational interactions studied
in Chapter 5.
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The simplest possible realization of the above formalism for isorelativistic kine-
matics can be outlined as follows. The first application of isorelativity is that of
providing an invariant description of locally varying speeds of light propagating
within physical media. For this purpose a realization of isorelativity requires the
knowledge of the density of the medium in which motion occurs.

The simplest possible realization of the fourth component of the isometric is
then given by the function

gas = n3(z,w,...), (3.5.29)

normalized to the value ny = 1 for the vacuum (note that the density of the
medium in which motion occurs cannot be described by special relativity). The
above representation then follows with invariance under P(3.1).

In this case the quantities ng, k = 1,2,3, represent the inhomogeneity and
anisotropy of the medium considered. For instance, if the medium is homogeneous
and isotropic (such as water), all metric elements coincide, in which case

I= Diag.(g11, g22, 933, ga4) = ni x Diag.(1,1,1,1), (3.5.30a)
R 562

% =5 xnixI=a? (3.5.30b)
ny

thus confirming that isotopies are hidden in the Minkowskian azxioms, and this
may be a reason why they were not been discovered until recently.

Next, isorelativity has been constructed for the invariant description of systems
of extended, nonspherical and deformable particles under Hamiltonian and non-
Hamiltonian interactions.

Practical applications then require the knowledge of the actual shape of the
particles considered, here assumed for simplicity as being spheroidal ellipsoids
with semiaxes n?,n3, n3.

Note that the minimum number of constituents of a closed non-Hamiltonian
system is two. In this case we have shapes represented with no;, « =1,2,,...,n.

Specific applications finally require the identification of the nonlocal interac-
tions, e.g., whether occurring on an extended surface or volume. As an illustra-
tion, two spinning particles denoted 1 and 2 in condition of deep mutual pene-
tration and overlapping of their wavepackets (as it is the case for valence bonds),
can be described by the following Hamiltonian and total isounit

X X
H:Pl P1+p2 b2
2 X mq 2><m2

+V(r), (3.5.31a)

s 2 2 92 9 . 2 2 9 9
Irot = Diag.(niy,niy, nis,niy) X Diag.(ny, nae, na3, nay) X

s eV} W1 /Y1 /pa) < [ g (1) <o () xdr® (3.5.31b)
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where NN is a positive constant.

The above realization of the isounit has permitted the first known invariant
and numerically exact representation of the binding energy and other features
of the hydrogen, water and other molecules [71,72] (see Chapter 9) for which a
historical 2% has been missing for about one century. The above isounit has also
been instrumental for a number of additional data on two-body systems whose
representation had been impossible with quantum mechanics, such as the origin
of the spin 1 of the ground state of the deuteron that, according to quantum
axioms, should be zero.

Note in isounit (3.5.31) the nonlinearity in the wave functions, the nonlocal-
integral character and the impossibility of representing any of the above features
with a Hamiltonian.

From the above examples interested readers can then represent any other closed
non-Hamiltonian systems.

3.5.4  Isorelativity and Its Isodual

The third important part of the new isorelativity is given by the following
isotopies of conventional relativistic axioms that, for the case of motion along the
third axis, can be written [29] as follows [60]:

ISOAXIOM I. The projection in our spacetime of the maximal causal invariant
isospeed is given by:

1/2
VMaac = Co X % = Co@ = Cc X ngs. (3532)
g’

This isoaxiom resolves the inconsistencies of special relativity recalled earlier for
particles and electromagnetic waves propagating within physical media such as
water.

In fact, water is homogeneous and isotropic, thus requiring that

g11 = g22 = g33 = gaa = 1/0, (3.5.33)

where n is the index of refraction.

In this case the maximal causal speed for a massive particle is ¢, as experi-
mentally established, e.g., for electrons, while the local speed of electromagnetic
waves is ¢ = ¢, /n, as also experimentally established.

Note that such a resolution requires the abandonment of the speed of light as
the mazimal causal speed for motion within physical media, and its replacement
with the maximal causal speed of particles.

It happens that in vacuum these two maximal causal speeds coincide. However,
even in vacuum the correct maximal causal speed remains that of particles and
not that of light, as generally believed.
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At any rate, physical media are generally opaque to light but not to particles.
Therefore, the assumption of the speed of light as the maximal causal speed
within media in which light cannot propagate would be evidently vacuous.

It is an instructive exercise for interested readers to prove that

LEMMA 3.5.4: The maximal causal isospeed of particles on isominkowski space
over an isofield remains co.

In fact, on isospaces over isofields c? is deformed by the index of refraction
into the form ¢2/n3%, but the corresponding unit cm?/sec? is deformed by the
inverse amount, n3 x cm?/sec?, thus preserving the numerical value ¢2 due to the
structure of the isoinvariant studied earlier.

The understanding of isorelativity requires the knowledge that, when formu-
lated on the Minkowski-Santilli isospace over the isoreals, Isoaxiom I coincides
with the conventional axiom that is, the maximal causal speed returns to be c.
The same happens for all remaining isoaxioms.

ISOAXIOM II. The projection in our spacetime of the isorelativistic addition
of isospeeds within physical media is given by:

_ V1 + U2 _ U1 + U2 (3.5.34)
VUTot = 1)ng33><1)2_ U1Xn2><’u2. .O.
14— = ke Rakl Rak:
Co X ga4 X Co Co X N3 X Co

We have again the correct result that the sum of two maximal causal speeds in
water,
Vinaz = o X (TL3/H4), (3535)

yields the mazximal causal speed in water, as the reader is encouraged to verify.

Note that such a result is impossible for special relativity. Note also that the
“relativistic” sum of two speeds of lights in water, ¢ = ¢o/n, does not yield the
speed of light in water, thus confirming that the speed of light within physical me-
dia, assuming that they are transparent to light, is not the fundamental maximal
causal speed.

ISOAXIOM III. The projection in our spacetime of the isorelativistic laws of
dilation of time to and contraction of length £, and the variation of mass mo with
speed are given respectively by:

t=4 x to, (3.5.36a)

=41 x4, (3.5.36b)
m=%4 X me. (3.5.36¢)
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5 Uk X Gkk Vo 1

Co X 944 Viaz’ 7 (1—32)1/2,
where one should npote that, since the speed is always smaller than the maximal
possible speed, 4 cannot assume imaginary values.

Note that in water these values coincide with the relativistic ones as it should
be since particles such as the electrons have in water the maximal causal speed
Co-

Note again the necessity of avoiding the interpretation of the local speed of
light as the maximal local causal speed. Note also that the mass diverges at the
maximal local causal speed, but not at the local speed of light.

(3.5.d)

ISOAXIOM IV. The projection in our spacetime of the iso-Doppler law is given
by the isolaw (here formulated for simplicity for 90° angle of aberration):

w=%4 X wo. (3.5.37)

This isorelativistic axioms permits an exact, numerical and invariant representa-
tion of the large differences in cosmological redshifts between quasars and galaxies
when physically connected.

In this case light simply exits the huge quasar chromospheres already redshifted
due to the decrease of the speed of light, while the speed of the quasars can remain
the same as that of the associated galaxy. Note again as this result is impossible
for special relativity.

Isoaxiom IV also permits a numerical interpretation of the internal blue- and
redshift of quasars due to the dependence of the local speed of light on its fre-
quency.

Finally, Isoaxiom IV predicts that a component of the predominance toward
the red of sunlight at sunset is of iso-Doppler nature. This prediction is based on
the different travel within atmosphere of light at sunset as compared to the zenith
(evidently because of the travel within a comparatively denser atmosphere).

By contrast, the popular representation of the apparent redshift of sunlight
at sunset is that via the scattering of light among the molecules composing our
atmosphere. Had this interpretation be correct, the sky at the zenith should be
red, while it is blue.

At any rate, the claim of representation of the apparent redshift via the scat-
tering of light is political because of the impossibility of reaching the needed
numerical value of the redshift, as serious scholars are suggested to verify.

ISOAXIOM V. The projection in our spacetime of the isorelativistic law of
equivalence of mass and energy is given by:
2
E:mXVA%[m:mxch%:mXCgXE:cxng (3.5.38)

g33 ni
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Note a crucial axiomatic difference between the conventional axiom E =
m x ceirc? and isoaxiom V. They coincide in vacuum, water and other media
transparent to light, but are otherwise structurally different. We should note
that, in early references, the conventional axiom E = m x c.irc?, where ¢, is the
speed of light in vacuum, was lifted into the form E = m x ¢? where c is the local
speed of light within physical media. However, the latter form lead to inconsis-
tencies in applications studied in Volume IT (e.g., when the medium considered
is opaque to light in which case both ¢, and ¢ are meaningless) and had to be
further lifted into Isoaxiom V.

Among various applications, Isoaziom V removes any need for the “missing
mass” in the universe. This is due to the fact that all isotopic fits of experimental
data agree on values g44 > 1 within the hyperdense media in the interior of
hadrons, nuclei and stars [7].

As a result, Isoaxiom V yields a value of the total energy of the universe
dramatically bigger than that believed until now under the assumption of the
universal validity of the speed of light in vacuum.

For other intriguing applications of Isoaxioms V, e.g., for the rest energy of
hadronic constituents, we refer the interested reader to monographs [55,61].

The isodual isorelativity for the characterization of antimatter can be easily
constructed via the isodual map of Chapter 2, and its explicit study is left to the
interested reader for- brevity.

3.5.5 Isorelativistic Hadronic Mechanics and its Isoduals

The isorelativistic extension of relativistic hadronic mechanics is readily per-
mitted by the Poincaré-Santilli isosymmetry. In fact, iso-invariant (3.5.13a) char-
acterizes the following iso-Gordon equation on H over C' [55]

PuX ) = —ixu|) = —i x I} x Dy |1)), (3.5.39q)

(Puxp" + m2xet)x|) = (10 x 0o x Bg +m2 x ¢t x [{) =0.  (3.5.39D)

The linearization of the above second-order equations into the Dirac-Santilli
isoequation has been first studied in Refs. [60-62] and then by other authors (al-
though generally without the use of isomathematics, thus losing the invariance).

By recalling the structure of Dirac’s equation as the Kronecker product of a
spin 1/2 massive particle and its antiparticle of Chapter 2, the Dirac-Santilli isoe-
quation is formulated on the total isoselfadjoint isospace and related isosymmetry

Mtot — [Morb(.@,’f], R) % S’Spi”(z)]x
x[Mdorb(zd e RY) x §4spin(2)] = Npdtot, (3.5.40a)
Stot — P(3.1) x PU(3.1) = §tt, (3.5.400)
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and can be written [29]
[AAX (P — exA,) + ix )X |(x)) = 0, (3.5.41a)

A = gMt xR x T (3.5.41b)

where the «’s are the conventional Dirac matrices.

Note the appearance of the isometric elements directly in the structure of the
isogamma matrices and their presence also when the equation is projected in the
conventional spacetime.

The following generators

Juw = (Sks Lka), Py, (3.5.42a)

Sk = (€kij X i X 4j)/2, Lga = A x91/2, Py = Py, (3.5.42b)
characterize the isospinorial covering of the Poincaré-Santilli isosymmetry.

The notion of “isoparticle” can be best illustrated with the above realization
because it implies that, in the transition from motion in vacuum (as particles
have been solely detected and studied until now) to motion within physical media,
particles generally experience the alteration, called “mutation”, of all intrinsic
characteristics, as illustrated by the following isoeigenvalues,

a5 oA X X X .
SQXMM _ g1 X g2 + 922 . 933 + 933 X 911 < ), (3.5.430)

o 2
S|y = (91”(2922) x ). (3.5.43b)

The mutation of spin then characterizes a necessary mutation of the intrinsic
magnetic moment given by [29]

= (@)1/2 X 1, (3.5.44)
944

where p is the conventional magnetic moment for the same particle when in

vacuum. The mutation of the rest energy and of the remaining characteristics

has been identified before via the isoaxioms.

Note that the invariance under isorotations allows the rescaling of the radius
of an isosphere. Therefore, for the case of the perfect sphere we can always have
g11 = g22 = ¢33 = g44 in which case the magnetic moment is not mutated. These
results recover conventional classical knowledge according to which the alteration
of the shape of a charged and spinning body implies the necessary alteration of its
magnetic moment.

The construction of the isodual isorelativistic hadronic mechanics is left to the
interested reader by keeping in mind that the iso-Dirac equation is isoselfdual as
the conventional equation.
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To properly understand the above results, one should keep in mind that the
mutation of the intrinsic characteristics of particles is solely referred to the con-
stituents of a hadronic bound state under conditions of mutual penetration of their
wave packets (such as one hadronic constituent) under the condition of recovering
conventional characteristics for the hadronic bound state as a whole (the hadron
considered), much along Newtonian subsidiary constrains on non-Hamiltonian
forces, Egs. (3.1.6).

It should be also stressed that the above indicated mutations violate the uni-
tary condition when formulated on conventional Hilbert spaces, with consequential
catastrophic inconsistencies, Theorem 1.5.2.

As an illustration, the violation of causality and probability law has been
established for all eigenvalues of the angular momentum M different than the
quantum spectrum

M? x )y =L(0+1) x [¢), £=0,1,2,3,... . (3.5.45)

As a matter of fact, these inconsistencies are the very reason why the mutations
of internal characteristics of particles for bound states at short distances could
not be admitted within the framework of quantum mechanics.

By comparison, hadronic mechanics has been constructed to recover unitarity
on iso-Hilbert spaces over isofields, thus permitting an invariant description of
internal mutations of the characteristics of the constituents of hadronic bound
states, while recovering conventional features for states as a whole.

Far from being mere mathematical curiosities, the above mutations permit
basically new structure models of hadrons, nuclei and stars, with consequential,
new clean energies and fuels (see Chapters 11, 12).

These new advances are prohibited by quantum mechanics precisely because of
the preservation of the intrinsic characteristics of the constituents in the transi-
tion from bound states at large mutual distance, for which no mutation is possible,
to the bound state of the same constituents in condition of mutual penetration,
in which case mutations have to be admitted in order to avoid the replacement
of a scientific process with unsubstantiated personal beliefs one way or the other
(see Chapter 12 for details).

3.5.6 Isogravitation and its Isodual

As indicated in Section 1.4, there is no doubt that the classical and operator
formulations of gravitation on a curved space have been the most controversial
theory of the 20-th century because of an ever increasing plethora of problematic
aspects remained vastly ignored. By contrast, as also reviewed in Section 1.4,
special relativity in vacuum has a majestic axiomatic consistence in its invariance
under the Poincaré symmetry.
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Recent studies have shown that the formulation of gravitation on a curved
space or, equivalently, the formulation of gravitation based on “covariance”, is
necessarily noncanonical at the classical level and nonunitary at the operator
level, thus suffering of all catastrophic inconsistencies of Theorems 1.4.1 and 1.4.2.

These catastrophic inconsistencies can only be resolved via a new conception
of gravity based on a universal invariance, rather than covariance.

Additional studies have identified profound axiomatic incompatibilities be-
tween gravitation on a curved space and electroweak interactions. These in-
compatibilities have resulted to be responsible for the lack of achievement of an
axiomatically consistent grand unification since Einstein’s times (see Chapter 14).

No knowledge of isotopies can be claimed without a knowledge that isorelativity
has been constructed to resolve at least some of the controversies on gravitation.
The fundamental requirement is the abandonment of the formulation of gravity
via curvature on a Riemannian space and its formulation instead on an iso-
Minkowskian space via the following steps characterizing ezterior isogravitation
in vacuum, first presented in Refs. [73,74]:

I) Factorization of any given Riemannian metric representing exterior gravita-
tion g¢**(z) into a nowhere singular and positive-definite 4 x 4-matrix 7'(z) times
the Minkowski metric n,

9 () = Ty () X 1; (3.5.47)
IT) Assumption of the inverse of Tgmv as the fundamental unit of the theory,

It (x) = 1/T% (x); (3.5.48)

grav grav
IIT) Submission of the totality of the Minkowski space and relative symmetries
to the noncanonical /nonunitary transform

Ux) x It (z) = I (3.5.49)

grav*

The above procedure yields the isominkowskian spaces and related geometry
M (z,n, R), resulting in a new conception of gravitation, exterior isogravity, with
the following main features [26]:

i) Isogravity is characterized by a universal symmetry (and not a covariance),

the Poincaré-Santilli isosymmetry f’(3.1) for the gravity of matter with isounit

rext
]érav

isoselfdual symmetry P(3.1) x P%(3.1) for the gravity of matter-antimatter sys-
tems;

ii) All conventional field equations, such as the Einstein-Hilbert and other field
equations, can be formulated via the Minkowski-Santilli isogeometry since the
latter preserves all the tools of the conventional Riemannian geometry, such as
the Christoffel’s symbols, covariant derivative, etc. [15];

(z), the isodual isosymmetry P%(3.1) for the gravity of antimatter, and the
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iii) Isogravitation is isocanonical at the classical level and isounitarity at the
operator level, thus resolving the catastrophic inconsistencies of Theorems 1.5.1
and 1.5.2;

iv) An axiomatically consistent operator version of gravity always existed and
merely crept in unnoticed through the 20-th century because gravity is imbedded
where nobody looked for, in the unit of relativistic quantum mechanics, and it is
given by isorelativistic hadronic mechanics outlined in the next section.

v) The basic feature permitting the above advances is the abandonment of
curvature for the characterization of gravity (namely, curvature characterized
by metric g¢*!(z) referred to the unit I) and its replacement with isoflatness,
namely, the verification of the axioms of flatness in isospacetime, while pre-
serving conventional curvature in its projection on conventional spacetime (or,

equivalently, curvature characterized by the g(z) = T oty (x) x 1 referred to the

isounit fgmv(:v) in which case curvature becomes null due to the inter-relation
Igtay(@) = 1/Tgi0, (x)) [26].

A resolution of numerous controversies on classical formulations of gravity then
follows from the above main features, such as:

a) The resolution of the century old controversy on the lack of existence of
consistent total conservation laws for gravitation on a Riemannian space, which
controversy is resolved under the universal ]5(3.1) symmetry by mere visual ver-
ification that the generators of the conventional and isotopic Poincaré symmetry
are the same (since they represent conserved quantities in the absence and in the
presence of gravity);

b) The controversy on the fact that gravity on a Riemannian space admits
a well defined “Euclidean”, but not “Minkowskian” limit, which controversy is
trivially resolved by isogravity via the limit

f;fév(x) — I; (3.5.50)

¢) The resolution of the controversy that Einstein’s gravitation predicts a value

of the bending of light that is twice the experimental value, one for curvature

and one for newtonian attraction, which controversy is evidently resolved by the

elimination of curvature as the origin of the bending, as necessary in any case for

the free fall of a body along a straight radial line in which no curvature of any
type is conceivably possible or credible; and other controversies.

A resolution of the controversies on quantum gravity can be seen from the prop-
erty that relativistic hadronic mechanics of the preceding section is a quantum
formulation of gravity whenever T = Tgmv.

Such a form of operator gravity is as axiomatically consistent as conventional
relativistic quantum mechanics because the two formulations coincide, by con-
struction, at the abstract, realization-free level.
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As an illustration, whenever
Tyray = Diag.(911", 955" 955' 955°)s G > 0, (3.5.51)

the Dirac-Santilli isoequation (3.5.41) provides a direct representation of the con-
ventional electromagnetic interactions experienced by an electron, represented
by the vector potential A, plus gravitational interactions represented by the
isogamma matrices.

Once curvature is abandoned in favor of the broader isoflatness, the axiomatic
incompatibilities existing between gravity and electroweak interactions are re-
solved because:

i) isogravity possesses, at the abstract level, the same Poincaré invariance of
electroweak interactions;

ii) isogravity can be formulated on the same flat isospace of electroweak theo-
ries; and

iii) isogravity admits positive and negative energies in the same way as it occurs
for electroweak theories.

An axiomatically consistent iso-grand-unification then follows, as studied in
Chapter 14.

Note that the above grand-unification requires the prior geometric unification
of the special and general relativities, that is achieved precisely by isorelativity
and its underlying iso-Minkowskian geometry.

In fact, special and general relativities are merely differentiated in isospecial
relativity by the explicit realization of the unit. In particular, black holes are now
characterized by the zeros of the isounit [7]

Iert(z) = 0. (3.5.52)

The above formulation recovers all conventional results on gravitational singu-
larities, such as the singularities of the Schwarzschild’s metric, since they are all
described by the gravitational content Typqp(2) of g(z) = Tyrav(x) X 1, since 7 is
flat.

This illustrates again that all conventional results of gravitation, including
experimental verifications, can be reformulated in invariant form via isorelativity.

Moreover, the problematic aspects of general relativity mentioned earlier refer
to the exterior gravitational problem. Perhaps greater problematic aspects exist
in gravitation on a Riemannian space for interior gravitational problems, e.g.,
because of the lack of characterization of basic features, such as the density of
the interior problem, the locally varying speed of light, etc.

These additional problematic aspects are also resolved by isorelativity due to
the unrestricted character of the functional dependence of the isometric that,
therefore, permits a direct geometrization of the density, local variation of the
speed of light, etc.
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The above lines constitute only the initial aspects of isogravitation since its
most important branch is interior isogravitation as characterized by isounit and
isotopic elements of the illustrative type

It =1/Ti >0, (3.5.53a)
T, = Diag.(g% /n}, 93" /n3, 958" /03, 944" /n3), (3.5.53b)

permitting a geometric representation directly via the isometric of the actual shape
of the body considered, in the above case an ellipsoid with semiaxes n%,n%,ng, as
well as the (average) interior density n3 with consequential representation of the
(average value of the) interior speed of light C = ¢/ny.

A most important point is that the invariance of interior isogravitation under
the Poincaré-Santilli isosymmetry persists in its totality since the latter symme-
try is completely independent from the explicit value of the isounit or isotopic
element, and solely depends on their positive-definite character.

Needless to say, isounit (3.4.53) is merely illustrative because a more accurate
interior isounit has a much more complex functional dependence with a locally
varying density, light speed and other characteristics as they occur in reality.

Explicit forms of these more adequate models depends on the astrophysical
body considered, e.g., whether gaseous, solid or a mixture of both, and their
study is left to the interested reader.

It should also be noted that gravitational singularities should be solely referred
to interior models evidently because exterior descriptions of type (3.5.52) are a
mere approximation or a geometric abstraction.

In fact, gravitational singularities existing for exterior models are not neces-
sarily confirmed by the corresponding interior formulations. Consequently, the
current views on black holes could well result to be pseudo-scientific beliefs be-
cause the only scientific statement that can be proffered at this time without
raising issue of scientific ethics is that the gravitational features of large and hy-
perdense aggregations of matter, whether characterizing a “black” or “brown”
hole, are basically unresolved at this time.

Needless to say, exterior isogravitation is a particular case of the interior for-
mulation. Consequently, from now on, unless otherwise specified isogravitation
will be referred to the interior form.

The cosmological implications are also intriguing and will be studied in Chap-
ter 6. It should be indicated that numerous formulations of gravitation in flat
Minkowski space exist in the literature, such as Ref. [79] and papers quoted
therein. However, these formulations have no connection with isogravity since
the background space of the former is conventional, while that of the latter is a
geometric unification of the Minkowskian and Riemannian spaces.

It is hoped that readers with young minds of any age admit the incontrovertible
character of the limitations of special and general relativities and participate in
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the laborious efforts toward new vistas because any lack of participation in new
frontiers of science, whether for personal academic interest or other reason, is a
gift of scientific priorities to others.
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Appendix 3.A
Universal Enveloping Isoassociative Algebras

The main structural component of Lie’s theory is its universal enveloping as-
sociative algebra (L) of a Lie algebra L. In fact, Lie algebras can be obtained
as the attached antisymmetric part [£(L)]~ &~ L; the infinite dimensional basis
of £(I) permit the exponentiation to a finite transformation group G; and the
representation theory is crucially dependent on the right and/or left modular
associative action originally defined on G.

In Section 3.2.9B we have reviewed the rudiments of the universal enveloping
isoassociative algebras {(L) of a Lie-Santilli isoalgebra L. It is easy to see that
all features occurring for (L) carry over to the covering isoform ¢ (L).3°

In this appendix we would like to outline a more technical definition of uni-
versal enveloping isoassociative algebras since they are at the foundations of the
unification of simple Lie algebras of dimension N into a single Lie-Santilli isoal-
gebra of the same dimension (Section 3.2.13).

With reference to Figure 77, the envelop {(L) can be defined as the (£, 7) where
¢ is an associative algebra and 7 is a homomorphism of L into the antisymmetric
algebra £~ attached to & such that: if £ is another associative algebra and 7’ is
another homomorphism of L into £, a unique isomorphism v exists between ¢
and & in such a way that the diagram in the Lh.s of Figure ?? is commutative.
The above definition evidently expresses the uniqueness of the Lie algebra L up to
local isomorphism, and illustrates the origin of the name “universal” enveloping
algebra of L.

With reference to the r.h.s. diagram of Figure 7?7, the universal enveloping
isoassociative algebra &(L) of a Lie algebra L was introduced in Ref. [4] as the
set {(5,7‘),2’,5,%} where: (£, 7) is a conventional envelope of L; i is an isotopic
mapping L — i(L) = L ~ L; € is an associative algebra generally nonisomorphic
to & 7 is a homomorphism of L into é*; such that: if é’ is another associative
algebra and 7/ is another homomorphism of L into £, there exists a unique

30We use the denomination £(L) rather than (L) to stress the fact that the generators of £ are those of
L and not of lA/, a requirement that is essential for consistent physical applications because the generators
of L represent ordinary physical quantities (such as total energy, total linear momentum, etc.) that, as
such, cannot be changed by isotopies.
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Figure 3.A.1. A schematic view of the universal enveloping associative algebra of a Lie algebra
L and its lifting for the Lie-Santilli isoalgebra L according to the original proposal [4] of 1978.

isomorphism 4 of € into & with 7/ = v(#) and two unique isotopies i(£) = £ and
i6)=¢.

A primary objective of the above definition of isoenvelope is the lack of unique-
ness of the Lie algebra characterized by the isoenvelope or, equivalently, the char-
acterization of a family of generally nonisomorphic Lie algebras via the use of
only one basis. The above definition of isoenvelope also explains in more de-
tails the variety of realization of the simple 3-dimensional Lie-Santilli isoalgebra
Ls provided in Eq. (3.2.236), and may be of assistance in extending the same
classification to other isoalgebras.

The above notion of isoenvelope represents the essential mathematical struc-
ture of hadronic mechanics, namely, the preservation of the conventional basis,
i.e., the set of observables of quantum mechanics, and the generalization of the
operations on them via an infinite number of isotopies so as to admit a new class
of interactions structurally beyond the possibilities of quantum mechanics.
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Appendix 3.B
Recent Advances in the TSSFN Isotopology

In Section 3.2.7 we introduced the elements of the Tsagas-Sourlas-Santilli-
Falcon-Nurez isotopology (or TSSEN Isotopology for short). In this appendix
we outline recent advances on the isotopology by the Spanish mathematicians
R. M. Falc6n Ganfornina and J. Nufiez Valdés [24,25].

PROPOSITION 3.2.B1: Consider a mathematical structure
(E7+’ X’O’.’ M ')?
if we construct an isotopic lifting such that:

a) Both primaries %, I and secondaries x, S isotopic elements are used.

b) (E, %, %, ...) is a structure of the same type as the initial, which is endowed
with isounits S, I, ..., with respect to x, x, ..., respectively.

c) I is an unit with respect to * in the corresponding general set V, being T =
I=1 €V the associated isotopic element.

Then, by defining in the isotopic level the operations:

~ —

aTb=axb;, axb=axb, ... (3.B.1)

And being defined in the projection level:

E:a*f; a—T—ﬂ:((a*T)*(ﬁ*T))*f; a?ﬁ:a*T*ﬂ; (3.B.2)

It is obtained that the isostructure (E,i, ?, ...) is of the same type as the initial
one.

The study in Refs. [24,25] is made by taking into consideration both isotopic
and projection levels. Equivalent results related to injective isotopies are also
obtained. In the first place, Proposition 3.2.A1 is verified for topological spaces
and for their elements and basic properties: isotopologies, isoclosed sets, isoopen
sets, Tb, etc:
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A topological isospace is every isospace endowed with a topological space struc-
ture. If, besides, such an isospace is an isotopic projection of a topological space,
it is called isotopological isospace.

Similarly, they are defined concepts of (iso)boundary isopoint, closure of a set,
closed set, isointerior isopoint, interior of a set, open set, (iso)Hausdorff isospace
and second countable isospace, among others.

PROPOSITION 3.2.B2: The space from which any topological isospace in the
isotopic level is obtained can be endowed with the final topology relative to the
mapping 1.

The isotopic projection of a topological space is an isotopological isospace in the
projection level. If such a projection is injective, then every topological isospace
in such a level is, in fact, isotopological.

Similar results are obtained for the concepts of (iso)boundary isopoint, isoint-
erior isopoint and (iso)Hausdorff isospace.

Next, Refs. [24,25] generalize Kadeisvili’s isocontinuity [19]. Particularly, the
basic isofield can be endowed with an isoorder, according to the following proce-
dure.

Let K be an isofield associated with a field K, endowed with an order <,
by using an isotopology which preserves the inverse element with respect to the
addition. We define the isoorder < as a<b if and only if @ < b. If the isotopy is

injective, the isoorder <en K is defined in the same way.

PROPOSITION 3.2.B3: The isoorders < and 2 are orders over K and E, of
the same type as <.

Let U be a R isovectorspace with isonorm ﬂﬂ = [|.|| and isoorder <, obtained
from an isotopy compatible with respect to each one of the initial operatlons It
will be said that an isoreal isofunction f of U is isocontinuous in X e U if for all

e>S there exists 6> such that for all Y € U with ||X —Y| |<57 it is verified that
| / ( ) ( )\2? We will say that f is isocontinuous in U if it is isocontinuous in

X for all X € U. Finally, when dealing with injective isotopies, the isocontinuity
in the projection level is defined in a similar way.

PROPOSITION 8.2.B4: The isocontinuity in U is equivalent to the continuity

in U. In the case of injective isotopies, both ones are equivalent to the one in U.

The isocontinuity on isotopological isospaces is also analyzed:
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An zsocontmuous isomapping in the 1sotop1(3 level between two topological iso-

spaces M and N is every isomapping f M — N preserving closures. The
definition in the projection level is given in a similar way.

PROPOSITION 3.2.B5: They are verified that:

a) J? s isocontinuous if and only if the mapping f from which comes from is
continuous. That result is stmilar in the projection level by using injective
1sotopies.

b) Every isoconstant isomapping is isocontinuous.

c¢) Isocontinuity is preserved by both topological composition and product.

Finally, the analysis of (iso)(pseudo)metric isospaces is also concreted:

PROPOSITION 3.2.B6: Let M be a K isovectorspace, isotopic lifting of a
vectorspace M, endowed with a (pseudo)metric d defined on an ordered field K, by
using an isotopy which preserves the inverse element and compatible with respect
to the addition in K. Then, the isofunction d is an iso(pseudo)metric.

Let (]\//7 d') be an (iso)(pseudo)metric K isovectorspace, endowed with an iso-
order 2. By(Xy,?) = {X € M : d'(X,Xy)<e} is called metric ball with center
Xo € M and radius €S5. If M is endowed with a (pseudo)metric d, with d=d,
then every metric ball By = Bg: Bd in M , which is isotopic lifting of a metric
ball By in M, is called metric isoball in M.

PROPOSITION 3.2.B7: Under conditions of Proposition XXX, if Bd(Xg, €)
is a metric ball in M, then Bd(Xo, €) = A(Xo, €) is a metric ball in M.

A metric neighborhood of an isopoint X € M is a subset A C M containing a
metric ball centered in X. The set of metric neighborhoods of X is denoted by
R, Finally, if d’ is the iso-Euclidean isodistance over R”, the associated metric
neighborhoods are called iso-Fuclidean neighborhoods.

PROPOSITION 3.2.B8: Let d and d’ two (iso)(pseudo)metrics over an
isovectorspace M. It is verified that Nfé = N;%l if and only if every metric

ball By(X,©) contains a ball By(X,p) and every ball Bd//()?,g) contains a ball
By (X, 11).
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PROPOSITION 3.2.B9: Every isospace endowed with an (iso)(pseudo)metric
18 an isotopological isospace.

PROPOSITION 3.2.B10: Let f : (]\//.7 d') — (N,d") be an isomapping between
K -isospaces endowed with (iso)(pseudo)metric and let us consider X € M. Then,

f is_isocontinuous in X if and only if for all eSS _there exists (5 € K such that
638, and if Y € Bu(X, 5) then it is verified that f( ) € Bd//(f(X),E).

PROPOSITION 32311 Let f M — N be an isomapping between two
isotopological isospaces M and N. If conditions of the deﬁmtzon of isocontinuity
are satisfied, then f is isocontinuous if and only sz Yo ) is an isoopen ofM
for all isoopen U ofN
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Appendix 3.C
Recent Advances on the Lie-Santilli Isotheory

In Section 3.2.9 we have outlined the rudiments of the Lie-Santilli isotheory.
It may be useful for the mathematically oriented reader to outline recent devel-
opments achieved by the Spanish mathematicians R. M. Falcén Ganfornina and
J. Nunez Valdés [24,25,43] in the field beyond those presented in monographs
[2,6,36,37].

Falcén and Nunez introduced in 2001 [37] a new construction model of iso-
topies which was similar to the one proposed by Santilli in 1978 although in its
multivalued version presented by the same author later on [6] (see Chapter 4)
because based on the use of several isolaws and isounits as operations existing
in the initial mathematical structure. Such a model, which from now on will
be called MCIM (isoproduct construction model based on the multiplication), was
later generalized in Refs. [24,25,43]. In a schematic way, Santilli’s isotopies can
be described with the following diagram:

General Level

Conventional Level (V, %, %,...)
@)
(E,+, %,...) (E, %, *,...)
l i 11
Projection Level T Isotopic level
(B, F,%,...) (E,F,%,...)

where, by construction:
a) The mapping I: (E, ,*,...) — (E’, F,.%,..): X — X is an isomorphism.

b) The isotopic projection is onto:

71':(E’,—T—,Q,...)H(E,i,?,...):aﬁw(a)zgza*f.

~ —
P

c) a—fb\:a/*\b; axb=axb;....
d) a=axl; aXB=(a*xT)xB+T))x1; axB=axTxp5;....

PROPOSITION 3.2.C1: The following properties are verified:
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a) The isotopic projection associated with each injective isotopic lifting is an
isomorphism.

b) If the isotopic lifting used is compatible with respect to all of initial operations,
then the isostructure E is isomorphic to the initial E.

c) The relation of being isotopically equivalents is of equivalence.

d) Ewery isotopy mol: (E,+, X,0,e,...) — (E T, I ,0,%,...) can be considered
as an isotopic lifting which follows the MCIM, that is, every mathematical
1sostructure s an isostructure with respect to the multiplication.

Then, it has a perfect sense to considerer each one of the isostructures which
result of applying the MCIM to conventional structures. Particularly, we can
consider the construction of Santilli’s isoalgebras (as the isotopic lifting of each
algebra, which is endowed with a structure of algebra).

PROPOSITION 3.2.C2: Let U be a K-algebra and let U be a K-isovector-
space. If a K(a *,%)-algebra (U,o,0,-) is used in the general level, then the

isotopic lifting U corresponding to the isotopy of primary elements T and O and
secondary ones S and o, when MCIM is used, has a structure of isoalgebra on K
and it preserves the zmtml type of the algebra.

A particular type of isoalgebra is the Lie-Santilli isoalgebra [4]. Particularly,

if U is the isotopic projection of a Lie-Santilli isoalgebra,

I= f(x,d:c,de,t,T,u,T,...)

is an isounit and a basis ﬁ, {&1,...,éy} is fixed, where e?ifeTj = Zcf] e ¢,
V1 <i,j <n, then coefficients c?j € K are the Maurer-Cartan coefficients of the
isoalgebra, which constitute a generalization of the conventional case, since they
are not constants in general, but functions dependent of the factors of I.
Another interesting isoalgebra is the Santilli’s Lie-admissible algebra [4], that
is, the isoalgebra U such that with the commutator bracket [-]p - [)A( ,17] o=
(XY) - (}A/A)? ) is an isotopic Lie isoalgebra. The following result is satisfied:

PROPOSITION 3.2.C3: Under conditions of Proposition XXX, let us suppose
that the law © of the isoalgebra U is defined according XoY = (X o Y)OI, for
all X, Y € U. If U is a Lie (admissible) algebra, then U is a Lie isoadmissible
isoalgebra.
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In this way, Santilli’s Lie-admissible isoalgebras inherit the usual properties of
conventional (admissible) Lie algebras. In the same way, usual structures related
with such algebras have also their analogue ones when isotopies are used.

For instance, an isoideal of a Lie isoalgebra U is every isotopic lifting of an ideal

S of U, which is by itself an ideal. In particular, the center of a Lie isoalgebra U
{X € U such that XY = S Vel } is an isoideal of U. In fact, it is Verlﬁed
the following result:

PROPOSITION 3.2.C4: Let U be a Lie isoalgebra associated with a Lie algebra
U and let 3 be an ideal of U. Then, the corresponding isotopic lifting S is an
isoideal of U.

~

An isoideal & ~of a Lie isoalgebra (U 9.7, is called isocommutative if XY =

S for all X € & and for all YV € U bemg U isocommutative if it is so as an
isoideal.

PROPOSITION 3.2.C5: U is isocommutative if and only if U is commutative.

Lie-Santilli 1s0algebras can also be introduced as follows. Given an K-i isoassoci-
ative isoalgebra (U,3,,7), the commutator in U associated with % [X,Y]g =
(X"f/) - (XA’AX’), for all X,Y € U is denominated Lie-Santilli bmcket product
[.,.]s with respect to ™. The isoalgebra ([7,8, e, [.,.]s) is then denominated Lie-
Santilli algebra.

DEFINITION 3.2.C6: Let U be an K -isoassociative 1soalgebra associated with
a K-algebra U, under conditions of Proposition XXX. Then, the Lie-Santilli
algebra associated with U is a Lie isoalgebra if the algebra U is either associative
or Lie admissible.

Apart from that, a Lie-Santilli isoalgebra U is said to be isosimple if, being an
isotopy of a simple Lie algebra, it is not isocommutative and the only isoideals
which contains are trivial. In an analogous way, U is called isosemisimple if, being
an isotopy of a semisimple Lie algebra, it does not contain non trivial isocommu-
tative isoideals. Note that, this definition involves that every isosemisimple Lie
isoalgebra is also isosimple. Moreover, it is verified:

PROPOSITION 38.2.C7: Under conditions of Proposition XXX, the isotopic
lifting of a (semi)simple Lie algebra is an iso(semi)simple Lie isoalgebra. Partic-
ularly, every isosemisimple Lie isoalgebra is a direct sum of isosimple Lie isoal-
gebras.
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A lie-Santilli isoalgebra (U ,0,9,) is said to be isosolvable if, being an isotopy
of a solvable Lie algebra, in the isosolvability series

U=U, Uy=UU, U3=Us0s, ..., U =Ui1Uiu,...

there exists a natural integer n such that U, = {§ }. The minor of such integers
is called isosolvability index of the isoalgebra.

PROPOSITION 38.2.C8: Under conditions of Proposition XXX, the isotopic
lifting of a solvable Lie algebra is an isosolvable Lie isoalgebra.

An easy example of isosolvable Lie isoalgebras are the isocommutative iso-
topic Lie isoalgebras, since they verify, by definition, that U-U = Uy = {S}. It
implies that every nonzero isocommutative Lie isoalgebra has an isosolvability
index equals 2, being 1 the corresponding to the trivial isoalgebra {S}.

PROPOSITION 3.2.C9: Let U be a Lie isoalgebra associated with a Lie algebra
U. Under conditions of Proposition XXX, they are verified:

1) UZ s an isoideal ofU and of Ui,l, foralli e N.

2) If U is isosolvable and U is solvable, then every isosubalgebra ofU 18 isosolv-

able.

3) The intersection and the product of a finite number of isosolvable isoideals ofU
are isosolvable isoideals. Moreover, under conditions of Proposition XXX, the
sum of a finite number of isosolvable isoideals is also an isosolvable isoideal.

By using this last result it can be deduced that the sum of all isosolvable
isoideals of U is another isosolvable isoideal, which is called isoradical of U. Note
that it is different from the radical of U which would be the sum of all solvable
ideals of U. The isoradical is denoted by isorad U not to be confused with rad
U and it will always contain {S }, because this last one is a trivial isosolvable
isoideal of every isoalgebra. Note also that as every isosolvable isoideal of U
is a solvable ideal of U, then isorad U C rad U. So, if U is isosolvable, then
U = isorad U = rad U due to U is solvable in particular.

PROPOSITION 3.2.C10: If U is a_semisimple Lie isoalgebra over a field of

zero characteristic, then isorad U = {S}.
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A Lie-Santilli isoalgebra (U ,0,9,%) is called isonilpotent if, being an isotopy of
a nilpotent Lie algebra, in the series

Ul=0U, U?=U0U, U*=U%U,. = Ury,.

(whlch is called isonilpotency series), there exists a natural integer n such that

Un = {S }. The minor of such integers is denominated nilpotency index of the
isoalgebra.

As an immediate consequence of this definition it is deduced that every
isonilpotent Lie isoalgebra is isosolvable and that every nonzero isocommuta-
tive Lie isoalgebra has an isonilpotency index equals 2, being 1 the corresponding
of the isoalgebra {S}. Moreover, they are verified:

PROPOSITION 3.2.C11: Under conditions of Proposition XXX, the isotopic
lifting of a milpotent Lie algebra is an isonilpotent isotopic Lie isoalgebra.

PROPOSITION 3.2.C12: Let U be a Lie isoalgebra associated with a Lie al-
gebra U. They are verified:

1) Under conditions of Proposition XXX, the sum of a finite number of isonilpo-
tent isoideals of U is another isonilpotent isoideal.

2) If U is also isonilpotent and U 1is nilpotent, then

(a) Every isosubalgebra of U is isonilpotent.

(b) Under conditions of Proposition XXX, if U is nonzero isonilpotent, then
its center is non null.

In a similar way as the case isosolvable, the result (1) involves that the sum of
all isonilpotent isoideals of U is another isonilpotent isoideal, which is denoted by
isonthil-radical of U to be distinguished from the nihil-radical of U which is the
sum of the radicals ideals. It will be represented by isonil-rad U which allows
to distinguish it from the nil-rad U It is immediate that isonil-rad U C nil-rad
U nisorad U C nil-rad U C rad U.

Apart from that, it is possible to relate an isosolvable isotopic Lie isoalgebra
with its derived Lie isoalgebra, by using the following:

PROPOSITION 3.2.C13: Under conditions of Proposition XXX, a Lie isotopic
isoalgebra is isosolvable if and only if its derived Lie isoalgebra is isonilpotent.
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Finally, an isonilpotent Lie isoalgebra ((7 ,0,,~) is called isofiliform if, being
an isotopy of a filiform Lie algebra, it is verified that

dim(,72:n—2, ce dimﬁi:n—i, ce dimﬁ”:(],

where dim U = n.

Note that the theory related with a filiform Lie algebra U is based on the use
of a basis of such an algebra. So, starting from a basis {e1,...,e,} of U, which
is preferably an adapted basis, we can deal with lots of concepts of it, such as
dimensions of U and of elements of the nilpotency series, invariants ¢ and j of
U and, in general, the resting properties, starting from its structure coefficients,
which are, in fact, responsible for the complete study of filiform Lie algebras.
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Appendix 3.D
Relativistic Formulation of the Galilei Symmetry

Asindicated in Section 3.5.1, special relativity has remained unsettled after one
century of studies, even in the arena of its original conception, namely, point—
particles and electromagnetic waves propagating in vacuum. A reason of the
ongoing debates is connected to the alternative of Lorentz invariance for the two-
ways light experiments conducted to date, and the Galilean invariance expected
for one-way light experiments.

The alternative of Lorentzian vs Galilean treatments is obscured by the fact
that the former applies for relativistic speeds while the latter is not perceived
as such. This limitation was resolved in the early 1970s by the relativistic for-
mulation of the Galilean symmetry and relativity proposed by P. Roman, J. J.
Aghassi and R. M. Santilli [76-78], and known as Galileo- Roman-Santikki- Aghassi
symmetry and relativity.3!

In short, the alternative as to whether the ultimate relativity is of Lorentzian or
Galilean type is far from being resolved. It is an easy prediction that such an al-
ternative will not be resolved in these volumes. Consequently, in this appendix we
can merely review the main ideas of the Galileo-Roman-Santilli-Aghassi (GRSA)
symmetry, and leave the resolution of the alternative to future generations.

By assuming an in depth knowledge of the Galileo symmetry and its scalar
extension (that we cannot possibly review here), the GRSA symmetry is based
on the following assumptions:

1) The carrier space is given by the Kronecker product of the conventional
Minkowski space M (z,n, R) times a one-dimensional space U(u) where u repre-
sents the proper time normalized to the dimension of length for reason clarified
below,

Stot = M(3.1) x U(u) (3.D1)

2) The GRSA symmetry is characterized by the following transformations
S0,(3.1): zt — 2™ = A x2¥, APeta x Ag = nalpha”ho, (3.D2a)
Ty 2t — 2 =2t + o, (3.D2b)

31These studies were conducted while the author was Associate Professor of Physics at Boston University
under partial financial support by the USAFOSR here gratefully acknowledged.
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TPzt -2 =gt b xu (3.D2c¢)
7 : u—u =u+o, (3.D2d)

where: Eqgs. (3.D2a) are the (connected) conventional Lorentz transformations;
Egs. (3.D2b) are the conventional translations (with a* constants); Eqgs. (3.D2c)
and (3.D2d) are the new transformations with b* and ¢ non-null parameters, b*
being dimensionless and ¢ having the dimension of length. Egs. (3.D2c) were
originally called relativistic Galilean boosts, [76] and here called GRSA boosts,
since they are indeed a relativistic extension of the conventional nonrelativistic
boosts. Eq. (3.D2d) was originally called the relativistic Galilean time translation
[76],and it is here called the GRSA time translation.

3) The GRSA symmetry is then fifteen-dimensional and its connected compo-
nent is written

GR = {S0,(3.1) x T?} x {T§ x T{}, (3.D3)

where one should note: the presence of the Poincaré group as a subgroup; the
presence of the conventional Galileo group as a subgroup; and the separation of
conventional translations from the Lorentz symmetry and their association to the
new variable u.

Group (3.D3) admits as an invariant subgroup the group 7§ x T’ f x T7. Hence,
the GRSA group (3.D3) is an extension of the restricted Lorentz group, but not
of the Poincaré group, even though the latter is also an extension of the Lorentz
group. These are central features for the understanding of the differences between
the Galileo symmetry, the Poincaré symmetry and the GRSA symmetry.

The conventional Galileo group requires a scalar extension for its dynamical
application, and the same occurs for the GRSA group, thus leading to the covering

GR=T? x {SL(2.C) x T?} x {T¢ x T}, (3.D4)

where 6 is the usual phase factor.

By denoting the generators of SL(2.C)) with J,,, the generators of T with
Pru, the generators of TY with Q,, and the generators of 77 with S, we have
the following Lie algebra

[Juvs Jpo] =0 X (Mup X Jpo = Nmup X Jve = Nuo X Jpv + 1o X Jpu),  (3.Dba)
[Py, Jpo) =1 X (Mup X Py — Nyuo X Pp), (3.D5b)

(Qps Juw] =i X (Nup X Qu — Mup X Qu), (3.D5¢)

[Py Qu] =i X 1y X £, (3.D5d)

[S,Qu] =ix P, (3.D5e)

[Py, P)) = [Qu.Qu) = [T, S] = [Pu, S] =0, (3.D5)
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where ¢ is the parameter originating from the scalar extension.

The physical interpretation is based on the following main aspects. Dynamics
is assumed to verify the GRSA symmetry, with the Poincaré symmetry charac-
terizing kinematics. Under such an assumption, the GRSA symmetry allows the
introduction of a fully consistent relativistic spacetime position operator that is
absent in relativistic quantum mechanics, with explicit expression

X, =X Q. (3.D6)

In fact, the above interpretation is fully supported by commutation rules (3.D5).

Eq. (3.D6) introduces quite automatically a universal length, with the signif-
icant feature that systems with different fundamental lengths are independent of
each other. The main dynamical invariant is no longer the familiar expression
P, x Pt = m?, but it is given instead by the following relativistic extension of
the Galilean invariant

P, x PP +2x0-1x85=inv. (3.D7)
By assuming the value
P, x P +2x(-1x8=0, (3.D3)

the Galileo-Roman symmetry allows the introduction of the relativistic mass op-

erator
ME=ex 7> xS. (3.D9)

Note that the above definition is confirmed by commutation rules [3.D5) as well
as from the fact that the above mass operator is invariant and a Lorentz scalar,
as it should be. In particular, the eigenvalue of the above mass operator is
the conventional scalar m? (see Ref. [76] for details). For a number of additional
intriguing features of the GRSA symmetry, such as the nonlocality of the position
operator "spread over” an area of radius £, we have to refer the interested reader
to paper [76] for brevity.

In closing with personal comments and recollections of these studies conducted
some 37 years ago, there is no doubt that the GRSA group has dramatically
more dynamical capabilities than the conventional Poincaré group. Also, to my
best recollection, we could find no experimental data contradicting the GRSA
symimetry.

Yet, the novelty of the symmetry caused a real opposition furor among col-
leagues, namely, a reaction that has to be distinguished from proper scientific
scrutiny. Part of the opposition was due to the political attachment to Ein-
steinian doctrines, but part was also due to the fact that the GRSA group re-

quired technical knowledge above the average of theoretical physicists of the time.
32

32See the footnotes of Volume IV.
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Such huge an opposition essentially forced the author to abandon the studies
in the field, a decision that he regretted later, but could not change at that time
due to the need in the 1970s for the author to secure an academic position so as
to feed and shelter two children in tender age and his wife.

During the 37 years that have passed since that time, the author discovered
numerous theories published in the best technical journals that, in reality, did
verify the GRSA symmetry, but were published as verifying the conventional
Poincaré symmetry. All attempts by the author for editorial corrections turned
out as being useless. That was unfortunate for the fully deserved continuation of
Paul Romans name in science.

In this way, the author was exposed for to the academic rage caused by novelty
and, in so doing, he acquired the necessary strength to resist academic disruptions
when he proposed the construction of hadronic mechanics in 1978 [4]. Also in
this way, the human experience gained by the author during his studies of the
GRSA symmetry and relativity proved as being crucial for the studies on hadronic
mechanics againt hardly credible obstructions, oppositions and disruptions.

Yet, the author hopes that studies on the GRSA symmetry and relativity
are indeed continued by new generations of physicists, not only because of the
dramatic richness of content compared to the Poincaré sub-symmetry, but also
because the GRSA symmetry and its easily derivable isotopic extension appear
to possess the necessary ingredients for a solution of the numerous unresolved
problems of special relativity, including compatibility with the ultimate frontier
of knowledge: space.??

33Tn the author’s view, these advances may happen only when society will one future day understand
the importance of scientific democracy for qualified inquiries.
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Appendix 3.E

Whitney’s Studies of Lorentzian vs. Galilean Rela-
tivities

3.E.1 Foreword

In this appendix we report ad litteram the studies on the alternative between
Lorentzian vs Galilean relativities conducted by Cynthia Kolb Whitney, Editor,
Galilean Electrodynamics, 141 Rhinecliff Street, Arlington, MA 02476, email
dwhitney@mit.edu

3.E.2 Introduction

The art of mathematical physics lies in modeling physical processes mathe-
matically by introducing idealizations simple enough to make the mathematics
not infeasible, while at the same time complete enough to avoid rendering the
physics inapplicable. It is a tough job, and we will probably never complete it.
The fact is: Nature is not constrained to adhere to any idealizations that we
introduce. History has revealed this truth over and over. But here is a brief
report on progress so far.

3.E.3 Newton

The first modern mathematical physicist was Sir Isaac Newton. Important
features of Newton’s theory include its Universal Time, which runs the same for
all observers, regardless of any absolute motion or relative motion between them.
That means Newton’s theory embodies Galilean Relativity. That is why I begin
with him.

In Newton’s Principia [80], the universe of discourse consisted of material
bodies, whether small like apples or large like planets, reduced to point particles,
with reciprocal forces between such particles, and the orbits thereby created for
the particles. This universe of discourse was in total contrast to that for scientists
on the European continent, which consisted of a presumed fluid ‘aether’, with
vortices within it that carried the particles in complicated vortical orbits.

The difference in world view embodies Newton’s important contribution to
natural philosophy: the idea that it is right and proper to stick to describing
mathematically the observable facts, without injecting any unprovable mechani-
cal explanations. Critics forever pressed Newton for such explanations for gravity.
How could it act, at a distance, without any contact? In response he included
with the second edition of his Principia the ‘General Scholium’, including the re-
marks: “But hitherto I have not been able to discover the cause of the properties
of gravity from phenomena, and I frame no hypothesis; for whatever is not de-
duced from the phenomena is to be called a hypothesis; and hypotheses, whether
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metaphysical or physical, whether of occult qualities or mechanical, have no place
in experimental philosophy... And in us it is enough that gravity does really exist,
and act according to the laws which we have explained, and abundantly serves
to account for all the motions of the celestial bodies, and our sea.”

Or, perhaps more memorably, “Hypothesis non fingo.” This statement does
not mean that such an explanation is never to be sought; it just means that the
time for such explanation can only be later on, when more facts are known. And
so until that time arrives, one should just do what one can better do. If that
that does finally arrive, then hypotheses need no longer be avoided; they can be
embraced and tested.

In Newton’s day, his purely descriptive mathematical approach was exceedingly
successful. It achieved an unexpected unification between terrestrial and celestial
physics. It could solve in closed form any two-body problem, with any ratio of
masses involved. Given modern computers, it can handle three, or however many
more, bodies. One tiny detail that it cannot do is the perihelion advance for a
planet in the solar system, which is actually observable for the planet nearest the
Sun, Mercury. That is, Newton’s theory gets most, but not all, of that perihelion
advance. For this tiny problem, Newton’s theory would one day yield to Einstein’s
General Relativity Theory (GRT). But more comment on that development comes
later.

3.E.4 Maxwell

The next batch of phenomenology for mathematical physics to deal with was
revealed with the discovery and study of electromagnetic phenomena. A lot of
individuals were involved, but the one who really changed things was Maxwell. He
achieved an amazing unification of electricity and magnetism into electromagnetic
theory [81]. It is a little unclear if he knew what he had sacrificed to get there.
There was no Galilean Relativity there. Did he realize that Universal Time was
gone? We do not know.

Maxwell’s universe of discourse included point particles, but it put more atten-
tion onto what was between the particles: electromagnetic fields. Some particles
generated the fields, while other, much smaller particles, responded to the fields,
as ‘test particles’, unable to react back on the sources. There is an asymmetry
there: Maxwell’s theory is not built for a two-body problem. Indeed, because of
the radiation associated with acceleration, Maxwell’s theory could not handle one
particularly important two-body problem: the Hydrogen atom. In part because
of that problem, a totally new branch of physics, Quantum Mechanics (QM),
would arise. But more comment on that development comes later.

Near the end of his Treatise on Electricity and Magnetism, Maxwell referred
to a letter from Gauss to Weber expressing the opinion that the real keystone
of electrodynamics would be “the deduction of the force acting between electric
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particles in motion from the consideration of an action between them, not instan-
taneous, but propagated in time, in a similar manner to that of light.” Gauss
had not accomplished this, nor had Maxwell, nor had three others who had tried
at the time Maxwell wrote; namely, Riemann, Clausius, and Betti. Maxwell at-
tributed the lack of success of those three to prejudice against a hypothesis of
a medium in which radiation of light and heat and electric action at a distance
takes place. Maxwell was an aether man. Nevertheless, his later followers refor-
mulated his theory without his aether, without his quaternion mathematics to
represent that aether, and instead with the now-familiar field vectors. The fea-
sibility of making the math description without requiring the aether hypothesis
again illustrates Newton’s point about hypothesis non fingo.

Later on, Lienard and Wiechert [82, 83] did something that seems to fulfill
the description that Gauss envisioned: they formulated retarded potentials, from
which retarded fields follow, and with the Lorentz force law, the retarded forces
follow. Their approach embodied an idea later crystallized more clearly. The
idea is this: Maxwell’s theory involves parameters €9 and g for free-space elec-
tric permittivity and magnetic permeability. They have no dependence on source
or observer motion. And they imply a wave speed ¢ = 1 / VEopo that also can-
not depend on source or observer motion. So the speed for potential and field
retardation should also be c.

3.E.5 Einstein

Enter Einstein [84]. He elevated the idea that had emerged from Maxwell to
the status of a Postulate — his famous ‘Second Postulate’, — which was the
foundation for Special Relativity Theory (SRT). SRT does not have Galilean
Relativity; it has Lorentzian relativity. Unlike Newton’s theory, SRT does not
have Universal Time; it has Relative Time. The idea of Relative Time is mind-
boggling, and in fact leads to an extensive literature about ‘paradoxes’, especially
about traveling twins, or trains, or clocks, or meter sticks, or buildings, etc.

Inasmuch as SRT is founded on Maxwell’s theory, and Maxwell’s theory cannot
handle the Hydrogen atom, SRT is unlikely ever to be fully compatible with QM.
Einstein was involved in the development of QM, through his Nobel-Prize winning
work on the photoelectric effect, but he was not fond of QM, and in later years
did not work so much on it. Instead, he mainly went back to SRT, embraced the
Minkowski tensor formulation for it, and exploited the metric tensor therein to
develop General Relativity Theory (GRT) [85].

GRT is believed to offer the explanatory hypothesis that Newton eschewed in
saying “Hypothesis non fingo”. GRT says that gravitational masses affect the
metric tensor; i.e., ‘curve the spacetime’, and responding masses travel paths
that are straight in curved spacetime, or curved in flat spacetime.
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Inasmuch as GRT is founded on SRT, and SRT is founded on Maxwell’s theory,
and Maxwell’s theory cannot handle the Hydrogen atom, GRT is not likely ever
to be fully compatible with QM. But scientists today do keep trying for that Holy
Grail.

GRT has the same design weakness that Maxwell’s theory: it is a field theory,
and as such, is not designed for something so complicated as a two-body problem.
Late in life, Einstein wrote about his misgivings in a letter to his friend Michel
Angelo Besso: “I consider it quite possible that physics cannot be based on the
field concept, i.e., on continuous structures. In that case nothing remains of my
entire castle in the air, gravitation theory included, [and the] rest of physics.”

Maintaining such doubt is, I believe, the mark of a truly great scientist. Ein-
stein’s present-day followers generally do not harbor such doubts.

3.E.6 Reformulations

There have always been researchers questioning Finstein’s Second Postulate,
and evaluating alternatives to it. Ritz was an early [86], but not successful, exam-
ple. Later, in the 1950’s, began the work of P. Moon, D. Spencer, E. Moon, and
many of Spencer’s students [87-89]. Their work has been successful in producing
a lot of very interesting results, if not in garnering all the recognition it deserves.

The key Moon-Spencer-Moon idea was a propagation process with continuing
control by the source, even after the initiating ‘emission’ event, so that the light
moves away from the source at speed c relative to that source, however arbitrarily
the source itself may be moving. (This is not the Ritz postulate, which had the
light moving at velocity ¢ + V', where V' was the velocity of the source at the
moment of emission, and c¢ is the velocity vector of the light if it had come from
a stationary source at that moment.)

In any event, continuing control by the source implies that ‘light’, whatever it
is, has a longitudinal extent (Of course! Light possesses wavelength, does it not?),
and the longitudinal extent is expanding in time. That expansion naturally raises
the question: exactly what part of the expanding light packet is it that moves at
speed c¢ relative to the source? The tacit hypothesis of Moon-Spencer-Moon is
that the c-speed part is the leading tip of the light packet. It then follows that
when a receiver is encountered, the entire longitudinal extent of the light packet
must collapse instantly to the receiver. That means the trailing tail of the light
packet must snap into the receiver at infinite speed. The infinite speed might be
unacceptable for Einstein true believers, but maybe not for QM true believers.

3.E.7 Two Step Light

My own work [90-92] follows the Moon-Spencer-Moon lead, with one con-
ceptual addition. My variation to the Moon-Spencer-Moon postulate is that the
speed c relative to the source characterizes, not the leading tip of the light packet,
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Figure 8.E.1. TIllustration of Two-Step Light propagation, reprinted from [90] with permission.

but rather the mid point of the light packet. That means the leading tip must
move relative to the source, not at ¢, but rather at 2¢. (A 2¢ anywhere is proba-
bly shocking to Einstein true-believers, but maybe not so shocking as an infinite
speed would be.)

My variation on the Moon-Spencer-Moon theme introduces symmetry between
light emission and absorption. The leading tip reaches the receiver in half the time
for propagation at ¢, so there is time left for a completely symmetric absorption
process, wherein the mid point of the light packet travels at speed c relative to
the receiver, however arbitrarily that may move. That idea then means the tail
end reels in at speed 2c relative to the receiver.

The fully revised light postulate is what I have called “T'wo-Step Light”. It is
illustrated in Fig. 1. The T’s are Universal Times: Ty at the beginning of the
scenario, 17 at the mid point, and 75 at the end. Particle A is the source, and
particle B is the receiver (one of possibly many candidate receivers, selected by
the accidental collision with the expanding light arrow at 77). The mid points
of the light arrows may be said to conform to the Moon-Spencer-Moon favored
postulate in the expansion phase of the scenario, and then with the Einstein
postulate in the collapse phase of the scenario.
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How can light do all that? Stay in contact with a moving source? Switch
control to a moving receiver? Stay in contact with a moving receiver? At this
point, I resort to saying hypothesis non fingo. My first job is just to work out the
implications of the Two-Step Light Postulate. It is a mundane task, involving no
more than high-school algebra. It has been detailed in [90] and [91]. Here I shall
just summarize results.

Consider the problem of processing data consisting of successive light signals
from a moving source in order to estimate the speed V of that source. If the light
propagates according to the T'wo-Step process, but the data gets processed under
the assumption of the one-step Einstein postulate, then there will be a systematic
error to the estimate. In fact, the estimate turns out to be

v=V/(1+V?/4c?). (3.E.1)

The estimate v is always less than V', and in fact is limited to ¢, which value
occurs at V = 2¢. Thus v has the property of any speed in Einstein’s SRT. The
obvious implication is that v is an Einsteinian speed, whereas V is a Galilean
speed.

One is obviously invited to look also at a related construct

VIi=v/(1-V?/4c?). (3.E.2)

The superscript | is present to call attention to the fact that V' has a singu-
larity, which is located at V = 2¢, or v = ¢. That is, V! has the property of
the so-called ‘covariant’ or ‘proper’ velocity. Interestingly, past the singularity, it
changes sign. This behavior mimics the behavior that SRT practitioners attribute
to ‘tachyons’, or ‘super-luminal particles’: they are said to ‘travel backwards in
time’. The sign change is a mathematical description, while the ‘travel backwards
in time’ is a literary description.

The relationships expressed by (3.E.1) and (3.E.2) can be inverted, to express
V in terms of v or VI. The definition v = V/ (1+ V?/4c?) rearranges to a
quadratic equation

(v/4*) V2 =V +v =0,

which has solutions

1
V= (+1+VI=v2/2).
v/2c? * vife
Multiplying numerator and denominator by <+1 F1—02/ 62> converts these

v_v/; (17 VI—7/2), (3E3)

which makes clear that for small v, V' has one value much, much larger than v,
and another value essentially equal to v.

to the form
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The definition V1 = V/ (1 -V?/ 402) rearranges to a quadratic equation
(—VT/4c2) V2oV 4Vl =o,

Multiplying numerator and denominator by (—i—l Fi/14 V2 / 02> converts

these to the form .
_ 17 2,2
[/V/2<1:F\/1+VT /c), (3.E.4)

which makes clear that for small V1, V has one value much larger in magnitude
than V1 (which is negative there), and another value essentially equal to V1.

To see that v and V! are not only qualitatively like Einsteinian speed and
covariant speed, but in fact quantitatively equal to them, one can do a bit more
algebra. Substitute (3.E.3) into (3.E.2) and simplify to find

vi= :Fv/ V1— 2/, (3.E.5)

which is the definition of covariant speed familiar from SRT, made slightly more
precise by inclusion of the minus sign for situations beyond the singularity.
Similarly, substitute (3.E.4) into (3.E.1) and simplify to find

U::}:VT/\/1+VT/C2, (3.E.6)

which is again a relationship familiar from SRT, made slightly more precise by
inclusion of the minus sign for situations beyond the singularity.

The information content of Eqgs. (3.E.1)—(3.E.6) is displayed graphically in
Fig. 2. Both plot axes denote multiples of nominal light speed c¢. Galilean particle
speed V is the independent variable. To save space, it is the absolute value of V'
that is plotted.

Speed stands here as a proxy for many other interesting things in SRT, like
momentum, relativistic mass, etc. SRT only offers only two speed relationships;
i.e., (3.E.5) and (3.E.6), whereas Two Step Light offers six relationships; i.e.
(3.E.1) through (3.E.6). This constitutes three times the information content.
That means Two Step Light offers a lot more opportunities for better explaining
all the interesting things in SRT.
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Figure 3.E.2. Numerical relationships among three speed concepts. Reprinted from [90] with
permission.

3.E.8 Paradoxes Resolved

There are a great many peculiar-sounding results from SRT — that is why the
word ‘paradox’ occurs so often in the SRT literature. But there are no paradoxes
in physical reality, and there are none in Two Step Light theory. To illustrate
this point, consider one rather obscure but very important case. I mentioned
before the Lienard-Wiechert retarded potentials and fields and implied forces.
They have a paradoxical property.

Expressed in Gaussian units [93], the Lienard-Wiechert scalar and vector po-
tentials are

®(x,t) = e[1/kR],qtarqgea and A (X,t) = €[B/KR] etarded ;

where K = 1 —n- 3, with B being source velocity normalized by ¢, and n = R/R
(a unit vector), and R = ropserver (t) — I'source (t — R/c) (an implicit definition for
the terminology ‘retarded’). The Liénard-Wiechert fields expressed in Gaussian
units are then

n— — 32 n
E(x,t)=¢e ( B)(l /8)4- <(H—B)ch£)] )

X
K3 R? ck3R

retarded
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and B (x,t) = Nyetarded X E (x,t). The 1/R fields are radiation fields, and they
make a Poynting vector that lies along nyetarded:

2
P = Eradiative X Bradiative = Eradiative X (nretarded X Eradiative) = Eradiativenretarded-

But the 1/R? fields are Coulomb-Ampere fields, and the Coulomb field does not
lie along Nyetarded as one might naively expect; instead, it lies along (n — B),otarded-

Consider the following scenario, designed specifically for an instructive exer-
cise in reductio ad absurdum. A source executes a motion comprising two com-
ponents: 1) inertial motion at constant B, plus 2) oscillatory motion at small
amplitude and high frequency, so that there exists a small velocity AP etarded
and a not-so-small acceleration dAR/dt|. i rqeq- Observe that the radiation and
the Coulomb attraction/repulsion come from different directions. The radiation
comes along Nyetarded from the retarded source position, but the Coulomb at-
traction/repulsion lies along (n — B),otardeqs Which is basically (nretarded)projected7
and lies nearly along npresens- This behavior seems peculiar. Particularly from
the perspective of modern Quantum Electrodynamics (QED), all electromagnetic
effects are mediated by photons — real ones for radiation and virtual ones for
Coulomb-Ampere forces. How can these so-similar photons come from different
directions?

Two-Step Light theory resolves the directionality paradox inherent in the
Linard-Wiechert fields. Because of the various 2c¢’s in the mathematics, the
radiation direction nNpetarded changes to Npaifretarded, and the Coulomb at-
traction/repulsion direction (nretarded>projected changes to (nretarded)halfprojected-
These two directions are now physically the same; namely the source-to-receiver
direction at the mid point of the scenario, i.e. Npidpoint- The potentials and
fields become:

¢ (x,t) =e[l/R)] and A (x,t) =e[V/cR]

mid point mid point ?

E(x,t)=e¢ []22 + % X <n X 2;)] and B (x,t) = Nmid point X E (X, 1).
mid point

What is so important about the field formulations consistent with Two Step
Light is the forces that they imply in a two-body system, such as the Hydrogen
atom. The attractive forces are not central. They impose a torque on the system,
and through that, a mechanism for energy input into the system. This can work
against the energy loss due to radiation reaction. This can provide an approach
for understanding atoms that is completely different from QM. One need not
postulate the value of Planck’s constant and the nature of its involvement in
the mathematics of ‘probability’ waves. One can derive Planck’s constant. And
one can uncover a tremendous amount of previously unrecognized regularity in
chemical data. Refs. [91, 92] go into all this in some detail.
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3.E.9 Conclusions

About SRT: A symbol is missing from the language of SRT (namely, the Gali-
lean speed V). As a result, Einsteinian speed v often gets conflated with Galilean
speed V. Any conflation of physical concepts can cause confusion and misinter-
pretations of results. That is why the SRT literature has to discuss so many
‘paradoxes’.

About Two Step Light: Two Step Light is a ‘covering’ theory; it contains
all the variables and relationships familiar from SRT, but it also contains other
variables and relationships as well. Users who are comfortable with the familiar
need not give anything up, and users who are curious about the rest can readily
make use of it.

About relativities: If one accepts Two Step Light as an explanation for SRT,
then one can describe any situation of interest in terms of Galiean V' and Galilean
coordinate transformations. That is, one is free to use Galilean relativity rather
than Lorentzian relativity if one wishes.

About QM: Like SRT, QM has required unnecessary abandonment of ratio-
nality. And there is a lot of phenomenology out there that simply is not treated
by present-day QM. So it is worth re-doing QM in a different way.

About philosophy: Today’s QM is rightly understood as a theory not so much
of ‘things’, but rather of ‘knowledge’: what we can ‘know’, given our means of
knowing anything about what ‘is’. SRT should be understood that way too. It
isn’t necessarily about what ‘is’; it is about what we think, given what data we
can take, and what algorithms we allow ourselves to apply in processing that
data.
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Appendix 3.F
Rapoport Studies on Geometry, Torsion, Statistics,
Diffusion and Isotopies

3.F.1 Introduction

In this appendix we report ad litteram the studies on geometry, torsion, statis-
tics, diffusion and isotopies by Diego Lucio Rapoport of the Department of
Sciences and Technology, Universidad Nacional de Quilmes, Buenos Aires, Ar-
gentina, email jdiego.rapoport@gmail.com;,.

It is appropriate to start by quoting Prof. Santilli (see Section 6.1, Volume IV
of this series): “a first meaning of the novel hadronic mechanics is that of pro-
viding the first known methods for quantitative studies of the interplay between
matter and the underlying substratum. The understanding is that space is the fi-
nal frontier of human knowledge, with potential outcomes beyond the most vivid
science fiction of today”. In this almost prophetic observation, Prof. Santilli has
pointed out the essential role of the substratum, its geometrical structure and the
link with consciousness. In the present appendix, which we owe to the kind invi-
tation of Prof. Santilli, we shall present similar views, specifically in presenting
both quantum and hadronic mechanics as space-time fluctuations, and we shall
discuss the role of the substratum. As for the problem of human knowledge, we
shall very briefly indicate on how the present approach may be related to the
fundamental problem of consciousness, which is that of self-reference.

A central problem of contemporary physics is the distinct world views pro-
vided by QM and GR (short for quantum mechanics and general relativity, re-
spectively), and more generally of gravitation. In a series of articles [94-97,
115] and references therein, we have presented an unification between space-time
structures, Brownian motions, fluid dynamics and QM. The starting point is
the unification of space-time geometry and classical statistical theory, which has
been possible due to a complementarity of the objects characterizing the Brow-
nian motion, i.e. the noise tensor which produces a metric, and the drift vector
field which describes the average velocity of the Brownian, in jointly describing
both the space-time geometry and the stochastic processes. These space-time
structures can be defined starting from flat Euclidean or Minkowski space-time,
and they have in addition to a metric a torsion tensor which is formed from
the metric conjugate of the drift vector field. The key to this unification lies in
that the Laplacian operator defined by this geometrical structure is the differen-
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tial generator of the Brownian motions; stochastic analysis which deals with the
transformation rules of classical observables on diffusion paths ensures that this
unification is valid in both directions [116]. Thus, in this equivalence, one can
choose the Brownian motions as the original structures determining a space-time
structure, or conversely, the space-time structures produce a Brownian motion
process. Space-time geometries with torsion have lead to an extension of the
theory of gravitation which was first explored in joint work by Einstein with
Cartan [98], so that the foundations for the gravitational field, for the special
case in which the torsion reduces to its trace, can be found in these Brownian
motions. Furthermore, in [95] we have shown that the relativistic quantum po-
tential coincides, up to a conformal factor, with the metric scalar curvature. In
this setting we are lead to conceive that there is no actual propagation of distur-
bances but instead an holistic modification of the whole space-time structure due
to an initial perturbation which provides for the Brownian process modification
of the original configuration. Furthermore, the present theory which has a kinetic
Brownian motion generation of the geometries, is related to Le Sage’s proposal
of a Universe filled with all pervading tiny particles moving in all directions as
a pushing (in contrast with Newton’s pulling force) source for the gravitational
field [129]. Le Sage’s perspective was found to be compatible with cosmologi-
cal observations by H. Arp [130]. This analysis stems from the assumption of
a non-constant mass in GR which goes back to Hoyle and Narlikar, which in
another perspective developed by Wu and Lin generates rotational forces [131].
These rotational forces can be ascribed to the drift trace-torsion vector field of the
Brownian processes through the Hodge duality transformation [96], or still to the
vorticity generated by this vector field. In our present theory, motions in space
and time are fractal, they generate the gravitational field, and furthermore they
generate rotational fields, in contrast with the pulling force of Newton’s theory
and the pushing force of Le Sage, or in the realm of the neutron, the Coulomb
force. Furthermore, in our construction the drift has built-in terms given by the
conjugate of electromagnetic-like potential 1-forms, whose associated intensity
two-form generate vorticity, i.e. angular momentum; these terms include the
Hertz potential which is the basis for the construction of superluminal solutions
of Maxwell’s equations; see [95] and references therein. So the present geometries
are very different from the metric geometries of general relativity and are not in
conflict with present cosmological observations.

The space-time geometrical structures of this theory can be introduced by the
Einstein A transformations on the tetrad fields [98, 95|, from which the usual Weyl
scale transformations on the metric can be derived, but contrarily to Weyl geome-
tries, these structures have torsion and they are integrable in contrast with Weyl’s
theory; we have called these connections as RCW structures (short for Riemann-
Cartan-Weyl) [94-97]. This construction is a special case of the construction of
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Riemannian or Lorentzian metrics presented in Section 3.5.3, in which Santilli
generalized isotopic unit takes a diagonal form with equal elements given by (the
square of) a scale function, while the number field, the differential and integral
calculus are the usual ones of practice in differential geometry; these restrictions
will be lifted to work with a full isotopic theory for HM in extending the the-
ory developed for QM; in distinction with HM, the usual scale transformations
do not depend on anything but the space-time coordinates, thus excluding the
more general non-linear non-hamiltonian case contemplated by HM. In distinc-
tion with GR which due to the lack of a source leads to inconsistencies discussed
in Section 1.4, a theory based on torsion and in particular in the case of a so-
called absolute parallelism in which the torsion is derived from the differential
of the cotetrad field (the so-called Weitzenbock spaces), has a geometrically de-
fined energy-momentum tensor which is built from the torsion tensor [113, 134].
Furthermore, the trace-torsion has built-in electromagnetic potential terms. We
must recall that in Section 1.4 it was proved that gravitational mass has partially
an electromagnetic origin. So our original setup in terms of torsion fields which
can be non-null in flat Minkowski or Euclidean spaces (while in these spaces cur-
vature is null), does not lead in principle to the inconsistencies observed before.
There are other differences between the present approach and GR which we would
like to discuss. In the latter theory, the space-time structure is absolute in the
sense that it is defined without going through a self-referential characterization.
With the introduction of torsion, and especially in the case of the trivial metric
with null associated curvature tensor, we are introducing a self-referential char-
acterization of the geometry since the definition of the manifold by the torsion,
is through the concept of locus of a point (be that temporal or spatial). Indeed,
space and time can only be distinguished if we can distinguish inhomogenities,
and this is the intent of torsion, to measure the dislocation (in space and time)
in the manifold [142]. Thus all these theories stem from a geometrical operation
which has a logical background related to the concept of distinction (and more
fundamentally, the concept of identity, which is prior to that of distinction) and its
implementation through the operation of comparison by parallel transport with
the affine connection with non-vanishing torsion.>* In comparison, in GR there
is also an operation of distinction carried out by the parallel transport of pair of
vector fields with the Levi-Civita metric connection yielding a trivial difference,
i.e. the torsion is null and infinitesimal parallelograms trivially close, so that it
does not lead to the appearence of inhomogenities as resulting from this primitive

34This can be further related with multivalued logics and the appearance of time waves related to
paradoxes, which in a cognitive systems approach yields the Schroedinger representation; furthermore
this conception leads to the notion of reentrance of a space-time domain into itself, as a self-referential
cybernetic system, and ultimately to multidimensional time; this may ultimately be linked to semiotics
and its role in biology [134].
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operation of distinction; these are realized through the curvature derived from
the metric. But to close this discussion, we refer again to the inconsistencies that
an approach based on the curvature viz a viz the present approach which places
the appearence of spacetime in terms of deformations of the vacuum, and as such,
has the same genesis as Isorelativity developed by Prof. Santilli and presented in
Section 3.5.5.

We have shown that this approach leads to non-relativistic QM both in configu-
ration space [96] and in the projective Hilbert state-space through the stochastic
Schroedinger equation [98] (in the latter case, it was proved shown that this
geometry is related to the reduction of the wave function can be described by
decoherence through noise [96, 98]), and further to Maxwell’s equation and its
equivalence with the Dirac-Hestenes equation of relativistic QM [95, 115]. The
fact that non-relativistic QM can be linked to torsion fields was unveiled recently
[96]. In fact, torsion fields have been considered to be as providing deviations
of GR outside the reach of present precision measurements [112]. It turns out
that quantum wave-functions verifying linear or non-linear Schroedinger equa-
tions are another universal, or if wished, mundane examples of torsion fields. We
shall show in the present article, that this approach extends to the strong interac-
tions as described by HM and thus that the isotopic lift of the Schroedinger wave
function is also a source for torsion, albeit one which incorporates the full non-
linearity and non-hamiltonian character of the strong interactions. The quantum
random ensembles which generate the quantum geometries, or which dually can
be seen as generated by them, in the case of the Schroedinger equation can be
associated with harmonic oscillators with disordered random phase and ampli-
tude first proposed by Planck, which have the same energy spectrum as the one
derived originally by Schroedinger [146]. The probabilities of these ensembles
are classical since they are associated with classical Brownian motions in the
configuration and projective Hilbert-state manifolds, in sharp contrast with the
Copenhagen interpretation of QM which is constructed in terms of single system
description, and they are related to the scalar amplitude of the spinor field in the
case of the Dirac field, and in terms of the modulus of the complex wave func-
tion in the non-relativistic case [95, 96, 115]. We would like to recall at this stage
that Khrennikov has proved that Kolmogorov’s axiomatics of classical probability
theory, in a contextual approach which means an a-priori consideration of a com-
plex of physical conditions, permits the reconstruction of quantum theory [117].
Thus, Khrennikov’s theory places the validity of quantum theory in ensembles,
in distinction with the Copenhagen interpretation, and is known as the Vaxho
interpretation of quantum mechanics. In the present approach we obtain both a
geometrical characterization of the quantum domain through random ensembles
performing Brownian motions which generate the space and time geometries,
and additionally a characterization for single systems through the topological
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Bohr-Sommerfeld invariants associated with the trace-torsion by introducing the
concept of Pfaffian system developed by Kiehn in his geometro-topological theory
of processes [132], specifically applied to the trace-torsion one-form [134]. Most
remarkably, in our setting another relevant example of these space-time geome-
tries is provided by viscous fluids obeying the invariant Navier-Stokes equations
of fluid-dynamics, or alternatively the kinematical dynamo equation for the pas-
sive transport of magnetic fields on fluids [94, 97]. This is of importance with
respect to cosmology, since cosmological observations have registered turbulent
large-scale structures which are described in terms of the Navier-Stokes equa-
tions [135].

There have been numerous attempts to relate non-relativistic QM to diffusion
equations; the most notable of them is Stochastic Mechanics due to Nelson [102].
Already Schroedinger proposed in 1930-32 that his equation should be related to
the theory of Brownian motions (most probably as a late reaction to his previous
acceptance of the single system probabilistic Copenhagen interpretation), and
further proposed a scheme he was not able to achieve, the so-called interpolation
problem which requires to describe the Brownian motion and the wave functions
in terms of interpolating the initial and final densities in a given time-interval
[102]. More recently Nagasawa presented a solution to this interpolation prob-
lem and further elucidated that the Schroedinger equation is in fact a Boltzmann
equation [107], and thus the generation of the space and time structures produced
by the Brownian motions has a statistical origin.?® Neither Nagasawa nor Nelson
presented these Brownian motions as space-time structures, but rather as matter
fields on the vacuum.?0 Furthermore, Kiehn has proved that the Schroedinger
equation in spatial 2D can be exactly transformed into the Navier-Stokes equa-
tion for a compressible fluid, if we further take the kinematical viscosity v to be
L with m the mass of the electron [105]. We have argued in [96] that the Navier-
Stokes equations share with the Schroedinger equation, that both have a RCW
geometry at their basis: While in the Navier-Stokes equations the trace-torsion

35We have discussed in [96] that the solution of the interpolation problem leads to consider time to be
more than a classical parameter, but an active operational variable, as recent experiments have shown
[136] which have elicited theoretical studies in [145]; other experiments that suggest an active role of
time are further discussed in [96].

36 Another developments following Nelson’s approach, in terms of an initial fractal structure of space-
time and the introduction of Nelson’s forward and backward stochastic derivatives, was developed by
Nottale in his Scale Theory of Relativity [114]. Remarkably, his approach has promoted the Schroedinger
equation to be valid for large scale structures, and predicted the existence of exo-solar planets which
were observationally verified to exist [106]. This may further support the idea that the RCW structures
introduced in the vacuum by scale transformations, are valid independently of the scale in which the
associated Brownian motions and equations of QM are posited. Nottale’s covariant derivative operator
turns to be a particular case of our RCW laplacian [96]. We would like to mention also the important
developments of a theory of space-time with a Cantorian structure being elaborated in numerous articles
by M. El Naschie [137] and a theory of fractals and stochastic processes of QM which has been elaborated
by G. Ord [138].
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is ;—l}u with u the time-dependent velocity one-form of the viscous fluid, in the
Schroedinger equation, the trace-torsion one-form incorporates the logarithmic
differential of the wave function — just like in Nottale’s theory [114] — and further
incorporates electromagnetic potential terms in the trace-torsion one-form. This
correspondence between trace-torsion one-forms is what lies at the base of Kiehn’s
correspondance, with an important addendum: While in the approach of the
Schroedinger equation the probability density is related to the Schroedinger scale
factor (in incorporating the complex phase) and the Born formula turns out to be
a formula and not an hypothesis, under the transformation to the Navier-Stokes
equations it turns out that the probability density of non-relativistic quantum
mechanics, is the enstrophy density of the fluid, i.e. the square of the vorticity,
which thus plays a geometrical role that substitutes the probability density. Thus,
in this approach, while there exist virtual paths sustaining the random behaviour
of particles (as is the case also of the Navier-Stokes equations) and interference
such as in the two-slit experiments can be interpreted as a superposition of Brow-
nian paths [107], the probability density has a purely geometrical fluid-dynamical
meaning. This is of great relevance with regards to the fundamental role that
the vorticity, i.e. the fluid’s particles angular-momentum has as an organizing
structure of the geometry of space and time. In spite that the torsion tensor
in this theory is naturally restricted to its trace and thus generates a differen-
tial one-form, in the non-propagating torsion theories it is interpreted that the
vanishing of the completely skew-symmetric torsion implies the absence of spin
and angular momentum densities [112], it is precisely the role of the vorticity to
introduce angular momentum into the present theory.

To explain the fundamental kinematical role of torsion in QM and classical
mechanics of systems with Lie group symmetries, we note that if we consider as
configuration space a Lie group, there is a canonical connection whose torsion
tensor coefficients are non other than the coefficients of the Lie-algebra under the
Lie bracket operation [128]. Thus a Lie group symmetry is characterized by the
torsion tensor for the canonical connection. Thus the Lie-Santilli isotopic theory
implies a deformation of the torsion tensor of the canonical connection by the
generalized unit [19, 20, 22, 46, 73, 1087110].37 With regards to another role
of torsion in classical mechanics, it appears as describing friction, or more gen-
erally, non-anholonomic terms which produce additional terms in the equations
of motion, which were obliterated by contemporary physics with the exception
of Birkhoffian mechanics and discussed in Sections 1.2.4, 3.1, 3.3 and 4.1.2 by
Prof. Santilli, which originated in the monographs [150]. In fact the attention

37The introduction of this generalized unit, in contrast with the basic unit of mathematics and physics,
establishes a relation between these new units and physical processes which is unknown to mathemat-
ics, and is presently developed in terms of an arithmetic of forms which follows from the principle of
distinction previously alluded, the multivalued logics associated to it and self-reference [134].
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of this author to HM at an early stage, stemmed from his work (jointly with S.
Sternberg) in classical mechanical systems with angular momentum, which could
be formulated without lagrangians nor hamiltonians, and furthermore could not
be reduced to the canonical form of conservative systems [155]. Further in com-
mon to HM and torsion geometries, is that the latter are associated to angular
momentum densities [112], while in HM the isotopic unit incorporates spin-up
spin-down couplings such as in the Rutherford-Santilli model of the neutron [108,
141, 70]. Possible relations between torsion as spin or angular momentum densi-
ties can be ventured in relation with anomalous spin interactions of the proton,
and magnetic resonances [139]. Furthermore, it has been shown that completely
skew-symmetric torsion can produce a spin flip of high energy fermionic matter
at very high densities, and that in this situation helicity can be identified with
spin [133]. An intrinsic macroscopic angular momentum would be the evidence of
this phenomena.This may be of relevance when taking in consideration the time
periodicity of the fine structure of histograms and its relation to macroscopic
angular momentum which we have discussed in [96] and others we shall discuss
in this article.

To understand the need of carrying the extensions produced by the isotopic
lifts, it is based in the fact that the isotopic lift of Relativity due to Santilli (see
[73]) is applicable for the electromagnetic and weak interactions but not applica-
ble for the case of hadrons. These have a charge radius of 1 fm (10713 ¢cm) which
is the radius of the strong interactions. Unlike the electromagnetic and weak in-
teractions a necessary condition to activate the strong interaction is that hadrons
enter into a condition of mutual interpenetration. In view of the developments
below, we would like to stress that the modification of the symmetries of particles
under conditions of possible fusion, is the first step for the usual developments of
fusion theories which have been represented in terms of diffusion processes that
overcome the Coulomb repulsive potential which impedes the fusion [122]; Brow-
nian motions and other stochastic processes also appear in a phenomenological
approach to the many body problem in particle and nuclear physics, but with
no hint as to the possibility of an underlying space-time structure [151]. The
basic idea goes back to the foundational works of Smoluchowski (independently
of A. Einstein’s work in the subject) in Brownian motion [123]. In the case of
fusion theories, we have a gas of neutrons (which have an internal structure) and
electrons, or an hadron gas; in these cases the fused particles are considered to
be alike a compressible fluid with an unstable neck in its fused drops which have
to be stabilized to achieve effective fusion; we can see here the figure of deformed
symmetries. Thus, the situation for the application of Brownian motion to fusion
is a natural extension to the subatomic scale of the original theory. We finally
notice that the models for fusion in terms of diffusion do not require QM nor
QCD [122]. In contrast, HM stems from symmetry group transformations that
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describe the contact fusion processes that deform the neutron structure, and lead
to the isotopic Schroedinger equation which in this article, together with the iso-
topic Heisenberg representation, will be applied to establish a link between the
RCW geometries, fusion processes and diffusions. The reason for the use of the
iso-Heisenberg representation, is that in Santilli’s theory, the isotopic lift of the
symmetries in carried out in terms of the Heisenberg-Santilli isorepresentation,
where its connection with classical mechanics under the quantization rules includ-
ing the isotopic lift is transparent. Similarly to QM it will turn out to be that this
quantization that leads to HM can be framed in another terms, i.e. Brownian
motions appear to be quantum representations with no need of a quantization of
classical mechanics, which can nevertheless be achieved by taking in account the
fluctuations represented by the noise tensor of these random motions.

3.F.2 Riemann-Cartan-Weyl Geometries

In this section we follow [94, 95]. In this appendix M denotes a smooth con-
nected compact orientable n-dimensional manifold (without boundary). While
in our initial works, we took for M to be space-time, there is no intrinsic reason
for this limitation, in fact if can be an arbitrary configuration manifold and still
a phase-space associated to a dynamical system. The paradigmatical example
of the latter, is the projective space associated to a finite-dimensional Hilbert-
space of a quantum mechanical system [96, 98]. We shall further provide M
with an affine connection, or still by a covariant derivative operator V which
we assume to be compatible with a given metric g on M, i.e. Vg = 0. Here,
the metric can be the Minkowski degenerate metric, or an arbitrary positive-
definite (i.e. Riemannian) metric. Given a coordinate chart (z%) (a« =1,...,n)
of M, a system of functions on M (the Christoffel symbols of V) are defined by
\Y 2 % = F(m)gﬁﬁ/%. The Christoffel coefficients of V can be decomposed as:

o Q 1 «
8, = {ﬂv} + 5 K5, (3.F.1)

The first term in (3.F.1) stands for the metric Christoffel coefficients of the Levi-
Civita connection V9 associated to g, i.e. {/@O‘W} = %(%gw—%%gﬁy— 52598+)9"

and
Kg‘7 = Tﬁo‘,y + ng + % (3.F.2)

is the cotorsion tensor, with S5 = ¢*gg,. 17, and T = (I'g, —I'75) is the skew-
symmetric torsion tensor. We are interested in (one-half) the Laplacian operator
associated to V, i.e. the operator acting on smooth functions on M defined as

H(V):=1/2V? = 1/2g°PV V. (3.F.3)
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A straightforward computation shows that H(V) only depends in the trace of
the torsion tensor and g, since it is

H(V)=1/2A,+Q = H(g,Q), (3.F.4)

with Q = dimﬁ = T;’Bdafﬁ the trace-torsion one-form and Q is the vector field
associated to @ via g (the so-called g conjugate vector field to the one-form @,
i.e.

Q(f) = 9(Q. df), (3.F.5)
for any smooth function f defined on M. Finally, A, is the Laplace-Beltrami

operator of g:

Dy =209, 99, — gt O enf 7] 0 (3.F.6)
979 e 9 ozades Y af | oxv’ o
In this expression the partial derivatives are taken with respect to the Levi-Civita
connection. Therefore, assuming that g is non-degenerate, we have defined a one-
to-one mapping
Vo~ H(g,Q) =1/20y +Q

between the space of g-compatible linear connections V with Christoffel coeffi-
cients of the form

5y = {;;} + (7:1) {65 Qy — 93, Q°}, n#1 (3.F.7)

and the space of elliptic second order differential operators on functions. The ex-
tensions of this laplacian to differential forms and in particular, to fluid-dynamics,
has been presented in [94, 97].

3.F.3 Riemann-Cartan-Weyl Diffusions

In this section we shall recall the correspondence between RCW connections
defined by (3.F.7) and diffusion processes of scalar fields having H(g, Q) as its
diffrential generator. Thus, naturally we have called these processes as RCW
diffusion processes. For the extensions to describe the diffusion processes of dif-
ferential forms, see [94, 97]. For the sake of generality, in the following we shall
further assume that @Q = Q(7,x) is a time-dependent 1-form. In this setting
7 is the universal time variable due to Stuckelberg [101]; for a very sharp ac-
count of the relation of this time to Einsten’s time, t, we refer to Horwitz et al.
[118]. The stochastic flow associated to the diffusion generated by H(g,Q) has
for sample paths the continuous curves 7 — x(7) € M satisfying the It6 invariant
non-degenerate s.d.e. (stochastic differential equation)

da () = o(z(r))dW (1) + Q(r, z(7))dr. (3.F.8)



438 RUGGERO MARIA SANTILLI

In this expression, o : M x R™ — TM is such that o(x) : R™ — TM is linear
for any = € M, the noise tensor, so that we write o(z) = (¢f(z)) (1 < a < n,
1 <4 < 'm) which satisfies

O'?Oﬁ = ¢°°, (3.F.9)

(2

where g = (¢g®”) is the expression for the metric in covariant form, and {W (1),
7 > 0} is a standard Wiener process on R™, with zero mean with respect to
the standard centered Gaussian function, and covariance given by diag(r,...,7);
finally, dW (1) = W(r 4+ dr) — W(7) is an increment. Now, it is important to
remark that m can be arbitrary, i.e. we can take noise tensors defined on different
spaces, and obtain the essentially the same diffusion process [116]. In regards to
the equivalence between the stochastic and the geometric picture, this enhances
the fact that there is a freedom in the stochastic picture, which if chosen as
the originator of the equivalence, points out to a more fundamental basis of the
stochastic description. This is satisfactory, since it is impossible to identify all
the sources for noise, and in particular those coming from the vacuum, which
we take as the source for the randomness. Note that in taking the drift and the
diffusion tensor as the original objects to build the geometry, the latter is derived
from objects which are associated to collective phenomena. Note that if we start
with Eq. (3.F.8), we can reconstruct the associated RCW connection by using
Eq. (3.F.9) and the fact that the trace-torsion is the g-conjugate of the drift,
i.e., in simple words, by lowering indexes of Q to obtain ). We shall not go into
the details of these constructions, which relies heavily on stochastic analysis on
smooth manifolds [116].

Observations 1. Note that in the above construction of the s.d.e. all terms
corresponding to the Levi-Civita connection { BO;} have disappeared completely.
In fact one can start with a Laplacian written without these terms, say

H:=1/2¢*—— + Q“0, F.1
/29 Oxr*9xP + Q%0 (3.F.10)
and rewrite it as 1
iAg + 5%, (3.F.11)
with .
~ “ «
b :Qo‘+g’67{ }; 3.F.12
2 By ( )

we then redefine the connection V = (I') 5) to be compatible with g and such that
b = 197 ;7} —I'3, ] so that finally our original RCW laplacian H (V) takes the

form H(g,b) of Eq. (3.F.4) and the s.d.e. is given by (3.F.8); c.f. pages 285-289 in
Ideda & Watanabe [116]. From this follows that we can write the laplacians either
with the Levi-Civita covariant derivative or the usual derivative for characterizing
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the diffusion processes corresponding to the Schroedinger equation; this is also
valid for the iso-Schroedinger equations, starting by producing the isotopic lift of
the differential operator, or further, the isotopic lift of the covariant derivative
operator, the isocovariant differential introduced in Section 3.2.9.C above.

3.F.4 RCW Geometries, Brownian Motions and the
Schroedinger Equation

We have shown that we can represent the space-time quantum geometries
for the relativistic diffusion associated with the invariant distribution, so that
Q = %dlnp, with p = 9?2 and H(g,Q) has a self-adjoint extension for which
we can construct the quantum geometry on state-space and still the stochastic
extension of the Schroedinger equation defined by this operator on taking the an-
alytical continuation on the time variable for the evolution parameter [96]. In this
section which retakes the solution of the Schroedinger problem of interpolation
by Nagasawa [107], we shall present the equivalence between RCW geometries,
their Brownian motions and the Schroedinger equation which is a different ap-
proach to taking the analytical continuation in time, which by the way, has a
very important significance in terms of considering time to be an active variable;
see [96]. We shall now present the construction of non-relativistic QM with the
restriction that the Hodge decomposition of the trace-torsion restricts to its exact
component, excluding thus the electromagnetic potential terms of the full trace-
torsion which we considered in [95, 96]. So that we take Q = Q(t,x) = dlnf(z)
where f(t,x) = fi(x) is a function defined on the configuration manifold given
by [a,b] x M, where M is a 3-dimensional manifold provided with a metric, g.
The construction applies as well to the general case as well, as we shall show
further below. The scheme to determine f will be to manifest the time-reversal
invariance of the Schroedinger representation in terms of a forward in time dif-
fusion process and its time-reversed representation for the original equations for
creation and annihilation diffusion processes produced when there is no back-
ground torsion field, whose explicit form and relation to f we shall determine in
the sequel. From now onwards, the exterior differential, the divergence operator
and the laplacian will act on the M manifold variables only, so that we shall write
their action on fields, say dfi(x), to signal that the exterior differential acts only
on the x variables of M. We should remark that in this context, the time-variable
t of non-relativistic theory and the evolution parameter 7, are identical [118]. Let

L:Q+EA 0

o t 3l = 5+ H(9,0). (3.F.13)

Let p(s,z;t,y) be the weak fundamental solution of

Lo+ cp = 0. (3.F.14)
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The interpretation of this equation as one of creation (whenever ¢ > 0) and

annihilation (¢ < 0) of particles is warranted by the Feynman-Kac representation
for the solution of this equation [107]. Then ¢ = ¢(¢, x) satisfies the equation

P(s,z) = /Mp(svx;t,y)é(t,y)dy, (3.F.15)

where for the sake of simplicity, we shall write in the sequel dy = volg(y) =

Vdet(g)dy! A ... A dy®. Note that we can start for data with a given
function ¢(a,z), and with the knowledge of p(s,z;a,y) we define ¢(t,z) =
Jap(t, 25 a,y)dy. Next we define

q(s,x;t,y) = qs((glx)p(sax;t,y)sf)(t,y), (3.F.16)

which is a transition probability density, i.e.
/ q(s,z;t,y)dy =1, (3.F.17)
M
while
/ p(s,z;t,y)dy # 1. (3.F.18)
M

Having chosen the function ¢(¢,x) in terms of which we have defined the prob-
ability density q(s,z;t,y) we shall further assume that we can choose a second
bounded non-negative measurable function ¢(a,z) on M such that

/ é(a, z)$(a, x)dw =1, (3.F.19)
M

We further extend it to [a,b] x M by defining

gzub(t,y) = /qzuﬁ(a,x)p(a,a:;t, y)dz,¥(t,y) € [a,b] x M, (3.F.20)

where p(s, z;t,y) is the fundamental solution of Eq. (3.F.14).

Let {X; € M, Q} be the time-inhomogeneous diffusion process in M with
the transition probability density ¢(s,x;t,y) and a prescribed initial distribution
density

w(a,z) = ¢t = a,2)p(t = a, ) = da(2)da(x). (3.F.21)

The finite-dimensional distribution of the process {X; € M,t € [a, b]} with prob-
ability measure on the space of paths which we denote as @Q; for a =ty < t1 <



HADRONIC MATHEMATICS, MECHANICS AND CHEMISTRY 441
. <ty =10, it is given by

BQlf (Xos Xu oo Xey 1. X)) = [ doop(azo)g(a,zoits, o) ..
M
q(t1, z15t2, v2)dw2 .. q(tn—1,Tn—1,b, 75 )dzy
f(zo,x1,. oy Tp_1,Tn) = [aq >> (3.F.22)

which is the Kolmogorov forward in time (and thus time-irreversible) represen-
tation for the diffusion process with initial distribution puq(xo) = u(a, o), which
using Eq. (3.F.16) can still be rewritten as

1
———dx1p(ty, 152, T2)
b1, (1)

P(tn—1, Tn—1; b, zp)dp(xn)dzy, f(xo, - . ., x,) (3.F.23)

/M d$oﬂa(93o)%(1xo)p(a, xo; t1, 1) ¢ (21)dx

O ra—

which in account of g (z0) = da(zo)da(z0) and Eq. (3.F.16) can be written in
the time-reversible form

/ ba(xo)dzop(a, xo; t1, z1)dz1p(ty, €13 te, T2)dxs - .. p(tn_1, Tn_1; b, Tp)
M

ov(zn)dxn f(zo, ..., Tp)

(3.F.24)

which we write as 5
= [pap >><< ppy). (3.F.25)

This is the formally time-symmetric Schroedinger representation with the tran-
sition (but not probability) density p. Here, the formal time symmetry is seen
in the fact that this equation can be read in any direction, preserving the phys-
ical sense of transition. This representation, in distinction with the Kolmogorov
representation, does not have the Markov property.

We define the adjoint transition probability density ¢(s,z;t,y) with the (5_
transformation

o 1
] ) ;ta = 5 ) ;ta o
(s, x5t y) = (s, z)p(s, x y)cb(t,y)

which satisfies the Chapmann-Kolmogorov equation and the time-reversed nor-
malization

(3.F.26)

/ dzq(s,z;t,y) = 1. (3.F.27)
M

We get

EQ[f(Xa,th, ¢ / f(zo, ..., xn)q(a,xo;t1, x1)dx1q(t1, 215 t2, T2)dXo

(tn 1,ZTn—1;, xn)é(@xn)ﬁs(baxn)dxm (3'F'28)
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which has a form non-invariant in time, i.e. reading from right to left, as

<< qus) =<< Giu), (3.F.29)

which is the time-reversed representation for the final distribution pp(z) =
op(x)dp(z). Now, starting from this last expression and rewriting it in a sim-
ilar form that is in the forward process but now with ¢ instead of ¢, we get

o 1 . 1
/divo%(xo)]?(a,l‘o;tl,m)vd$1¢(t1,$1)p(t1,$1;t27:152)udCL’2
M

(o) 1 (@2)
e dxn_1<f;(tn—1, Tpn—1)p(tn—1,Tn—-1;b,n)
g)(b,lxn)qub(l'n)d)(b, xp)dzy f(xo, ..., 2n)  (3.F.30)

which coincides with the time-reversible Schroedinger representation

[Pap >><< php).

We therefore have three equivalent representations for the diffusion process:
the forward in time Kolmogorov representation, the backward Kolmogorov rep-
resentation, which are both naturally irreversible in time, and the time-reversible
Schroedinger representation, so that we can write succintly,

[Haq >>= [Gap >><< pp] =<< Gup), With f1g = ¢ada, = dpdp. (3.F.31)

In addition of this formal identity,we have to establish the relations between
the equations that have led to them. We first note, that in the Schroedinger
representation, which is formally time-reversible, we have an interpolation of
states between the initial data ¢,(z) and the final data, ¢p(x). The information
for this interpolation is given by a filtration of interpolation F/ U F;, which
is given in terms of the filtration for the forward Kolmogorov representation
F = FL t € [a,b] which is used for prediction starting with the initial density
d)agza = ug and the filtration .7-"tb for retrodiction for the time-reversed process
with initial distribution puyp.

We observe that ¢ and ¢ are in time-dependent duality with respect to the
measure

p (@) da = ¢y (2)dux. (3.F.32)

We shall now extend the state-space of the diffusion process to [a,b] x M, to
be able to transform the time-inhomogeneous processes into time-homogeneous
processes, while the stochastic dynamics still takes place exclusively in M. This
will allow us to define the duality of the processes to be with respect to u(x)dtdx
and to determine the form of the exact term of the trace-torsion, and ultimately,
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to establish the relation between the diffusion processes and Schroedinger equa-
tions, both for potential linear and non-linear in the wave-functions. If we define
time-homogeneous semigroups of the processes on {(t, X;) € [a,b] x M} by

Frfls,2) = { 0Q75’5+7’f(8’x>’ (S)tiegwise (3.F.33)

and
j?v’Tg(t,y) - { g?t_m(ty)’ gtiegwise (3.F.34)

then
< 9, Prf >patae=< Prg, > pdtdes (3.F.35)

which is the duality of {(¢, X;)} with respect to the p;dtdx density. We remark
here that we have an augmented density by integrating with respect to time t.
Consequently, if in our spacetime case we define for a;(z), a;(x) time-dependent
one-forms on M (to be determined later)

Ba: = g—? + H(g, at) oy, (3.F.36)
B%: = —% + H(g,as) e, (3.F.37)
and its adjoint operators
By =07~ Hig.a)'6 (3.F.38)
(B) 'y = % — H(g, )", (3.F.39)

where by H(g,d:)" we mean the vol,-adjoint of this operator, i.e. H(g,d:) u: =
%Ag pe—divg(pae) . From [96, 107] follows that the duality of space-time processes

< Ba, 8 >ut(x)dtd:c:< «, éﬁ >ut(x)dtdxa (3F40)

is equivalent to
ar(2) + ay(x) = dlnp(z)=dln (¢(z)di(2)), (3.F.41)
Bu(z) = 0. (3.F.42)

The latter equation being the Fokker-Planck equation for the diffusion with trace-
torsion given by a + A, then the Fokker-Planck equation for the adjoint (time-
reversed) process is valid, i.e.

(B)° s (z) = 0. (3.F.43)
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Substracting Egs. (3.F.39) and (3.F.40) we get the final form of the duality
condition

a; — ay
2

Ou
ot
Therefore, we can establish that the duality conditions of the diffusion equation

in the Kolmogorov representation and its time reversed diffusion lead to the
following conditions on the additional elements of the drift vector fields:

ay(w) + a(x) = d In py(z) = d In (Gy(2) (),  (3.F.45)
op

T divg[(W)ut(x)] — 0. (3.F.46)

If we assume that a; — a; is an exact one-form, i.e., there exists a time-dependent
differentiable function S(t,z) = Si(x) defined on [a, b] x M such that for ¢ € [a, b],

+ divg( )l =0, for () = gi(2)du(x).  (3.F.44)

au(@) — da(x) = d 1n 24— 94, (2) (3.F.47)
¢i(x)
which together with
ar(z) + ar(x) = d In pu(z), (3.F.48)
implies that on D(t,z) we have
a(z) = dln ¢(x), (3.F.49)
ar(z) = dln dy(x). (3.F.50)

Introduce now Ry(x) = R(t,x) = %lngbt(:ﬂ)gzt(x) and Si(x) = S(t,x) = %lnétgw;,
(T
so that

() = d(Ri(z) — Si(z)), (3.F.52)

and Eq. (3.F.46) takes the form

Remarks. We have mentioned the fact that there is a hidden active role of
time in QM [145], which in the above construction is built-in the very definition
of the probability density in terms of a final and initial distributions. This back
action of time appears to be not exclusive of QM. In the theory of growth of
sea shells due to Santilli and Illert, it was shown that it cannot be explained
by Minkowskian nor Euclidean geometry, but their isotopic lifts and their duals,
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and this requires the introduction of time duality and four-fold time [148]; this
model has been further applied to diverse problems of morphology in biology by
Reverberi [149]. We further note that the time-dependent function S on the 3-
space manifold, is defined by Eq. (3.F.47) up to addition of an arbitrary function
of ¢, and when further below we shall take this function as defining the complex
phase of the quantum Schroedinger wave, this will introduce the quantum-phase
indetermination of the quantum evolution, as we discussed already in the setting
of geometry of the quantum state-space [96, 98|.

Therefore, together with the three different time-homogeneous representations
{(t, X¢),t € [a,b], Xy € M} of a time-inhomogeneous diffusion process {X¢, @)
on M we have three equivalent dynamical descriptions. One description, with
creation and killing described by the scalar field ¢(t,z) and the diffusion equa-
tion describing it is given by a creation-destruction potential in the trace-torsion
background given by an electromagnetic potential

0
o T HE.0)@)p +clt.)p = 0; (3.F.54)
the second description has an additional trace-torsion a(t, x) , a 1-form on R x M
0
a—(j + H(g,at)q = 0. (3.F.55)

while the third description is the adjoint time-reversed of the first representation
given by ¢ satisfying the diffusion equation on the background with no torsion,
i.e.
d¢ vy
3 + H(g,0)¢ + cp = 0. (3.F.56)
The second representation for the full trace-torsion diffusion forward in time
Kolmogorov representation, we need to adopt the description in terms of the
fundamental solution ¢ of
0
aij + H(g,at)q =0, (3.F.57)
for which one must start with the initial distribution () = ¢q(2)de(x). This
is a time t-irreversible representation in the real world, where ¢ describes the
real transition and p, gives the initial distribution. If in addition one traces the
diffusion backwards with reversed time ¢, with ¢ € [a, b] running backwards, one
needs for this the final distribution pp(x) = ¢p(z)Pp(x) and the time ¢ reversed
probability density ¢(s,z;t,y) which is the fundamental solution of the equation

9q

— 5 T H(g.@)q =0, (3.F.58)
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with additional trace-torsion one-form on R x M given by a, where
iy + ap = dinp(z), with 1 = ¢edy, (3.F.59)

where the diffusion process in the time-irreversible forward Kolmogorov repre-
sentation is given by the Ito s.d.e

dX} = ol (Xy)dW{ + a'(t, Xy)dt, (3.F.60)
and the backward representation for the diffusion process is given by
dX} = ol (Xy)dW{ + d'(t, Xy)dt, (3.F.61)

where a, @ are given by the Egs. (3.F.51), (3.F.52), and (oot)®8 = gb.

We follow Schroedinger in pointing that ¢ and qg separately satisfy the creation
and killing equations, while in quantum mechanics ¢ and 1 are the complex-
valued counterparts of ¢ and ¢, respectively, they are not arbitrary but

b = . (3.F.62)

Thus, in the following, this Born formula, once the equations for v are determined,
will be a consequence of the constructions, and not an hypothesis on the random
basis of non-relativistic mechanics.

Therefore, the equations of motion given by the Ito s.d.e.

dX;| = gradg¢' (t, X )dt + o (X )dW (3.F.63)
which are equivalent to
d
8—1: + H(g,a)u =0 (3.F.64)

with a;(x) = dlng(z) = d(Ri(z) + Si(z)), determines the motion of the en-
semble of non-relativistic particles. Note that this equivalence requires only the
Laplacian for the RCW connection with the forward trace-torsion full one-form

Q(t,x) = dlngy(x) = d(Re(x) + Si(x)). (3.F.65)

In distinction with Stochastic Mechanics due to Nelson [102], and contemporary
ellaborations of this applied to astrophysics as the theory of Scale Relativity due
to Nottale [114, 106], we only need the form of the trace-torsion for the forward
Kolmogorov representation, and this turns to be equivalent to the Schroedinger
representation which interpolates in time-symmetric form between this forward
process and its time dual with trace-torsion one-form given by d;(z) = dlngy(z) =

d(Ri(z) — Si(x)).
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Finally, let us how this is related to the Schroedinger equation. Consider
now the Schroedinger equations for the complex-valued wave function ¢ and its
complex conjugate 1, i.e. introducing i = +/—1, we write them in the form

i%—f + H(g,00p —Vy = 0, (3.F.66)
—iégf + H(g,00y — V¢ = 0, (3.F.67)

which are identical to the usual forms. So, we have the imaginary factor appearing
in the time ¢, which we confront with the diffusion equations generated by the
RCW connection with null trace-torsion, i.e. the system

gf + H(g,0)p+cp = 0, (3.F.68)
_aiqb + H(g,0)p+cd = 0, (3.F.69)

and the diffusion equations determined by both the RCW connections with trace-
torsion a and a, i.e.

0
8—3 VY H(g,a)g = O, (3.F.70)
—0d
8—:’ VY H(g,d)d = 0, (3.F.71)
which are equivalent to the single equation
9q

If we introduce a complex structure on the two-dimensional real-space with co-
ordinates (R, S), i.e. we consider

P = eftHS oy = efti5 (3.F.73)

viz a viz ¢ = efitS, qg = ef=5 with ¢y = qbqg, then for a wave-function
differentiable in ¢ and twice-differentiable in the space variables, then, ¢ satisfies
the Schroedinger equation if and only if (R, S) satisfy the difference between the
Fokker-Planck equations, i.e.

%Jf + g(dS, dRy) + %Agst =0, (3.F.74)
and
28 1
V= ~ar + H(g,dR)R: — ig(dsn dSt), (3.F.75)
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which follows from substituting 1 in the Schroedinger equation and further di-
viding by % and taking the real part and imaginary parts, to obtain the former
and latter equations, respectively.

Conversely, if we take the coordinate space given by (¢, (5), both non-negative
functions, and consider the domain D = D(s,z) = {(s,z) : 0 < ¢(s,z)d(s,z)} C
[a,b] x M and define R = Lingg, S = %ln%, with R, S having the same differen-

tiabilty properties that previously v, then ¢ = et satisfies in D the equation

% + H(g,0)p + cp = 0, (3.F.76)
if and only if
e — [_‘Zf + H(g,dRy)R; — %g(dSt,dSt)]
. [%Jf + H(g,dR)Si] + [2% + g(dSs, dSy), (3.F.77)
while ¢ = eB~5 satisfies in D the equation
do vy
—5 HH(9.006+ 6 =0, (3.F.78)
if and only if
e = [_% + H(g,dR;)R; — %g(dstadst)]
— [%f + H(g,dRy)S] + [2% + g(dS;, dS,)]. (3.F.79)

Notice that ¢,<Z can be both negative or positive. So if we define ¢ = efi9 it

then defines in weak form the Schroedinger equation in D with

V=—-—- 2885 — g(dSy, dSy). (3.F.80)

Remarks. We note that from Eq. (3.F.80) follows that we can choose S in

a way such that either ¢ is independent of .S and thus V' is a potential which is
non-linear in the sense that it depends on the phase of the wave function 1 and
thus the Schroedinger equation with this choice becomes non-linear dependent of
1, or conversely, we can make the alternative choice of ¢ depending non-linearly
on S, and thus the creation-annihilation of particles in the diffusion equation is
non-linear, and consequently the Schroedinger equation has a potential V' which
does not depend on . It is important for further developments in this article
that the non-linear Schroedinger equation can be turned into the iso-linear iso-
Schroedinger equation by taking the non-linear terms of the potential into the
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isotopic generalized unit. Indeed, the recovery of linearity in isohilbert space is
achieved by the embedding of the nonlinear terms in the isounit as shown in [46];
see Eqs. (3.4.42) and (3.4.43).

3.F.4.1 Santilli-Lie Isotopies of the Differential Calculus
and Metric Structures, and the
Iso-Schroedinger Equation

To present the iso-Schroedinger equation, we need the Santilli-Lie-isotopic dif-
ferential calculus [109, 46] and the isotopic lift of manifolds, the so-called iso-
manifolds, due to Tsagas and Sourlas [22]; we shall follow here the notations of
Section 3.2 above. We start by considering the manifold M to be a vector space
with local coordinates, which for simplicity we shall from now fix them to be a
contravariant system, = (2%),i = 1,...,n, unit given by I = diag(1,...,1) and
metric g which we assumed diagonalized. We shall lift this structure to a vec-
tor space M provided with isocoordinates &, isometric G and defined on Santilli
isonumber field F', where F can be the real or complex numbers; we denote this
isospace by M (z, G, F ). The isocoordinates are introduced by the transformation
#— UxazxUl =2 x1I:=42 Tointroduce the contravariant isometric G we
start by considering the transformation®®

g—UxgxUl=1xg:=4. (3.F.81)

Yet from the Definition 3.2.3 follows that the isometric is more properly defined by
G = §x I. Thus we have a transformed M (z, g, F) into the isospace M (z, G, F).
Thus the projection on M(z, g, F') of the isometric in M (&, G, F) is defined by a
contravariant tensor, g = (g”) with components

GV = (I x g)¥. (3.F.82)

If we take I = ¢? (x) x I we then retrieve the Weyl scale transformations, with
1 a scale field depending only on the coordinates of M. If we start with g
being the Euclidean or Minkowski metrics, we obtain the iso-Euclidean and iso-
Minkowski metrics; in the case we start with a general metric as in GR, we obtain
Isorelativity. We shall now proceed to identify the isotopic lift of the noise tensor
o which verifies Eq. (3.F.9), i.e. 0 x ol = g. The non-unitary transform of (a
diagonalized) o is given by

N

c—UxoxU =ox1:=6. (3.F.83)
Then,

N ~

ox6=0xIxTx(ox)=(xo)xIT=gxI=4g. (3.F.84)

38We shall assume, as usual, a diagonal metric.
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Thus the isotopic lift of the noise tensor defined on M (z, G, R) is given by 6 =
o x I which on projection to M (&, G, R) we retrieve 0. We know follow the
notations and definitions of Section 3.2.5 for the isotopic differential, and for
isofunctions. We introduce the isotopic gradient operator of the isometric G (the

G-gradient, for short), @ applied to the isotopic lift f (z) of a function f(x)
is defined by

gradg, f(2)(0) = G(df (2);0), (3.F.85)
for any vector field © € TI(M ), & € M:; we have denoted the inner product as ; to
stress that the inner product is taken with respect to the product in F'. Hence, the

operator gTad\G f (Z) can be thought as the isovector field on the tangent manifold
to M (%, G, F) defined by

oo 0@ o 0 sap 01@) 0 0 (3.7.86)
dae  0ab die 3

Therefore, the projection on M (z,g, F) of the G-gradient vector field of f (Z) is
the vector field with components

5030 @) _ Gap g (&) (3.F.87)
bz die

This will be of importance for the determination of the drift vector field of the
diffusion linked with the Santilli- iso-Schroedinger equation. We finally define the
isolaplacian as

Ayg=§*PxD 5 XD 4 . (3.F.88)
bz 528
Here D ; is defined accordingly with Definition 3.2.13 above, by (c.f. Eq. (3.F.6)
5z

above)

Sy OXP (B -

D, XP="+ { b }xXﬁ (3.F.89)
Foo 0P Vo

and hence it is the isocovariant differential with respect to the Levi-Civita iso-

connection with isoChristoffel coefficients

o —

al 1.6 b d .
= (=G + =05 — =—0py) X 3.F.90
{Bv} 55050 T g0 900 — 52,950)%8 ( )

We remark that from Observations 1 follows that alternatively we can define the
more simpler laplacian by taking instead

(3.F.91)
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In both cases we take & for the corresponding isonoise term in the isodiffusion
representation. The latter definition of the isolaplacian differs from the original
one introduced in [22].

3.F.4.2 Diffusions and the Heisenberg Representation

Up to now we have set our theory in terms of the Schroedinger representation,
since the original setting for this theory has to do with scale transformations as
introduced by Einstein in his last work [100] while it was recognized previously
by London that the wave function was related to the Weyl scale transformation
[138], and these scale fields turned to be in the non-relativistic case, nothing else
than the wave function of Schroedinger equation, both in the linear and the non-
linear cases. Historically the operator theory of QM was introduced before the
Schroedinger equation, who later proved the equivalence of the two. The ensuing
dispute and rejection by Heisenberg of Schroedinger’s equation is a dramatic
chapter of the history of QM [125]. It turns out to be the case that we can
connect the Brownian motion approach to QM and the operator formalism due
to Heisenberg and Jordan, and its isotopic lift presented in Section 3.4.

Let us define the position operator as usual and the momentum operator by

¢~ =" pDk:axi (3.F.92)
’ Oxk’ o
which we call the diffusion quantization rule (the subscript D denotes diffusion)
since we have a representation different to the usual quantization rule

.0
Pk = =1%o (3.F.93)

with o = (¢2) the diffusion tensor verifying (o x 01)*? = ¢®% and substitute into
the Hamiltonian function

> k) +v(a), (3.F.94)

d
k=1

N

H(p,q) =

this yields the formal generator of a diffusion semigroup in C?(R%) or L?(R?)
which in our previous notation is written as H (g, 0)+v. Thus, an operator algebra
on C?(R") or L?*(R™) together with the postulate of the commutation relation
(instead of the usual commutator relation of quantum mechanics [p, q] = —i x I)

[pp.d] =pp xq—qgxpp=0x1 (3.F.95)
this yields the diffusion equation

9¢

d
1S, 2 -
a X¢+§k:1(0%) X¢+VX¢—O, (3F96)
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which coincides with the diffusion Eq. (3.F.54) provided that ¢ = v. Thus, in
this approach, the operator formalism and the quantization postulates, allow to
deduce the diffusion equation. If we start from either the diffusion process or the
RCW geometry, without any quantization conditions we already have the equa-
tions of motion of the quantum system which are non other than the original
diffusion equations, or equivalently, the Schroedinger equations. We stress the
fact that these arguments are valid for both cases relative to the choice of the
potential function V, i.e. if it depends nonlinearly on the wave function v, or acts
linearly by multiplication on it. Further below, we shall use this modification of
the Heisenberg representation of QM by the previous Heisenberg type representa-
tion for diffusion processes, to give an account of the diffusion processes that are
associated with HM. This treatment differs from our original (inconsistent with
respect to HM, as it turned to be proved in the later findings by Prof. Santilli)
treatment of the relation between RCW geometries and diffusions presented in
[119] in incorporating the isotopic lift of all structures.

Let us frame now isoquantization in terms of diffusion processes. Define iso-
momentum, pp, by

Pok = 6X—, with 6 =0 x I, (3.F.97)
ok
so that the kinetic term of the iso-Hamiltonian is
PDXDY sxots 252
D = = =
b oz 0i
S B B
= gX—X—=— =04 (3.F.98)
or 0z

We finally check the consistency of the construction by proving that it can be
achieved via the non-unitary transformation

p73j.'—>U><ppj><UJf—U><a><aij><UT

- =pp;.  (3.F.99)

Note that we have achieved this isoquantization in terms of the following trans-
formations. Firstly, we carried out the transformation

p=—ix ;x — pp =0 X ;x’ (3.F.100)

to further produce its isotopic lift

0

Pp = 6% (3.F.101)

Q>
>
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Whenever the original diffusion tensor o is the identity I, from Eq. (3.F.9) follows
that the original metric ¢ is Euclidean, we reach compatibility of the diffusion
quantization with the Santilli-iso-Heisenberg representation given by taking the
non-unitary transformation on the canonical commutation relations, which are
given by

[5p;] = %0 =1ix 8 x 1, (3.F.102)
together with
[#57] = [pips] =0, (3.F.103)
with the Santilli-iso-quantization rule [109, 46]

.0
Dj = —IX—=—. (3.F.104)
! oxd
Thus, from the quantization by the diffusion representation we retrieve the
Santilli-iso-Heisenberg representation, with the difference that the diffusion noise
tensor in the above construction need not be restricted to the identity.
Finally, we consider the isoHamiltonian operator

xp? + Volt, &) + Vi(, 0) x 0", (3.F.105)

H=
m

x>

2
where p may be taken to be given either by the Santilli isoquantization rule

~

BN n O A A
PeX|th >= =i —X|ih >, (3.F.106)
Dk

or by the diffusion representation pp. Vo(f,2) and Vi(f,0) are potential iso-
functions, the latter dependent on the isovelocities. Then the iso-Schroedinger
equation (or Schroedinger-Santilli isoequation) [109, 46] is

Y
ZXTA|¢ > = HXW >
ot

= H &, p) x T(E,2,4p,00,..)x|¢p >, (3.F.107)

where the wave isofunction v is an element in (H, < |X| >, C(é,+, X)) satisfies

Ix|th >= ¢ > . (3.F.108)
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3.F.4.3 Hadronic Mechanics and Diffusion Processes

Finally, the components of drift isovector field, prOJected on M (z,g, R) in the
isotopic lift of Eq. (3.F.63) is given by Eq. (3.F.87) with f =1ng, Where gb( ) =
eR@)+S(@) is the diffusion wave associated to the solution (& ) = R(@)+iS(@) of
the iso-Schroedinger equation, and its adjoint wave is XgZ)( y=¢ R(z)- S(“") Hence,
the drift isovector field has components

COMB(E)  ap e O s o
=07 (2)x=—(R:+S5;)(2). 3.F.109
- (@)% 52 (ReFS)(@) (3.F.109)
Finally, we shall write the isotopic lift of the stochastic differential equation for
the iso-Schroedinger Eq. (3.F.107). Applying the non-unitary transformation to
Eq. (3.F.63), we obtain the iso-equation on M (Z, G, R) for X; given by

3P (2)%

g H . .

dX} = ((gaﬂx@(Rt +8))(Xp)xdf + 65(Xp)xdW?, (3.F.110)
with dW; = W(i+df)=W(f) the increment of a iso-Wiener process W; =
(Wfl, e th) with isoaverage equal to 0 and isocovariance given by 5; xt; i.e.,

i](&&ﬁ%f)mﬁ/w eI Qi =0, Vi=1,....m  (3.F.111)
and

17(ascaxi)n/? /w X $em P IRE L Gy = §isd, Vi =1,...,m (3.F.112)
and ] denotes the isotopic integral defined by ]cfj: = ([T x1Ixdr)xI =
([ dz) x I = &. Thus, formally at least, we have

~t A ~t

A ~ A~

XizXﬁi—/A(f]‘“ﬂxA(Rgi—Sg))(Xg)Qcié+/A&§(X§)>A<dW§j. (3.F.113)
0 0

The integral in the first term of Eq. (3.F.113) is an isotopic lift of the usual
Riemann-Lebesgue integral [109d,19,20], while the second one is the isotopic lift
of a stochastic It6 integral; we shall not present here in detail the definition of
this last term, which follows from the notions of convergence in the isofunctional
analysis elaborated by Kadeisvili [110] (see Section 3.2.6), and the usual defini-
tion of Itd stochastic integrals [102, 107, 116], nor the presentation of analytical
conditions for their convergence which follows in principle from the isotopic lift
of the usual conditions.
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3.F.4.4 The Extension to the Many-Body Case

Up to know we have presented the case of the Schroedinger equation for an
ensemble of one-particle systems on space-time. Of course, our previous con-
structions are also valid for the case of an ensemble of interacting multiparticle
systems, so that the dimension of the configuration space is 3d + 1, for indis-
tinguishable d particles; the general case follows with minor alterations. If we
start by constructing the theory as we did for an ensemble of one-particle systems
(Schroedinger’s “cloud of electrons”), we can still extend trivially to the general
case, by considering a diffusion in the product configuration manifold with coor-
dinates X; = (X},..., X% € M?, where M? is the d Cartesian product of three
dimensional space with coordinates X} = (:U%’l, xf’z, 3:?2) e M, foralli=1,...,d.
The distribution of this is p; = Fg o X, ! which is a probability density in M?.
To obtain the distribution of the system on the three-dimensional space M, we
need the distribution of the system Xj:

d
1
F == Y Oy, F.114
U=y ; i (3 )
which is the same as .
x 1 7
Uf(B) = p ZZ; 1p(X{), (3.F.115)

where 1 p(X}) is the characteristic system for a measurable set B, equal to 1 if
X} € B, for any i = 1...,d and 0 otherwise. Then, the probability density for
the interacting ensembles is given by

Wi (B) = EqlUF(B), (3.F.116)

where Fq is the mean taken with respect to the forward Kolmogorov represen-
tation presented above, is the probability distribution in the three-dimensional
space; see [107]. Therefore, the geometrical-stochastic representation in actual
space is constructable for a system of interacting ensembles of particles. Thus
the criticism to the Schroedinger equation by the Copenhagen school, as to the
unphysical character of the wave function since it was originally defined on a
multiple-dimensional configuration space of interacting system of ensembles, is
invalid [125].

3.F.5 Possible Empirical Evidence and Conclusions

We have shown that the Schroedinger and isoSchroedinger equation have an
equivalent representation in terms of diffusion processes. This can be further
extended to hadronic chemistry, as shown in Volume V of this series. This is an
universal phenomenae since the applicability of the Schroedinger equation does



456 RUGGERO MARIA SANTILLI

not restrict to the microcospic realm, as already shown in the astrophysical the-
ory due to Nottale [114]; this universality is associated with the fact that the
Planck constant (or equivalently, the diffusion constant) is multivalued, or still,
it is context dependent, inasmuch as the velocity of light has the same feature
[46]. In the case of HM this can be seen transparently in the fact that the iso-
topic unit plays the role, upon quantization, of the Planck constant as can seen
in Egs. (3.F.107), (3.F.108)3°, or furthermore, by its product with the noise ten-
sor of the underlying Brownian motions. In the galactic scales, this may explain
the red-shift without introducing a big-bang hypothesis [46, 73]. An identical
conclusion was reached by Arp in considering as a theoretical framework the Le
Sage’s model of a Universe filled with a gas of particles [130], in our theory, the
zero-point fluctuations described by the Brownian motions defined by the wave
functions, as well as by viscous fluids, spinor fields, or electromagnetic fields [95]
(and which one can speculate as related to the so-called dark energy problem). A
similar view has been proposed by Santilli in which the elementary constituents
are the so-called aetherinos [149], while in Sidharth’s work, they appear to be el-
ementary quantized vortices related to quantum-mechanical Kerr-Newman black
holes [119]. Thus, whether we examine the domains of linear or non-linear quan-
tum mechanics, or still of hadronic mechanics, vortices and superconductivity
(which is the case of the Rutherford-Santilli model of the neutron which is de-
rived from the previous constructions) appear as universal coherent structures;
superconductivity is usually related to a non-linear Schroedinger equation with
a Landau-Ginzburg potential, which is just an example of the Brownian motions
related to torsion fields with further noise related to the metric. Furthermore,
atoms and molecules have spin-spin interactions which will produce a contribu-
tion to the torsion field; we have seen already that the torsion geometry exists
in the realm of hadronic chemistry, since we can extend the construction to the
many-body case. In distinction with the usual repulsive Coulomb potential in
nuclear physics, the isotopic deformations of the nuclear symmetries yield at-
tractive potentials such as the Hulten potential, which in the range of 1073 c¢cm
yields the usual potential [19, 20, 22, 46, 70, 73, 108-110, 141] without the need
of introducing any sort of parameters or extra potentials. In contrast with the
ad-hoc postulates of randomness in the fusion models which are considered in
the usual approaches [122, 123], in the present work randomness is intrinsic to
space-time or alternatively a by product of it, and in the case of HM, these geome-
tries incorporate at a foundational level, a generalized unit which incorporates
all the features of the fusion process itself: the non-canonical, non-local and non-
linear overlapping of the wave functions of the ensembles which correspond to the
separate ensembles under deformable collisions in which the particles lose their

39See Postulate 3.4.1.
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pointlike structure, or in a hypercondensed plasma state, where the dynamics of
the process may have a random behavior; outside of the domain of 10713 c¢m, the
hadronic fluctuations associated to the isolinear isoSchroedinger equation decay
to the quantum fluctuations of the linear Schroedinger equation.

There are already empirical findings that may lead to validate the present view
(see Volume IV of this series for experimental evidence in particle physics, nuclear
physics, astrophysics and cosmology, and Volume V for experimental evidence in
chemistry). In the last fifty years, a team of scientists at the Biophysics Insti-
tute of the Academy of Sciences of Russia, directed by S. Shnoll (and presently
developed in a world net which includes Roger Nelson, Engineering Anomalies Re-
search, Princeton University, B. Belousov, International Institute of Biophysics,
Neuss (Germany), Dr. Wilker, Max-Planck Institute for Aeronomy, Lindau, and
others), have carried out tens of thousands of experiments of very different nature
and energy scales (« decay, biochemical reactions, gravitational waves antenna,
etc.) in different points of the globe, and carried out a software analysis of the
observed histograms and their fluctuations, to find out an amazing fit which
is repeated with regularity of 24 hours, 27 days and the duration of a sidereal
year. In these experiments the fine spectrum of their measurements reveal a non-
random pattern. At points of Earth with the same local hour, these patterns
are reproduced with the said periodicity. The only thing in common to these
experiments is that they are occur in space-time, which has lead to conclude
that they stem from space-time fluctuations, which may further be associated
with cosmological fields. Furthermore, the histograms reveal a fractal structure;
this structure is interpreted as appearing from an interference phenomena related
to the cosmological field; we recall that diffusion processes present interference
phenomena alike to, say, the two-slit experiment.?® Measurements taken with
collimators show fluctuations emerging from the rotation of the Earth around
its axis or its circumsolar orbit, showing a sharp anisotropy of space. Further-
more, it is claimed that the spatial heterogeinity occurs in a scale of 107 cm,
coincidently with the scale of the strong interactions [152]. Contrary to com-
mon belief, the Michelson-Morley did not provide a final dismissal of the aether,
while Einstein in the course of his life supported the idea of its existence [154].
Thousands of interferometry experiments were carried out by D. Miller, Allais
and others, and contemporarily very diverse setups have proved that there is a
space anisotropy [153]. As a closing remark we would like to recall that Planck
himself proposed the existence of ensembles of random phase oscillators having

40This fractal structure has been found to follow the pattern of the logarithmic Muller fractal, which
is associated with the existence of a global scale for all structures in the Universe; see H. Muller, Free
Energy - Global Scaling, Raumé Zeit Special 1, Ehlers-Verlag GmbH, ISBN 3-934-196-17-9; 2004. This
leads to reinforce the thesis of time as an active field. Furthermore, the space and time Brownian motions
can exist, in principle, in the different space and time scales warranted by these global scales.



458 RUGGERO MARIA SANTILLI

the zero-point structure as the basis for quantum physics [146]. Thus, the ape-
iron would be related to the Brownian motions which we have presented in this
work, and define the space and time geometries, or alternatively, are defined by
them. So we are back to the idea due to Clifford, that there is no-thing but space
and time configurations, instead of a separation between substratum and fields
and particles appearing on it. Furthermore, what we perceive to be void, is the
hyperdense source of actuality. The same conception has been proposed by Prof.
Santilli in the main body of this volume.
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Chapter 4

LIE-ADMISSIBLE BRANCH OF HADRONIC
MECHANICS AND ITS ISODUAL

NOTE; THIS CHAPTER MUST BE COMPLETED AND EDITED

4.1 INTRODUCTION
4.1.1 The Scientific Imbalance Caused by Irreversibility

As recalled in Chapter 1, physical, chemical or biological systems are called
irreversible when their images under time reversal ¢ — —t are prohibited by
causality and/or other laws, as it is generally the case for nuclear transmutations,
chemical reactions and organism growth.

Systems are called reversible when their time reversal images are as causal as
the original ones, as it is the case for planetary and atomic structures when con-
sidered isolated from the rest of the universe, the structure of crystals, and other
structures (see reprint volume [1] on irreversibility and vast literature quoted
therein).

Another large scientific imbalance of the 20-th century studied in these mono-
graphs is the treatment of irreversible systems via the mathematical and physical
formulations developed for reversible systems, since these formulations are them-
selves reversible, thus resulting in serious limitations in virtually all branches of
science.

The problem is compounded by the fact that all used formulations are of
Hamiltonian type, under the awareness that all known Hamiltonians are reversible
over time (since all known potentials, such as the Coulomb potential V' (r), etc.,
are reversible).

This scientific imbalance was generally dismissed in the 20-th century with
unsubstantiated statements, such as “irreversibility is a macroscopic occurrence
that disappears when all bodies are reduced to their elementary constituents”.
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Figure 4.1. All energy releasing processes are irreversible over time. By contrast, all formula-
tions of the 20th century are fully reversible over time, a limitation that is apparently responsible
for the lack of industrial development of any really new form of energy for over half a century,
as well as the lack of resolution of the environmental problems caused by fossil fuels combustion
depicted in this figure. A primary objective of hadronic mechanics is, firstly, identify formula-
tions that are structurally irreversible (a task addressed in this chapter), as a necessary premise
for their quantitative treatment of irreversible process and the search of basically new energies
(a task address in Volume II).

These academic beliefs have been disproved by Theorem 1.3.3 according to
which a classical irreversible system cannot be consistently decomposed into a
finite number of elementary constituents all in reversible conditions and, vice-
versa, a finite collection of elementary constituents all in reversible conditions
cannot yield an irreversible macroscopic ensemble.

The implications of the above theorem are quite profound because it establishes
that, contrary to popular beliefs, irreversibility originates at the most primitive
levels of nature, that of elementary particles, and then propagates all the way to
our macroscopic environment.

In this chapter we study the contribution by the author that originated the
field, as well as contributions by a number of independent authors. The presen-
tation will mainly follow the recently published memoir [32]. Nevertheless, an in
depth knowledge of the topic requires the study of (at least some of) the author’s
monographs [18-23,29] and those by independent authors [33-39].

The author would like to express his sincere appreciation to the Italian Physical
Society for publishing memoir [32] in Il Nuovo Cimento B as a final presentation
of studies in the field initiated by the author in the same Journal in paper [7]
forty years earlier.
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4.1.2 The Forgotten Legacy of Newton, Lagrange and
Hamilton

The scientific imbalance on irreversibility was created in the early part of the
20-th century when, to achieve compatibility with quantum mechanics and special
relativity, the entire universe was reduced to potential forces. Jointly, the analytic
equations were “truncated” with the removal of the external terms.

In reality, Newton [2] did not propose his celebrated equations restricted to
forces derivable from a potential F' = 9V/0r, but proposed them for the most
general possible forces,

mg X = Fiq(t,r,v), k=1,2,3; a=1,2,...,N, (4.1.1)

where the conventional associative product of numbers, matrices, operators, etc.
is continued to be denoted hereon with the symbol x so as to distinguish it from
numerous other products needed later on.

Similarly, to be compatible with Newton’s equations, Lagrange [3] and Hamil-
ton [4] decomposed Newton’s force into a potential and a nonpotential com-
ponent,they represented all potential forces with functions today known as the
Lagrangian and the Hamiltonian, and proposed their celebrated equations with
external terms,

i@L(t,r,v) B OL(t,r,v)

— Fu(t,r,0), 41.2

dt  Ovk ork kb7 v) ( @)
drk  OH(t,r,p)  dpar OH(t,r,p)

o _ 1 = TP ), 4.1.2
dt 8pak ; dt 87’5 + k‘( r p) ( )
L—Elxm x v2 —V(t,rv), H=X Pl + V(t,r,p) (4.1.2¢)

- a2 a a ) Iy ) - (12 X My ,P), e
V =U(t,r)ax X 0¥+ Us(t,r), F(t,r,v) = F(t,r,p/m). (4.1.2d)

More recently, Santilli [5] conducted comprehensive studies on the integrabil-
ity conditions for the existence of a potential or a Lagrangian or a hamiltonian,
called conditions of variational selfadjointness. These study permit the rigor-
ous decomposition of Newtonian forces into a component that is variationally
selfadjoint (SA) and a component that is not (NSA),

dvka
dt

Consequently, the true Lagrange and Hamilton equations can be more techni-
cally written

= F Mt m,0) + FRSA(E T v). (4.1.3)

mg X M

d OL(t,r,v)  OL(t,r,v)154 FNSA
dt vk ork o

(t,r,v), (4.1.4a)
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dry _ OH(t,r,p)154 dpai  OH(t,7,p)154  _noa
& o )T o = (414
dt apak i| 0, [ dt 87’2 ] ak (tv r, p) ( b)

The forgotten legacy of Newton, Lagrange and Hamilton is that irreversibility
originates precisely in the truncated NSA terms, because all known potential-SA
forces are reversible. The scientific imbalance of Section 1.3 is then due to the fact
that no serious scientific study on irreversibility can be done with the truncated
analytic equations and their operator counterpart, since these equations can only
represent reversible systems.

Being born and educated in Italy, during his graduate studies at the University
of Torino, the author had the opportunity of studying in the late 1960s the original
works by Lagrange that were written precisely in Torino and most of them in
Ttalian.

In this way, the author had the opportunity of verifying Lagrange’s analytic
vision of representing irreversibility precisely via the external terms, due to the
impossibility of representing all possible physical events via the sole use of the La-
grangian, since the latter was solely conceived for the representation of reversible
and potential events. As the reader can verify, Hamilton had, independently, the
same vision.

Consequently, the truncation of the basic analytic equations caused the impos-
sibility of a credible treatment of irreversibility at the purely classical level. The
lack of a credible treatment of irreversibility then propagated at the subsequent
operator level.

It then follows that quantum mechanics cannot possibly be used for serious
studies on irreversibility because the discipline was constructed for the description
of reversible quantized atomic orbits and not for irreversible systems.

In plain terms, while the validity of quantum mechanics for the arena of its
original conception and verification is beyond scientific doubt, the assumption of
quantum mechanics as the final operator theory for all conditions existing in the
universe is outside the boundaries of serious science.

This establishes the need for the construction of a broadening (or generalization
here called lifting) of quantum mechanics specifically conceived for quantitative
studies of irreversibility. Since reversible systems are a particular case of irre-
versible ones, the broader mechanics must be a covering of quantum mechanics,
that is, admitting the latter under a unique and unambiguous limit.

It is easy to see that the needed broader mechanics must also be a covering
of the isotopic branch of hadronic mechanics studied in the preceding chapter,
thus being a new branch of hadronic mechanics. In fact, isomechanics is itself
structurally reversible due to the Hermiticity of both the Hamiltonian, H =

H ]:, and of the isotopic element, 7' = 1T, while a serious study of irreversible
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processes requires a structurally irreversible mechanics, that is, a mechanics that
is irreversible for all possible reversible Hamiltonians.!

4.1.3 Early Representations of Irreversible Systems

As reviewed in Section 1.5.2, the brackets of the time evolution of an observable
A(r,p) in phase space according to the analytic equations with external terms,

dA 0A 0OH OH 0A 0A
dt (4, H, F) ork % Opra  Ork 8 OPka *ork X e (4.15)

a

violate the right associative and scalar laws.

Therefore, the presence of external terms in the analytic equations causes not
only the loss of all Lie algebras in the study of irreversibility, but actually causes
the loss of all possible algebras as commonly understood in mathematics.

To resolve this problem, the author initiated a long scientific journey beginning
with his graduate studies at the University of Torino, Italy, following the reading
of Lagrange’s papers.

The original argument [7-9], still valid today, is to select analytic equations
characterizing brackets in the time evolution verifying the following conditions:

(1) The brackets of the time evolution must verify the right and left associative
and scalar laws to characterize an algebra;

(2) Said brackets must not be invariant under time reversal as a necessary
condition to represent irreversibility ab initio;

(3) Said algebra must be a covering of Lie algebras as a necessary condition to
have a covering of the truncated analytic equations, namely, as a condition for
the selected representation of irreversibility to admit reversibility as a particular
case.

Condition (1) requires that said brackets must be bilinear, e.g., of the form
(A, B) with properties

(nxA,B)=nx(A,B), (AmxB)=mx(A,B); nmeC, (4.1.6a)

(Ax B,C)=Ax(B,C), (A, BxC)=(A,B)xC. (4.1.6b)

Condition (2) requires that brackets (A, B) should not be totally antisymmetric
as the conventional Poisson brackets,

(4, B) # —(B, A), (4.1.7)

because time reversal is realized via the use of Hermitian conjugation.

LAn exception to this general rule we shall study later on occurs when the isotopic elements is indeed
Hermitian, but explicitly dependent on time and such that T'(¢, ...) # T(—t, ...).
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Condition (3) then implies that brackets (A, B) characterize Lie-admissible
algebras in the sense of Albert [10], namely, the brackets are such that the attached
antisymmetric algebra is Lie.?

[A, B]* = (A, B) — (B, A) = Lie. (4.1.8)

In particular, the latter condition implies that the new brackets are formed by
the superposition of totally antisymmetric and totally symmetric brackets,

(A, B) = [A, B* + {A, B}*. (4.1.9)

It should be noted that the operator realization of brackets (A, B) is also
Jordan-admissible in the sense of Albert [10], namely, the attached symmetric
brackets {A, B}* characterize a Jordan algebra. Consequently, hadronic mechan-
ics provides a realization of Jordan’s dream, that of seeing his algebra applied to
physics.

However, the reader should be aware that, for certain technical reasons beyond
the scope of this monograph, the classical realizations of brackets (A, B) are Lie-
admissible but not Jordan-admissible. Therefore, Jordan-admissibility appears
to emerge exclusively for operator theories.?

After identifying the above lines, Santilli [9] proposed in 1967 the following
generalized analytic equations

drg _ OH(t,r,p)  dpan

Cax 7 OH(t,r,p)
dt ODak dt

k b
ork

=B x (4.1.10)

(where o and (3 are real non-null parameters) that are manifestly irreversible.
The brackets of the time evolution are then given by

. dA
ix—=(AH) =
dt
2More technically, a generally nonassociative algebra U with elements a, b, c, ... and abstract product

ab is said to be Lie-admissible when the attached algebra U~ characterized by the product [a, b] = ab—ba
verifies the Lie azioms
[a7 b] = _[bv a}’

[[CL, b]7 C] + [[b, C}’a] + HC: b]’ a‘} =0.

3More technically, a generally nonassociative algebra U with elements a, b, ¢, ... and abstract product
ab is said to be Jordan-admissible when the attached algebra Ut characterized by the product {a,b} =
ab + ba verifies the Jordan azioms

{a,b} = {b,a},

{{a, b}, a®} = {a, {b,a’}}.
In classical realizations of the algebra U the first axiom of Jordan-admissibility is generally verified but
the second is generally violated, while in operator realizations both axioms are generally verified.
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" 0A " 0H " OH " 0A
=aX — X — — i
87’5 8pka (97’5 apk:a
whose brackets are manifestly Lie-admissible, but not Jordan-admissible as the
interested reader is encouraged to verify.

The above analytic equations characterize the time-rate of variation of the
energy

(4.1.11)

G oH o
a ork " Opra

Also in 1967, Santilli [7,8] proposed an operator counterpart of the preceding
classical setting consisting in the first known Lie-admissible parametric general-
ization of Heisenberg’s equation, also called deformed Heisenberg equations,* in

the following infinitesimal form

(4.1.12)

ix%:(A,B):prxH—quxA:
=mx(AxXxB—-BxA)+nx(Ax B+ BxA), (4.1.13a)

m=p+gq, n=q-—7p, (4.1.13b)

where p, ¢, p £ ¢ are non-null parameters, with finite counterpart
A(t) = e HX0 5 A(0) x e=P*H, (4.1.14)

Brackets (A, B) are manifestly Lie-admissible with attached antisymmetric
part

The same brackets are also Jordan-admissible in view of the property
{4, B} = (A, B)+ (B,A) = (p+q) x {A, B}, (4.1.16)

The resulting time evolution is then manifestly irreversible (for p # ¢) with
nonconservation of the energy

dH
ixE:(H,H):(p—q)xHxH;éO, (4.1.17)
as necessary for an open system.
Subsequently, Santilli realized that the above formulations are not invariant
under their own time evolution (4.1.14) because Eqs. (4.1.11) are manifestly

nonunitary.

4 As we shall soon see, the term “deformed” is used for formulations that are catastrophically inconsistent
because dreaming to treat new theories with the mathematics of the old ones.
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The application of nonunitary transforms to brackets (4.1.12) then led to the
proposal in memoir [11,12] of 1978 of the following Lie-admissible operator gen-
eralization of Heisenberg equations in their infinitesimal form

dA

z’xg:AxPfoHxQxA:(A,H)*, (4.1.18)

with finite counterpart
A(t) = e HXQ 5 A(0) x g7 XA (4.1.19)
under the subsidiary conditions needed for consistency, as we shall see,
P=Q, (4.1.20)

where P, Q and P + () are now nonsingular operators (or matrices), and
Eq. (4.1.16b) is a basic consistency condition explained later in this section.
Egs. (4.1.18)—(4.1.19) are the fundamental equations of hadronic mechanics.
Their basic brackets are manifestly Lie-admissible and Jordan admissible with
structure
(AB)* =AXxPxB—-BxQxA=

=(AXxTxB—-BxTxA)+(AxRxB+BxRxA), (4.1.21a)
T'=P+Q, R=Q-P (4.1.21b)

As indicated in Section 1.5.2, it is easy to see that the application of a nonuni-
tary transform to the parametric brackets of Eqs. (4.1.11) leads precisely to the
operator brackets of Egs. (4.1.17),

U><(prxB—quxA)xUT:AxPxB—BxQxA, (4.1.22a)

UxU'£1,P=px(Ux(UN™,Q=qgx(UxUNTA=UxAxU'. (4.1.22b)

In particular, the application of any (nonsingular) nonunitary transforms pre-
serves the Lie-admissible and Jordan-admissible characters. Consequently, funda-
mental equations (4.1.18), (4.1.19) are “directly universal” in the sense of Lemma
1.5.2.

However, the above equations are not invariant under their own (nonunitary)
time evolution,

Ux(AxPXxB-BxQxA)xU =A'xP xB —B' xQ x A (4.1.23)

where the lack of invariance is expressed by the lack of preservation of the numer-
ical values of the P, Q) operators because, as we shall see shortly, these operators
characterize new multiplications.
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By comparison, quantum mechanical brackets are indeed invariant under the
class of admitted transformations, the unitary transforms

WxAxB-BxA) xWi=AxB —B' x4, (4.1.24a)
WxWi=WixW=ILA=WxAxWI B =W xBxW'  (4.1.24b)

where the invariance we are here referring to is expressed by the preservation of
the associative product, namely, A X B is not mapped into a different product,
say A’ x B'.

As known to experts of quantum mechanics (to qualify as such), simple in-
variance (4.1.24) is at the foundations of the majestic axiomatic consistency of
quantum mechanics, including: the prediction of the same numerical values un-
der the same conditions at different times; the preservation of Hermiticity and,
thus, of observables over time; and other basic features.

Consequently, Lie-admissible and Jordan admissible equations (4.1.18)—
(4.1.19) are afflicted by the catastrophic inconsistencies of Theorem 1.5.2, as
it is the fate for all nonunitary theories some of which are listed in Section 1.5. In
particular, said equations do not preserve numerical predictions under the same
conditions but at different times, do not preserve Hermiticity, thus do not ad-
mit observables, and have other catastrophic inconsistencies studied in detail in
Section 1.5.

Moreover, in the form presented above, the dynamical equations are not deriv-
able from a variational principle. Consequently, they admit no known unique
map from classical into operator formulations.

In view of these insufficiencies, said equations cannot be assumed in the above
given form as the basic equations of any consistent physical theory.

4.2 ELEMENTS OF SANTILLI
GENOMATHEMATICS AND ITS ISODUAL

4.2.1 Genounits, Genoproducts and their Isoduals

The “direct universality” of Eqs. (4.1.18), (4.1.19) voids any attempt at seeking
further generalizations in the hope of achieving invariance, since any nontrivial
generalization would suffer the loss of any algebra in the brackets of the time
evolution, with consequential inability to achieve any physically meaningful the-
ory, e.g., because of the inability to treat the spin of a proton under irreversible
conditions.

This occurrence leaves no alternative other than that of seeking a yet new
mathematics permitting Eqgs. (4.1.18), (4.1.19) to achieve the needed invariance.

After numerous attempts and a futile search in the mathematical literature
of the Cantabrigian area,” Santilli proposed in Refs. [11,12] of 1978 the con-
struction of a new mathematics specifically conceived for the indicated task, that

5Conducted in the period 1977-1978.
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eventually reached mathematical maturity for numbers only in paper [13] of 1993,
mathematical maturity for the new differential calculus only in memoir [14] of
1996, and, finally, an invariant formulation of Lie-admissible equations only in
paper [15] of 1997.

The new Lie-admissible mathematics is today known as Santilli genomathe-
matics, where the prefix “geno” suggested in the original proposal [11,12] is used
in the Greek meaning of “inducting” new axioms (as compared to the prefix “iso”
of the preceding chapter denoting the preservation of the axioms).

The basic idea is to lift the isounits of the preceding chapter into a form that
is still nowhere singular, but non-Hermitian, thus implying the existence of two
different generalized units, today called Santilli genounits for the description of
matter, that are generally written [13]

7 =1/1>, <I=1/°T, (4.2.1a)
7 #<1, 17 =D, (4.2.1b)

with two additional isodual genounits for the description of antimatter [14]
()= —(7) = =< = —1/<P, (<hyt=-F> = —1/T>. (4.2.2)

Jointly, all conventional and/or isotopic products Ax B among generic quan-
tities (numbers, vector fields, operators, etc.) are lifted in such a form admitting
the genounits as the correct left and right units at all levels, i.e.,

A>B=AxT>xB, A>I"=1">A=A4, (4.2.3a)
A<B=Ax<TxB, A<<I=<]<A=A, (4.2.3b)
A>TB=AxT>'x B, A>14=1>459 =4, (4.2.3¢)
A<?B=Ax<T'xB, A<?<[{=<[1<?4A=A4, (4.2.3d)

for all elements A, B of the set considered.

As we shall see in Section 4.3, the above basic assumptions permit the repre-
sentation of irreversibility with the most primitive possible quantities, the basic
units and related products.

In particular, as we shall see in Section 4.3 and 4.4, genounits permit an
invariant representation of the external forces in Lagrange’s and Hamilton’s
equations (4.1.2). As such, genounits are generally dependent on time, coor-
dinates, momenta, wavefunctions and any other needed variable, e.g., > =
I>(t>77“>ap>,¢>a .- )

In fact, the assumption of all ordered product to the right > represents matter
systems moving forward in time, the assumption of all ordered products to the
left < represents matter systems moving backward in time, with the irreversibil-
ity being represented ab initio by the inequality A > B # A < B. Similar
representation of irreversible antimatter systems occurs via isodualities.
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4.2.2 Genonumbers, Genofunctional Analysis and Their
Isoduals

Genomathematics began to reach maturity with the discovery made, appar-
ently for the first time in paper [13] of 1993, that the axioms of a field still hold
under the ordering of all products to the right or, independently, to the left.

This unexpected property permitted the formulation of new numbers, that can
be best introduced as a generalization of the isonumbers [18], although they can
also be independently presented as follows:

DEFINITION 4.2.1 [18]: Let F = F(a,+,x) be a field of characteristic
zero as per Definitions 2.1.1 and 3.2.1. Santilli’s forward genofields are rings
E> = F(a”, 4+, %) with elements

@ =axI”, (4.2.4)

where a € F, > = 1/T> is a non singular non-Hermitian quantity (number,

matrix or operator) generally outside F' and X is the ordinary product of F'; the
A > . . . .

genosum +~ coincides with the ordinary sum +,

a47b =a” +b>, va<, b” € £, (4.2.5)

consequently, the additive forward genounit 0> € F' coincides with the ordinary
0 € F; and the forward genoproduct > is such that I is the right and left isounit
of F>,
Pxa” =6 >1"=a>, Ya~ € F~. (4.2.6)
Santilli’s forward genofields verify the following properties:
1) For each element &> € F> there is an element &>~ , called forward genoin-
verse, for which

0> >a> 7 =) va> e B> (4.2.7)

2) The genosum is commutative

&+ b =b4"a, (4.2.8)
and associative
@+ b)) +> & =a”+ (0" +7¢), Va,b,ée F; (4.2.9)
3) The forward genoproduct is associative
0> b”>e)=(@" >b7)>¢&, Vao, b, e B, (4.2.10)

but not necessarily commutative

0 >b#b > a7 (4.2.11)
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4) The set F> is closed under the genosum,

0”+b =& e B (4.2.12)

the forward genoproduct, . .
a” >b" =¢é € F7, (4.2.13)

and right and left genodistributive compositions,
0> b4 ) =d” e F~, (4.2.14a)
@370 > & =& e B v, 0 e B (12.14)

5) The set F> verifies the right and left genodistributive law
0 > (b3 )= @+ b)) > ¢ =d>, Yau b7, e e B (4.2.15)

In this way we have the forward genoreal numbers R> the forward genocom-
plex numbers C> and the forward genoquaternionic numbers QC> while the for-
ward genooctonions 0> can indeed be formulated but they do not constitute geno-
fields [14].

The backward genofields and the isodual forward and backward genofields are
defined accordingly. Santilli’s genofields are called of the first (second) kind when
the genounit is (is not) an element of F'.

The basic axiom-preserving character of genofields is illustrated by the follow-
ing:

LEMMA 4.2.1 [13]: Genofields of first and second kind are fields (namely, they
verify all axioms of a field).

Note that the conventional product “2 multiplied by 3” is not necessarily equal
to 6 because, for isodual numbers with unit —1 it is given by —6 [13].

The same product “2 multiplied by 3” is not necessarily equal to +6 or —6
because, for the case of isonumbers, it can also be equal to an arbitrary number, or
a matrix or an integrodifferential operator depending on the assumed isounit [13].

In this section we point out that “2 multiplied by 3” can be ordered to the
right or to the left, and the result is not only arbitrary, but yielding different
numerical results for different orderings, 2 > 3 # 2 < 3, all this by continuing to
verify the axioms of a field per each order [13].

Once the forward and backward genofields have been identified, the various
branches of genomathematics can be constructed via simple compatibility argu-
ments.

For specific applications to irreversible processes there is first the need to con-
struct the genofunctional analysis, studied in Refs. [6,18] that we cannot review
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here for brevity. The reader is however warned that any elaboration of irreversible
processes via Lie-admissible formulations based on conventional or isotopic func-
tional analysis leads to catastrophic inconsistencies because it would be the same
as elaborating quantum mechanical calculations with genomathematics.

As an illustration, Theorems 1.5.1 and 1.5.2 of catastrophic inconsistencies
are activated unless one uses the ordinary differential calculus lifted, for ordi-
nary motion in time of matter, into the following forward genodifferentials and

genoderivatives
- A 0~ -, 0
d"x=T; xdr, — =17 x —, etc, (4.2.16)
0”x Ox
with corresponding backward and isodual expressions here ignored.
Similarly, all conventional functions and isofunctions, such as isosinus, isocos-

inus, isolog, etc., have to be lifted in the genoform
P @™) = f@”) x I, (4.2.17)

where one should note the necessity of the multiplication by the genounit as a
condition for the result to be in R~, C~, or O~.

4.2.3 Genogeometries and Their Isoduals

Particularly intriguing are the genogeometries [16] (see also monographs [18]
for detailed treatments). They are best characterized by a simple genotopy of
the isogeometries, although they can be independently defined.

As an illustration, the Minkowski-Santilli forward genospace M~ (2>, 7~ , R>)
over the genoreal R> is characterized by the following spacetime, genocoordinates,
genometric and genoinvariant

> =zl ={a"y x 7, 77 =T~ xn, n=Diag.(1,1,1,-1), (4.2.184)

27 = eI, T = (2 x iy, x o) x 17 (4.2.18b)
where the first expression of the genoinvariant is on genospaces while the second
is its projection in our spacetime.

Note that the Minkowski-Santilli genospace has, in general, an explicit depen-
dence on spacetime coordinates. Consequently, it is equipped with the entire
formalism of the conventional Riemannian spaces covariant derivative, Christof-
fel’s symbols, Bianchi identity, etc. only lifted from the isotopic form of the
preceding chapter into the genotopic form.

A most important feature is that genospaces permit, apparently for the first
time in scientific history, the representation of irreversibility directly via the ba-
sic genometric. This is due to the fact that genometrics are nonsymmetric by
conception, e.g.,

W E (4.2.19)
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Consequently, genotopies permit the lifting of conventional symmetric metrics
into nonsymmetric forms,

Yinkoe Nk, Sone (1.220)
Remarkably, nonsymmetric metrics are indeed permitted by the axioms of con-
ventional spaces as illustrated by the invariance

(" X x 2°) x T = [2# x (T7 x ) x 2] x T 7! =
= (@ x i, x a”) x 17, (4.2.21)

where 7 is assumed in this simple illustration to be a complex number.

Interested readers can then work out backward genogeometries and the isod-
ual forward and backward genogeometries with their underlying genofunctional
analysis.

This basic geometric feature was not discovered until recently because hid-
den where nobody looked for, in the basic unit. However, this basic geometric
advance in the representation of irreversibility required the prior discovery of ba-
sically new numbers, Santilli’s genonumbers with nonsymmetric unit and ordered
multiplication [14].

4.2.4 Santilli Lie-Admissible Theory and Its Isodual

Particularly important for irreversibility is the lifting of Lie’s theory and Lie-
Santilli’s isotheories permitted by genomathematics, first identified by Ref. [11]
of 1978 (and then studied in various works, e.g., [6,18-22]) via the following
genotopies:

(1) The forward and backward universal enveloping genoassociative algebra
£€>, <€, with infinite-dimensional basis characterizing the Poincaré-Birkhoff-
Witt-Santilli genotheorem

£> :j>, Xi, Xz > Xj, Xz > Xj > Xk, e 1< <k, (4.2.22&)

<€, SXi, Xi< Xj, Xi < Xj < Xpy oon, i <5<k (4.2.220)
where the “hat” on the generators denotes their formulation on genospaces over
genofields and their Hermiticity implies that X~ =< X = X;

(2) The Lie-Santilli genoalgebras characterized by the umversal, jointly Lie-
and Jordan-admissible brackets,

<f/> : (X,L:XJ) = Xl < Xj — Xj > Xz = CZIE X Xk, (4223)

here formulated in an invariant form (see below);
(3) The Lie-Santilli genotransformation groups
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_ (eixXxT>><w) % A(O) % (e—ixwx<’f“><f(), (4'2.24)

where @> € R are the genoparameters; the genorepresentation theory, etc.

4.2.5 Genosymmetries and Nonconservation Laws

The implications of the Santilli Lie-admissible theory are significant mathemat-
ically and physically. On mathematical grounds, the Lie-Santilli genoalgebras are
“directly universal” and include as particular cases all known algebras, such as
Lie, Jordan, Flexible algebras, power associative algebras, quantum, algebras,
supersymmetric algebras, Kac-Moody algebras, etc. (Section 1.5).

Moreover, when computed on the genobimodule

<B> =<{x ¢, (4.2.25)

Lie-admissible algebras verify all Lie axioms, while deviations from Lie algebras
emerge only in their projection on the conventional bimodule

<B> =<¢x & (4.2.26)

of Lie’s theory (see Ref. [17] for the initiation of the genorepresentation theory
of Lie-admissible algebras on bimodules).

This is due to the fact that the computation of the left action A < B =
A x<T x B on <£ (that is, with respect to the genounit <I = 1/<7T") yields the
save value as the computation of the conventional product A x B on <¢ (that is,
with respect to the trivial unit I), and the same occurs for the value of A > B
on £>.

The above occurrences explain the reason the structure constant and the prod-
uct in the r.h.s. of Eq. (4.2.23) are those of a conventional Lie algebra.

In this way, thanks to genomathematics, Lie algebras acquire a towering sig-
nificance in view of the possibility of reducing all possible irreversible systems to
primitive Lie axioms.

The physical implications of the Lie-Santilli genotheory are equally far reach-
ing. In fact, Noether’s theorem on the reduction of reversible conservation laws to
primitive Lie symmetries can be lifted to the reduction, this time, of irreversible
nonconservation laws to primitive Lie-Santilli genosymmetries.

As a matter of fact, this reduction was the very first motivation for the con-
struction of the genotheory in memoir [12] (see also monographs [6,18,19,20]).
The reader can then foresee similar liftings of all remaining physical aspects
treated via Lie algebras.

The construction of the isodual Lie-Santilli genotheory is an instructive exercise
for readers interested in learning the new methods.
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4.3 LIE-ADMISSIBLE CLASSICAL MECHANICS
FOR MATTER AND ITS ISODUAL FOR
ANTIMATTER

4.3.1 Fundamental Ordering Assumption on
Irreversibility

Another reason for the inability during the 20-th century for in depth studies
of irreversibility is the general belief that motion in time has only two directions,
forward and backward (Eddington historical time arrows). In reality, motion in
time admits four different forms, all essential for serious studies in irreversibility,
given by: 1) motion forward to future time characterized by the forward genotime
t>: 2) motion backward to past time characterized by the backward genotime
<t; 3) motion backward from future time characterized by the isodual forward
genotime % and 4) motion forward from past time characterized by the isodual
backward genotime <¢9.

It is at this point where the necessity of both time reversal and isoduality ap-
pears in its full light. In fact, time reversal is only applicable to matter and, being
represented with Hermitian conjugation, permits the transition from motion for-
ward to motion backward in time, > —< £ = (>)!. If used alone, time reversal
cannot identify all four directions of motions. The only additional conjugation
known to this author that is applicable at all levels of study and is equivalent to
charge conjugation, is isoduality [22].

The additional discovery of two complementary orderings of the product and
related units, with corresponding isoduals versions, individually preserving the
abstract axioms of a field has truly fundamental implications for irreversibility,
since it permits the axiomatically consistent and invariant representation of irre-
versibility via the most ultimate and primitive axioms, those on the product and
related unit. We, therefore, have the following:

FUNDAMENTAL ORDERING ASSUMPTION ON IRREVERSIBILITY
[15]: Dynamical equations for motion forward in time of matter (antimatter) sys-
tems are characterized by genoproducts to the right and related genounits (their
isoduals), while dynamical equations for the motion backward in time of matter
(antimatter) are characterized by genoproducts to the left and related genounits
(their isoduals) under the condition that said genoproducts and genounits are
interconnected by time reversal expressible for generic quantities A, B with the

relation, . .
(A>B)' = (A>1T> x B)l = B x (T™)T x A, (4.3.1)

namely, A .
7> = (<7)f (4.3.2)

thus recovering the fundamental complementary conditions (4.1.17) or (4.2.2).



HADRONIC MATHEMATICS, MECHANICS AND CHEMISTRY 483

Unless otherwise specified, from now on physical and chemical expression for
irreversible processes will have no meaning without the selection of one of the
indicated two possible orderings.

4.3.2 Newton-Santilli Genoequations and Their Isoduals

Recall that, for the case of isotopies, the basic Newtonian systems are given by
those admitting nonconservative internal forces restricted by certain constraints
to verify total conservation laws called closed non-Hamiltonian systems [6b,18].

For the case of the genotopies under consideration here, the basic Newtonian
systems are the conventional nonconservative systems without subsidiary con-
straints, known asopen non-Hamiltonian systems, with generic expression (1.3),
in which case irreversibility is entirely characterized by nonselfadjoint forces, since
all conservative forces are reversible.

As it is well known, the above equations are not derivable from any variational
principle in the fixed frame of the observer [6], and this is the reason all con-
ventional attempts for consistently quantizing nonconservative forces have failed
for about one century. In turn, the lack of achievement of a consistent operator
counterpart of nonconservative forces lead to the belief that they are “illusory”
because they “disappear” at the particle level.

The studies presented in this paper have achieved the first and only physically
consistent operator formulation of nonconservative forces known to the author.
This goal was achieved by rewriting Newton’s equations (1.3) into an identical
form derivable from a variational principle. Still in turn, the latter objective was
solely permitted by the novel genomathematics.

It is appropriate to recall that Newton was forced to discover new mathe-
matics, the differential calculus, prior to being able to formulated his celebrated
equations. Therefore, readers should not be surprised at the need for the new
genodifferential calculus as a condition to represent all nonconservative Newton’s
systems from a variational principle.

Recall also from Section 3.1 that, contrary to popular beliefs, there exist four
inequivalent directions of time. Consequently, time reversal alone cannot rep-
resent all these possible motions, and isoduality results to be the only known
additional conjugation that, when combined with time reversal, can represent all
possible time evolutions of both matter and antimatter.

The above setting implies the existence of four different new mechanics first
formulated by Santilli in memoir [14] of 1996, and today known as Newton-Santilli
genomechanics, namely:

A) Forward genomechanics for the representation of forward motion of matter
systems;

B) Backward genomechanics for the representation of the time reversal image
of matter systems;
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C) Isodual backward genomechanics for the representation of motion backward
in time of antimatter systems, and

D) Isodual forward genomechanics for the representation of time reversal anti-
matter systems.

These new mechanics are characterized by:

1) Four different times, forward and backward genotimes for matter systems
and the backward and forward isodual genotimes for antimatter systems

> =txI>, —t>, &1 —>9 (4.3.3)

with (nowhere singular and non-Hermitian) forward and backward time genounits
and their isoduals (Note that, to verify the condition of non-Hermiticity, the time
genounits can be complex valued.),

=117, -Iy, 74, -1r-¢ (4.3.4)
2) The forward and backward genocoordinates and their isoduals
T S L N (4.3.5)
with (nowhere singular non-Hermitian) coordinate genounit
=11, -1, ¢ —17¢ (4.3.6)

with forward and backward coordinate genospace and their isoduals 5*;7 etc., and
related forward coordinate genofield and their isoduals R, etc.;
3) The forward and backward genospeeds and their isoduals

0> =d>&” /A7, -, 004 —07d, (4.3.7)
with (nowhere singular and non-Hermitian) speed genounit
j11> = 1/T1;>7 _jv> IA>§7 —IA>57 (438)

)

with related forward speed backward genospaces and their isoduals S’U> , etc., over

forward and backward speed genofields Ri, etc.
The above formalism then leads to the forward genospace for matter systems

S2, =87 x 82 xS, (4.3.9)
defined over the forward genofield
R, =R x R> x R, (4.3.10)
with total forward genounit
I, =17 < I> x I, (4.3.11)
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and corresponding expressions for the remaining three spaces obtained via time
reversal and isoduality.

The basic equations are given by:

I) The forward Newton-Santilli genoequations for matter systems [14], formu-
lated via the genodifferential calculus,

>o> O>V>
my >t = ; (4.3.12)
d>t> o> >k

IT) The backward genoequations for matter systems that are characterized by
time reversal of the preceding ones;

III) the backward isodual genoequations for antimatter systems that are char-
acterized by the isodual map of the backward genoequations,

<gd<nd <jHd<yrd
<yl <« 4 ke SOV (4.3.13)
<dd<¢d <3d<3§gk

IV) the forward isodual genoequations for antimatter systems characterized by
time reversal of the preceding isodual equations.

Newton-Santilli genoequations (4.3.12) are “directly universal” for the repre-
sentation of all possible (well behaved) Egs. (1.3) in the frame of the observer
because they admit a multiple infinity of solution for any given nonselfadjoint
force.

A simple representation occurs under the conditions assumed for simplicity,

N=I7=1I>=1, (4.3.14)

for which Eqs. (3.12) can be explicitly written

. &7 do>
m- > — = mX — =
>t dt
d d(zxI7) dv . ar> .. oV
:mxaidtz :mXEXI;—memxidt :;x—ax, (4.3.15)
from which we obtain the genorepresentation
1 dI>
FNSA — _mxoe x — x —2, (4.3.16)
> dt

that always admit solutions here left to the interested reader since in the next
section we shall show a much simpler, universal, algebraic solution.

As one can see, in Newton’s equations the nonpotential forces are part of the
applied force, while in the Newton-Santilli genoequations nonpotential forces are
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represented by the genounits, or, equivalently, by the genodifferential calculus, in
a way essentially similar to the case of isotopies.

The main difference between iso- and geno-equations is that isounits are Her-
mitian, thus implying the equivalence of forward and backward motions, while
genounits are non-Hermitian, thus implying irreversibility.

Note also that the topology underlying Newton’s equations is the conventional,
Euclidean, local-differential topology which, as such, can only represent point
particles.

By contrast, the topology underlying the Newton-Santilli genoequations is
given by a genotopy of the isotopology studied in the preceding chapter, thus
permitting the representation of extended, nonspherical and deformable particles
via forward genounits, e.g., of the type

I” = Diag.(n?,n3,n2,n3) x > (t,r,v,...), (4.3.17)

where n%, k = 1,2,3 represents the semiaxes of an ellipsoid, n? represents the
density of the medium in which motion occurs (with more general nondiagonal
realizations here omitted for simplicity), and T'~ constitutes a nonsymmetric
matrix representing nonselfadjoint forces, namely, the contact interactions among
extended constituents occurring for the motion forward in time.

4.3.3 Hamilton-Santilli Genomechanics and Its Isodual

In this section we show that, once rewritten in their identical genoform (4.3.12),
Newton’s equations for nonconservative systems are indeed derivable from a vari-
ational principle, with analytic equations possessing a Lie-admissible structure
and Hamilton-Jacobi equations suitable for the first known consistent and unique
operator map studied in the next section.

The most effective setting to introduce real-valued non-symmetric genounits
is in the 6 N-dimensional forward genospace (genocotangent bundle) with local
genocoordinates and their conjugates

> TS az*
a“:apxllllf, (a “)z( 2 > (4.3.18)

Pia

and A R X R
R7 =R, x I3, (R}) = (Pra 0), (4.3.19a)
Iy =1y = (55)" = (/T7)", (4.3.19)

k=1,2,3 a=1,2,...,N; pu, p=1,2,...6N,

where the superscript T' stands for transposed, and nowhere singular, real-valued
and non-symmetric genometric and related invariant

8> = T1>6N><6N66N><6N X 56N><6Na (4.3.20&)
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at > R; =a"" x Tff X RE =a x f;f X Rg. (4.3.200)
In this case we have the following genoaction principle [14]

>

5 A7 = 5 / B> >, 7070 — 17 >, &77) =

= 6/[R# x T}t a,p,..) x d(a” x I7) — H x dt] =0, (4.3.21)

where the second expression is the projection on conventional spaces over con-
ventional fields and we have assumed for simplicity that the time genounit is 1.

It is easy to prove that the above genoprinciple characterizes the following
forward Hamilton-Santilli genoequations, (originally proposed in Ref. [11] of 1978
with conventional mathematics and in Ref. [14] of 1996 with genomathematics
(see also Refs. [18,19,20])

. ci>d”> B g>g>(&>>

Why = 27 ~ —
d>t> o> ar>
_<1 0>X<dp/dt>_<0 1)X<3H/3p>—0, (4.3.22a)
OR> PRI\ . 0 —1 )
v <é>du> é>&u>> x I ( 1 0 > x I, (4.3.22b)
K = FN34/(9H/op), (4.3.22¢)
where one should note the “direct universality” of the simple algebraic solution

(3.22¢).
The time evolution of a quantity A~ (a~) on the forward geno-phase-space can
be written in terms of the following brackets

A>A> . ) é>A> é>ﬂ'>
dA — A> H>) = — @MV> > — =
d>t> 5> a>w oa>v
0A> , _ OH>
= 355 x SH x a5
a/i> 8f{> 8A> (9ff> ) 8A> NSA
=(— X —— — —— X — 4+ —— X F, , 4.3.23a
( orzk "~ opr,  Opp,  OrZk o ka ( )
SEHY — GHP IAQM’W,UV = (||lwgq -1 /“” 4.3.23b
p <

where w"” is the conventional Lie tensor and, consequently, S#" is Lie-admissible
in the sense of Albert [7].
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As one can see, the important consequence of genomathematics and its genod-
ifferential calculus is that of turning the triple system (A, H, FN94) of Eqgs. (1.5)
in the bilinear form (A}B), thus characterizing a consistent algebra in the brackets
of the time evolution.

This is the central purpose for which genomathematics was built (note that
the multiplicative factors represented by K are fixed for each given system). The
invariance of such a formulation will be proved shortly.

It is an instructive exercise for interested readers to prove that the brackets
(A}B) are Lie-admissible, although not Jordan-admissible.

It is easy to verify that the above identical reformulation of Hamilton’s his-
torical time evolution correctly recovers the time rate of variations of physical
quantities in general, and that of the energy in particular,

~

dA> N 0A>
= (A H>) =[A>, H>] + e ENSA (4.3.24a)
ka
H .. - H>
CiTt =[H>,H>] + gﬁ> x FNSA = ok pNSA, (4.3.24b)
ka

It is easy to show that genoaction principle (4.3.21) characterizes the following
Hamilton-Jacobi-Santilli genoequations [14]

> A> R
%>?> +H” =0, (4.3.25q)
5> A> B > A> > A> PP
(5>&>M) - <5>x5k7 3>P/?a) = (B) = (Prar 0), (4.3.25b)

which confirm the property (crucial for genoquantization as shown below) that
the genoaction is indeed independent of the linear momentum.

Note the direct universality of the Lie-admissible equations for the representa-
tion of all infinitely possible Newton equations (1.3) (universality) directly in the
fixed frame of the experimenter (direct universality).

Note also that, at the abstract, realization-free level, Hamilton-Santilli genoe-
quations coincide with Hamilton’s equations without external terms, yet represent
those with external terms.

The latter are reformulated via genomathematics as the only known way to
achieve invariance and derivability from a variational principle while admitting a
consistent algebra in the brackets of the time evolution [38].

Therefore, Hamilton-Santilli genoequations (3.6.66) are indeed irreversible for
all possible reversible Hamiltonians, as desired. The origin of irreversibility rests
in the contact nonpotential forces FN54 according to Lagrange’s and Hamilton’s
teaching that is merely reformulated in an invariant way.
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The above Lie-admissible mechanics requires, for completeness, three addi-
tional formulations, the backward genomechanics for the description of matter
moving backward in time, and the isoduals of both the forward and backward
mechanics for the description of antimatter.

The construction of these additional mechanics is left to the interested reader
for brevity.

4.4 LIE-ADMISSIBLE OPERATOR MECHANICS
FOR MATTER AND ITS ISODUAL FOR
ANTIMATTER

4.4.1 Basic Dynamical Equations

A simple genotopy of the naive or symplectic quantization applied to Egs.
(3.24) yields the Lie-admissible branch of hadronic mechanics [18] comprising
four different formulations, the forward and backward genomechanics for mat-
ter and their isoduals for antimatter. The forward genomechanics for matter is
characterized by the following main topics:

1) The nowhere singular (thus everywhere invertible) non-Hermitian forward
genounit for the representation of all effects causing irreversibility, such as contact
nonpotential interactions among extended particles, etc. (see the subsequent
chapters for various realizations)

7 =1)T> # (I)T, (4.4.1)

with corresponding ordered product and genoreal R> and genocomplex c> geno-
fields; X

2) The forward genotopic Hilbert space H> with forward genostates 1)~ > and
forward genoinner product

<SP > |7 > xI” =<< | x T> x [~ > xI” € C~, (4.4.2)
and fundamental property
7 > > >= 9~ >, (4.4.3)

holding under the condition that I~ is indeed the correct unit for motion forward
in time, and forward genounitary transforms

U> > (0> == > 0> =17 (4.4.4)

3) The fundamental Lie-admissible equations, first proposed in Ref. [12] of 1974
(p. 783, Egs. (4.18.16)) as the foundations of hadronic mechanics, formulated on
conventional spaces over conventional fields, and first formulated in Refs. [14,18]
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of 1996 on genospaces and genodifferential calculus on genofields, today’s known
as Heisenberg-Santilli genoequations, that can be written in the finite form

Ay = U7 > A(0) <= T = (X% > A(0) < (cem P30 =

_ (eixHxT>xt) % A(O) X (efi><t><<T><lfl)7 (4_4.5)
with corresponding infinitesimal version
sodA e
ix—=(AH)=A<H-H>A=
dt
= AxX<T@,f poab,....)x H—HxT>{E,7p,ab,...)x A, (4.4.6)

where there is no time arrow, since Heisenberg’s equations are computed at a
fixed time;

4) The equivalent Schréidinger-Santilli genoequations, first suggested in the
original proposal [12] to build hadronic mechanics (see also Refs. [17,23,24)), for-
mulated via conventional mathematics and in Refs. [14,18] via genomathematics,
that can be written

. o> . X .
-> > _ > > o
i > S [~ >=H” > |[¢p~ >=
= fi (f’@) X T>(£7727]§712)78A'([J' . ) X ’7$> >= E> > |¢> >, (447)

where the time orderings in the second term are ignored for simplicity of notation;
5) The forward genomomentum that escaped identification for two decades and
was finally identified thanks to the genodifferential calculus in Ref. [14] of 1996

Py > |7 >= =17 > W7 >= —i x [T x 9|9~ >; (4.4.8)
6) The fundamental genocommutation rules also first identified in Ref. [14],
(F3py) =i x &% x 17, (#"5#7) = (pi;p;) = 0; (4.4.9)

7) The genoexpectation values of an observable for the forward motion A>
[14,19]
<< > A7 > |7 >
<< > [ >
under which the genoexpectation values of the genounit recovers the conventional
Planck’s unit as in the isotopic case,

x 1> eC”, (4.4.10)

<1Z)|>f>>|¢3>_l
<> [ >

(4.4.11)
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The following comments are now in order. Note first in the genoaction prin-
ciple the crucial independence of isoaction A> in form the linear momentum, as
expressed by the Hamilton-Jacobi-Santilli genoequations (4.3.25). Such indepen-
dence assures that genoquantization yields a genowavefunction solely dependent
on time and coordinates, ¥~ = 1)~ (¢, 7).

Other geno-Hamiltonian mechanics studied previously [7] do not verify such a
condition, thus implying genowavefunctions with an explicit dependence also on
linear momenta, ¥~ = 1~ (t,r, p) that violate the abstract identity of quantum
and hadronic mechanics whose treatment in any case is beyond our operator
knowledge at this writing.

Note that forward geno-Hermiticity coincides with conventional Hermiticity.
As a result, all quantities that are observables for quantum mechanics remain
observables for the above genomechanics.

However, unlike quantum mechanics, physical quantities are generally noncon-
served, as it must be the case for the energy,

 _ d7H> . .
i > ——=Hx (T -T")x H#O0. (4.4.12)
d>t>

Therefore, the genotopic branch of hadronic mechanics is the only known opera-
tor formulation permitting nonconserved quantities to be Hermitian as a necessary
condition to be observable.

Other formulation attempt to represent nonconservation, e.g., by adding an
“imaginary potential” to the Hamiltonian, as it is often done in nuclear physics
[25]. In this case the Hamiltonian is non-Hermitian and, consequently, the non-
conservation of the energy cannot be an observable.

Besides, said “nonconservative models” with non-Hermitian Hamiltonians are
nonunitary and are formulated on conventional spaces over conventional fields,
thus suffering all the catastrophic inconsistencies of Theorem 1.3.

We should stress the representation of irreversibility and nonconservation be-
ginning with the most primitive quantity, the unit and related product. Closed
irreversible systems are characterized by the Lie-isotopic subcase in which

3% sz,g = [AH =AxT(t,..)x H—HxT(t,...)x A, (4.4.13a)
ST(t,..)=T>(t,...)=T(t,..)=Tt,...)#T(-t,...), (4.4.13b)

for which the Hamiltonian is manifestly conserved. Nevertheless the system is
manifestly irreversible. Note also the first and only known observability of the
Hamiltonian (due to its iso-Hermiticity) under irreversibility.

As one can see, brackets (A, B) of Eqs. (4.6) are jointly Lie- and Jordan-
admissible.
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Note also that finite genotransforms (4.4.5) verify the condition of genoher-
miticity, Eq. (4.4).

We should finally mention that, as it was the case for isotheories, genotheories
are also admitted by the abstract axioms of quantum mechanics, thus providing a
broader realization. This can be seen, e.g., from the invariance under a complex
number C

<zl > xT =< PlzC x| > x(C x I) =< | > [ > xI”.  (4.4.14)

Consequently, genomechanics provide another explicit and concrete realization
of “hidden wvariables” [26], thus constituting another “completion” of quantum
mechanics in the E-P-R sense [27]. For the studies of these aspects we refer the
interested reader to Ref. [28].

The above formulation must be completed with three additional Lie-admissible
formulations, the backward formulation for matter under time reversal and the
two additional isodual formulations for antimatter. Their study is left to the
interested reader for brevity.

4.4.2 Simple Construction of Lie-Admissible Theories

As it was the case for the isotopies, a simple method has been identified in
Ref. [44] for the construction of Lie-admissible (geno-) theories from any given
conventional, classical or quantum formulation. It consists in identifying the
genounits as the product of two different nonunitary transforms,

P=cht=uxwt, <i=wxUf, (4.4.15a)

UxUV£1, Wxwh£1, Uxwi=7]>, (4.4.15b)

and subjecting the totality of quantities and their operations of conventional
models to said dual transforms,

I I =UxIxWl, I-<T=wxIxU", (4.4.16a)
a—a” =UxaxWh=ax1~, (4.4.16b)
a—<a=WxaxUl=<Txa, (4.4.16¢)

axb—a>>b>=Ux(axb)xW> =

= (U xaxWHx (Ux W™ x (U xbx W), (4.4.16d)

d/0x — 897> =U x (0)9x) x Wt =1~ x (9/0x), (4.4.16¢)
<l X [P >=<< | > [ >=U x (< | x [ >) x WT, (4.4.16f)

Hx |t >= H> > [¢p” >=
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= (UxHxW)x (UxWH™x (Uxyp>Wwh), etc. (4.4.169)

As a result, any given conventional, classical or quantum model can be easily
lifted into the genotopic form.

Note that the above construction implies that all conventional physical quan-
tities acquire a well defined direction of time. For instance, the correct genotopic
formulation of energy, linear momentum, etc., is given by

H> =UxHxW!, p>=UxpxW?>, etc. (4.4.17)

In fact, under irreversibility, the value of a nonconserved energy at a given time
t for motion forward in time is generally different than the corresponding value
of the energy for —t for motion backward in past times.

This explains the reason for having represented in this section energy, mo-
mentum and other quantities with their arrow of time >. Such an arrow can
indeed be omitted for notational simplicity, but only after the understanding of
its existence.

Note finally that a conventional, one dimensional, unitary Lie transformation
group with Hermitian generator X and parameter w can be transformed into a
covering Lie-admissible group via the following nonunitary transform

Qw) x QT(w) = QT(w) x Q(w) = I, w € R, (4.4.18a)
UxUT£1, WxWt#£1, (4.4.18b)
Alw) = Q(w) x A(0) x QT (w) = eXXWX1 x A(0) x e~ >¥WxX
— U x (eXXWX0 5 A(0) x e wxXy 5 Ut =
= [U x (X)) x W s (U x WH™ x A x A(0)x
xUT x (W x UN7TLx [W x (7w Xy x U] =
= (X K)> 5 A(0) << (e X)) = U> > A(0) << U, (4.4.18¢)

which confirm the property of Section 4.2, namely, that under the necessary math-
ematics the Lie-admissible theory is indeed admitted by the abstract Lie axioms,
and it is a realization of the latter broader than the isotopic form.

4.4.3 Invariance of Lie-Admissible Theories

Recall that a fundamental axiomatic feature of quantum mechanics is the in-
variance under time evolution of all numerical predictions and physical laws,
which invariance is due to the unitary structure of the theory.

However, quantum mechanics is reversible and can only represent in a scientific
way beyond academic beliefs reversible systems verifying total conservation laws
due to the antisymmetric character of the brackets of the time evolution.
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As indicated earlier, the representation of irreversibility and nonconservation
requires theories with a nonunitary structure. However, the latter are afflicted
by the catastrophic inconsistencies of Theorem 1.3.

The only resolution of such a basic impasse known to the author has been the
achievement of invariance under nonunitarity and irreversibility via the use of
genomathematics, provided that such genomathematics is applied to the total-
ity of the formalism to avoid evident inconsistencies caused by mixing different
mathematics for the selected physical problem.

Let us note that, due to decades of protracted use it is easy to predict that
physicists and mathematicians may be tempted to treat the Lie-admissible branch
of hadronic mechanics with conventional mathematics, whether in part or in full.
Such a posture would be equivalent, for instance, to the elaboration of the spectral
emission of the hydrogen atom with the genodifferential calculus, resulting in an
evident nonscientific setting.

Such an invariance was first achieved by Santilli in Ref. [15] of 1997 and can be
illustrated by reformulating any given nonunitary transform in the genounitary
form

U=UxT>"2W =W x T2 (4.4.19a)
UxWi=U>Wi=Wl>U=1"=1/T, (4.4.19b)
and then showing that genounits, genoproducts, genoexponentiation, etc., are
indeed invariant under the above genounitary transform in exactly the same way
as conventional units, products, exponentiations, etc. are invariant under unitary
transforms,
PP =U>r>wh=1>, (4.4.20a)
A>B—-U>(A>B)>W'=
= (UxT> x AxT> x W) x (T> x WH=™t x T x
X(UXxT) Ix (UxT> x AxT> x W) =
—Ax(UxWHIxB=AxT>xB =A4"> B, etc., (4.4.200)
from which all remaining invariances follow, thus resolving the catastrophic in-
consistencies of Theorem 1.3. R R
Note the numerical invariances of the genounit I~ — I>" = 1>, of the geno-

topic element T> — T>' = T>, and of the genoproduct >—>'=> that are
necessary to have invariant numerical predictions.

4.5 APPLICATIONS

4.5.1 Lie-admissible Treatment of Particles with
Dissipative Forces

In this section we present a variety of classical and operator representations of
nonconservative systems by omitting hereon for simplicity of notation all ”hats”
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on quantities (denoting isotopies not considered in this section), omitting the
symbol x to denote the conventional (associative) multiplication, but preserving
the forward (backward) symbols > (<) denoting forward (backward) motion in
time for quantities and products. The content of this section was presented for
the first time by the author in memoir [32].

Let us begin with a classical and operator representation of the simplest possi-
ble dissipative system, a massive particle moving within a physical medium, and
being subjected to a linear, velocity-dependent resistive force

d
mdi; = FNSA = _py, (4.5.1)

for which we have the familiar variation (dissipation) of the energy

d.1 9
—(=mv*) = —kv~. 4.5.2
(i) (45.2)
Progressively more complex examples will be considered below.

The representations of system (5.1) via the Newton-Santilli genoequations
(3.12) is given by
> d=v>

d>t>

As indicated in Section 3, the representation requires the selection of three gen-
erally different genounits, I;”, I, I;. Due to the simplicity of the case and the
velocity dependence of the applied force, the simplest possible solution is given
by

= 0. (4.5.3)

m

[7=I1"=1, [Z({t)=cm =1/T7(t) >0, (4.5.4a)
d” v~ d(vI;) dv ar;

> = Yo =m—I" + kv—% =0. 4.5.4b

e " "a T (4:5.4)

The representation with Hamilton-Santilli genoequations (3.22) is also straight-
forward and can be written in disjoint 7~ and p~ notations

>2> 2

>_ _ P _ P >
H- = 2>>777’L> = %Ip y (455@)

> 7> > >, > > 7>
o8 e e OTHE (4.5.50)
0> p> m’ Aot o> r>

The last equation then reproduces equation of motion (5.1) identically under
assumptions (5.4a).

The above case is instructive because the representation is achieved via the

genoderivatives (Section 2.2). However, the representation exhibits no algebra in

the time evolution. Therefore, we seek an alternative representation in which the
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dissipation is characterized by the Lie-admissible algebra, rather by the differen-
tial calculus.

This alternative representation is provided by the Hamilton-Santilli genoequa-
tions (3.22) in the unified notation a> = (r>*,p7’) that become for the case at
hand

da”t ( dr” /dt ) _S>W8>H> B < 0 -1 > ( o> H> 9> r> >

ac~ \ dp>/dt )~ 9> a>v 1 msm 0> H> 6> p>
(4.5.6)
under which we have the genoequations
dr>  O°H> > dp>
U - —— (4.5.7)

a  0>p> m’ dt
where one should note that the derivative can be assumed to be conventional,
since the system is represented by the mutation of the Lie structure.

To achieve a representation of system (5.1) suitable for operator image, we
need the following classical, finite, Lie-admissible transformation genogroup

OH S>/LU o)

A(t) = (et 357" 557 ) A(0) (e7or 5" Fakt), (4.5.8)

defined in the 12—dimensional bimodular genophasespace <T*M x T*M~>, with
infinitesimal Lie-admissible time evolution

dA _ 0A g gouyOH _
dt 8&”( 5 )ﬁa” N
L OAOH OHOA ke 0HOA
~ N Ork Op,  Ork Opy (0H/dp)’ Op Op~
0A
= (A H] - 'y, (4.5.9)

where we have dropped the forward arrow for notational convenience, and w”
is the canonical Lie tensor, thus proving the Lie-admissibility of the S-tensors.
In fact, the attached antisymmetric brackets [A, H| are the conventional Pois-
son brackets, while {A, H} are indeed symmetric brackets (as requested by Lie-
admissibility), but they do not characterize a Jordan algebra (Section 4.1.3).

It is easy to see that the time evolution of the Hamiltonian is given by

dH  0H _

I ks = ko2 4.5.1
o U@p ko=, (4.5.10)

thus correctly reproducing behavior (5.2).

The operator image of the above dissipative system is straightforward. Phys-
ically, we are also referring to a first approximation of a massive and stable ele-
mentary particle, such as an electron, penetrating within hadronic matter (such
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as a nucleus). Being stable, the particle is not expected to “disappear” at the
initiation of the dissipative force and be converted into “virtual states” due to
the inability of represent such a force, but more realistically the particle is ex-
pected to experience a rapid dissipation of its kinetic energy and perhaps after
that participate in conventional processes.

Alternatively, we can say that an electron orbiting in an atomic structure does
indeed evolve in time with conserved energy, and the system is indeed Hamilto-
nian. By the idea that the same electron when in the core of a star also evolves
with conserved energy is repugnant to reason. Rather than adapting nature to
manifestly limited Hamiltonian theories, we seek their covering for the treatment
of systems for which said theories were not intended for.

The problem is to identify forward and backward genounits and related geno-
topic elements I” = 1/T>,<1 = 1/<T for which the following operator Lie-
admissible genogroup now defined on a genomodule ~H x H~

A(t) = (e T71 A(0) (e TH), (4.5.11)
and related infinitesimal form, the Heisenberg-Santilli genoequations
.dA < >
zE:A<H—H>A:A TH - HT” A, (4.5.12)

correctly represent the considered dissipative system.

By noting that the Lie-brackets in Eqgs. (4.5.9) are conventional, we seek a
realization of the genotopic elements for which the Lie brackets attached to the
Lie-admissible brackets (5.12) are conventional and the symmetric brackets are
Jordan-isotopic. A solution is then given by [32]

T> =1-T, <T=14T, (4.5.13)
for which Eq. (5.12) becomes

dA

i~ = (AH — HA) — (ATH + HTA) =
=[A,H| - {AH}, (4.5.14)

where [A, H] are a conventional Lie brackets as desired, and {A}H} are Jordan-
isotopic brackets. The desired representation then occurs for

17 = eB/mBT 7> <p = H kM) — 1 /<, (4.5.15q)
dH  kp? )

Note that the achievement of the above operator form of system (5.1) without
the Lie-admissible structure would have been impossible, to our knowledge.
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Despite its elementary character, the above illustration has deep implications.
In fact, the above example constitutes the only known operator formulation of a
dissipative system in which the nonconserved energy is represented by a Hermitian
operator H, thus being an observable despite its nonconservative character. In all
other cases existing in the literature the Hamiltonian is generally non-Hermitian,
thus non-observable.

The latter occurrence may illustrate the reason for the absence of a consistent
operator formulation of nonconservative systems throughout the 20-th century
until the advent of the Lie-admissible formulations.

4.5.2 Direct Universality of Lie-Admissible
Representations for Nonconservative Systems

We now show that the Lie-admissible formulations are “directly universal,”
namely, they provide a classical and operator representation of all infinitely pos-
sible (well behaved) nonconservative systems of N particles (universality)

mn% n g;g = FNSA(t rpp,.), n=1,2,3,.,N, k=123, (45.16)
directly in the frame of the observer, i.e., without transformations of the coordi-
nates of the experimenter to mathematical frames (direct universality).

An illustration is given by a massive object moving at high speed within a
resistive medium, such as a missile moving in our atmosphere. In this case the
resistive force is approximated by a power series expansion in the velocity trun-
cated up to the 10-th power for the high speeds of contemporary missiles

dv

ma = Za:1,27m’10/€ava, (4.5.17)

for which any dream of conventional Hamiltonian representation is beyond the
boundary of science.

The direct universality of the Hamilton-Santilli genomechanics was proved in
Section 3.3. The representation in geno-phase-space is characterized by the con-
ventional Hamiltonian representing the physical total energy, and the genounit for
forward motion in time representing the NSA forces, according to the equations

pQ 1 FNSA
H =Y, "k I” = (9H [0p) 4.5.1
Fom. TV ) ( L ) (4.5.18)

under which we have the equations of motion (for p,v =1,2,3,...6N) [32]
da”~" dr>* /dt >0 H” 0o -1 0> H> /9> 1>k
= < =57 = FNSA SN
dp;, /dt 9> a>v L e 0~H~ /07 py,
(4.5.19)

dt

(0H/0p)
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the classical, finite, Lie-admissible genosgenogroup

B OH v, O 0 < v OH
A(t) = exp <_t8aﬂs 0@”) A(0) exp <8a” S @t , (4.5.20)
with infinitesimal time evolution
dA  0A _ " S OH
dt 6aﬂ( s 5 )8(1” N
_(%8151_87}[814 B km . 0A OH |
- Ork Oppe Ork Opn (0H/0p)"  Oppk Opmr”
=[AH|+{A H}, (4.5.21)
yielding the correct monconservation of the energy
% o e (4.5.22)

The operator image can be characterized by the genounits and related geno-
topic elements

r='=1/T>, <I=elT=1/<T, T=H'WFEN*YH,  (4.5.23)
with finite Lie-admissible time evolution

A(t) = exp(iHe Yt) A(0) exp(—ite ™ H) (4.5.24)

and related Heisenberg-Santilli genoequations

A
i%:A<H—H>A:[A,H]+{A:H}:
= (AH — HA) + (ATH + HT'A), (4.5.25)
that correctly represent the time rate of variation of the nonconserved energy,
dH
i = vk NS4, (4.5.26)

The uninitiated reader should be incidentally aware that generally different ge-
nounits may be requested for different generators, as identified since Ref. [11].

In the latter operator case we are referring to an extended, massive and stable
particle, such as a proton, penetrating at high energy within a nucleus, in which
case the rapid decay of the kinetic energy is caused by contact, resistive, inte-
grodifferential forces of nonlocal type, e.g., because occurring over the volume of
the particle.
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The advantages of the Lie-admissible formulations over pre-existing representa-
tion of nonconservative systems should be pointed out. Again, a primary advan-
tage of the Lie-admissible treatment is the characterization of the nonconserved
Hamiltonian with a Hermitian, thus observable quantity, a feature generally ab-
sent in other treatments.

Moreover, the “direct universality” of Lie-admissible representations requires
the following comments. Recall that coordinates transformations have indeed
been used in the representation of nonconservative systems because, under suffi-
cient continuity and regularity, the Lie-Koening theorem assures the existence of
coordinate transformations (r,p) — ('(r,p), p'(r,p)) under which a system that
is non-Hamiltonian in the original coordinates becomes Hamiltonian in the new
coordinates (see Ref. [6] for details). However, the needed transformations are
necessarily nonlinear with serious physical consequences, such as:

1) Quantities with direct physical meaning in the coordinates of the exper-

imenter, such as the Hamiltonian H(r,p) = % + V(r), are transformed into
quantities that, in the new coordinates, have a purely mathematical meaning,
such as H'(r',p') = Nexp(Mr'"?/p®),N,M € R, thus preventing any physically
meaningful operator treatment;

2) There is the loss of any meaningful experimental verifications, since it is
impossible to place any measurement apparatus in mathematical coordinates such
as v’ = KlogLr®,p' = Pexp(Qrp), K,L, P,Q € R;

3) There is the loss of Galileo’s and Einstein’s special relativity, trivially, be-
cause the new coordinates (r/,p’) characterize a highly noninertial image of the
original inertial system of the experimenter.

All the above, and other insufficiencies are resolved by the Lie-admissible treat-
ment of nonconservative systems.

4.5.3 Pauli-Santilli Lie-Admissible Matrices

Following the study of the nonconservation of the energy, the next important
topic is to study the behavior of the conventional quantum spin under contact
nonconservative forces, a topic studied for the first time in memoir [32]. For
this objective, it is most convenience to use the method of Suctions 4.4.2 and
4.4.3, namely, subject the conventional Pauli’s matrices to two different nonuni-
tary transforms. To avoid un-necessary complexity, we select the following two
matrices

A_<i 2) B_<[1) ?) AAY £1, | BBT #1, (4.6.1)
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where a and b are non-null real numbers, under which we have the following
forward and backward genounits and related genotopic elements

I” = AB _<a 1), T _(1_ab)(_a L) (4.6.2)

1 a 1 1 —a
<7 _ T <7 _
I=BA _(b 1>, T_(l—ab<—b ) > (4.6.20)

The forward and backward Pauli-Santilli genomatrices are then given respec-
tively by

of = Ao B —(1 (a+b)>’ o5 = AoeB _<i (a+b) ) (4.6.3a)

O'3> :AO'?,BT = < Cll —bl > s <O’1 :_B(')']A‘AT = ( (1) ( 1 ) 5 (463b)

a+b)
<02 = BUQAA]L = 0 — <0’ = Ao BT = 1 a (4 6 36)
i (a+b) ) 73 3 b -1 ) o

in which the direction of time is embedded in the structure of the matrices.

It is an instructive exercise for the interested reader to verify that conven-
tional commutation rules and eigenvalues of Pauli’s matrices are preserved under
forward and backward genotopies,

o7 > O'j> - 0j> > 07 = 2i€;107 (4.6.4a)

07 > | >==£1>, 077 >|>=2(2+1)| >, (4.6.4b)
<g; >< oj —=< oj >< g = 2iei<jkak, (4.6.4c)
<|<So3=<|£1,;<| < 0® =<|(2(2+1). (4.6.4d)

We can, therefore, conclude by stating that Pauli’s matrices can indeed be
lifted in such an irreversible form to represent the direction of time in their very
structure. However, in so doing the conventional notion of spin is lost in favor of a
covering notion in which the spin becomes a locally varying quantity, as expected
to a proton in the core of a star.

Consequently, the Lie-admissible formulation of Pauli matrices confirms the
very title of memoir [12] proposing the construction of hadronic mechanics.

R.M. Santilli Need for subjecting to an experimental verification the validity
within o hadron of Einstein’s Special Relativity and Pauli’s Exclusion Principle,

Hadronic J. 1, 574-902 (1978)

The argument is that, while special relativity and Pauli exclusion principe
are unquestionably valid for the conditions of their original conception, particles
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at large mutual distances under action-at-a-distance interactions (such as for
a point-like proton in a particle accelerator under long range electromagnetic
interactions), by no means the same doctrines have to be necessarily valid for
one hadronic constituent when considering all other constituents as external.

The above analysis focuses the attention in an apparent fundamental struc-
tural difference between electromagnetic and strong interactions. Irrespective of
whether considered part of the system (closed system) or external (open system),
electromagnetic interactions do verify Pauli principle, as well known. The best
example is given by Dirac’s equation for the hydrogen atom that, as known to
experts to qualify as such, represents one electron under the external electromag-
netic field of the proton. The origin of the preservation of Pauli principle is that,
whether electromagnetic interactions are closed or open, they are Hamiltonian.
Lie’s theory then applies with the conventional notion of spin, and Pauli principle
follows.

By comparison, strong interactions are non-Hamiltonian for the numerous rea-
sons indicated during tour analysis. Consequently, the conventional notion of
spin cannot be preserved, and Pauli principle is inapplicable in favor of broader
vistas. It is intriguing to note that the representation of a proton via isomechan-
ics allows indeed a representation of its extended, nonspherical and deformable
shape. Nevertheless, Pauli’s principle is preserved under isotopies, as indicated
in Chapter 3. Hence, the inapplicability of Pauli’s principle is here referred to,
specifically and solely, for open irreversible conditions at short mutual distances,
exactly according to the original proposal to build hadronic mechanics [12].

The above distinction between electromagnetic and strong interactions is the
conceptual foundation of monographs [40,41] suggesting the characterization of
the hadronic constituents via Lie-admissible, rather than Lie or Lie-isotopic al-
gebras, with the consequential inapplicability of the conventional. notion of spin.
These basic issues will be studied in detail in Volume II in connection with ex-
plicit structure models of hadrons with physical constituents, that is, constituents
that can be produced free in spontaneous decays while being compatible with the
SU(3)-color Mendeleev-type classification of hadrons.

To conclude, not only special relativity, but also Pauli principle is inapplicable
(rather than violated) for a hadron under external strong interactions. Needless to
say, when a particle with the open nonconservative spin under consideration here
is “completed” with the inclusion of all remaining strong interacting particles here
considered as external, Pauli principle is recovered in full for the center of mass
of the ensemble as a whole because the “completion” is treated via isomechanics.

SThe reader should always keep in mind that, even though not stated in the technical literature for
evident political reasons, quantum mechanics can only represent the proton as a dimensionless point.
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4.5.4 Minkowski-Santilli Irreversible Genospacetime

One of the fundamental axiomatic principles of hadronic mechanics is that
irreversibility can be directly represented with the background geometry and,
more specifically, with the metric of the selected geometry. This requires the
necessary transition from the conventional symmetric metrics used in the 20-th
century to covering nonsymmetric genometric.

To show this structure, we study in this section the genotopy of the con-
ventional Minkowskian spacetime and related geometry with the conventional
metric n = Diag.(1,1,1,—1) and related spacetime elements z? = z#n,,z", © =
(2,22, 23, 2%), 2% = ct, ¢ = 1. For this purpose, we introduce the following four-
dimensional non-Hermitian, nonsingular and real-valued forward and backward
genounits

I>=CD'=1/T>, <I=DC'=1/<T, CCT#1I, DD #I  (465)

1000 1000
010 0 010 0

“loot1o0]" P lqo1o0]| (4.6.6)
p 00 1 0001

where p # g are non-null real numbers, under which we have the following forward
and backward genotopy of the Minkowskian line element

2? - 2”% = C2?Dl = C(z'nz) D' =
= (C'z' DYDY (CnDT)(C DY (CxDY) =
= (2T T> (7 x) = atng,a” =
= (v'2! + 2lqa® + 2222 + 232% + 2l pa?t — 2ta?), (4.6.7a)
D2?CT = D(atna)CT =
_ (:L‘t<I)<T<77<T(<ICE) — :L,,LL<77MV$V _
= (z'2! + 2'pa® + 2%2? + 2327 + 2 g2t — 2'2?), (4.6.7b)
resulting in the forward and backward nonsymmetric genometrics

0 0

, (4.6.8)

3

I
K O O =
O = O
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1
0
0

exactly as desired.
Note that irreversibility selects a mutation of the line elements along a pre-
selected direction of space and time.
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Note also that the quantities p and ¢ can be functions of the local spacetime
variables, in which case the resulting Minkowskian genogeometry can be equipped
by a suitable lifting of the machinery of the Riemannian geometry (see Ref. [16]
for the isotopic case and Chapter 3).

Note finally that the above genospacetime includes, as particular case, an ir-
reversible formulation of the Riemannian geometry, where irreversibility is rep-
resented at the ultimate geometric foundations, the basic unit and the metric.

It should be indicated that the above irreversible formulation of spacetime has
intriguing implications for the mathematical model known as geometric locomo-
tion studied in detail in monograph [73] via the isotopies of the Minkowskian
geometry. In fact, a main unresolved problems is the directional deformation of
the geometry as needed to permit the geometric locomotion in one preferred di-
rection of space. An inspection of the mutated line elements (4.6.7) clearly shows
that the genotopies are preferable over the isotopies for the geometric locomo-
tion, as well as, more generally, for a more realistic geometric characterization of
irreversible processes.

The construction of the Lorentz-Santilli genotransformations is elementary,
due to their formal identify with the isotopic case of Chapter 3, and its explicit
construction left as an instructive exercise for the interested reader.

4.5.5 Dirac-Santilli Irreversible Genoequation

To complete the illustrations in particle physics, we now outline the simplest
possible genotopy of Dirac’s equation via the genotopies of the preceding two
suctions, one for the spin content of Dirac’s equation and the other for its space-
time structure. Also, we shall use Dirac’s equation in its isodual re-interpretation
representing a direct product of one electron and one positron, the latter without
any need of second quantization (see monograph [73] for detail). In turn, the
latter re-interpretation requires the use of the isodual transform A — A% = —Al)
as being distinct from Hermitian conjugation. Under the above clarifications, the
forward Dirac genoequation here referred to can be written

M T, —im)T7 [~ >=0 (4.6.9q)
p, T~ >=—i o [~ >= —u>i|w> > (4.6.9b)
v 9> 1>V 0> 5 .0.
with forward genogamma matrices
>_(A 0O Irxa 0 At 0\ _ [ AAY 0
E 0 B 0 —Iax 0 B 0 -BiB )’
(4.6.10a)
05 )(a )0 )
>
Ve = = 4.6.100
i ( 0o B )\ ol 0 0 B (4.6.100)
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t >
(oot 07 ) (o 0) (5 T) womo
(e =T+ T v = 20, (4.6.10d)
where 7, is given by the same genotopy of Eqs. (4.6.10a).

Interested readers can then construct the backward genoequation. They will
discover in this way a new fundamental symmetry of Dirac’s equation that re-
mained undiscovered throughout the 20-th century, its isoselfduality (invariance
under isoduality.) This new symmetry is now playing an increasing role for re-
alistic cosmologies, those inclusive of antimatter, or for serious unified theories
that must also include antimatter to avoid catastrophic inconsistencies [73] (see
Volume II).

It is an instructive exercise for the interested reader to verify a feature indicated
earlier, the inapplicability of the conventional notion of spin and, consequently,
of Pauli principle for the Dirac-Santilli genoequation. As we shall see in Volume
II, the conventional Dirac equation represents the electron in the structure of the
hydrogen atom. By comparison, the Dirac-Santilli genoequation represents the
same electron when totally immersed in the hyperdense medium inside a proton,
thus characterizing the structure of the neutron according to hadronic mechanics..

Note that, while the electron is moving forward, the positron is moving back-
ward in time although referred to a negative unit of time, as a necessary condition
to avoid the inconsistencies for negative energies that requested the conjecture of
the “hole theory” (see monograph xxx for brevity).

4.5.6 Dunning-Davies Lie-Admissible Thermodynamics

A scientific imbalance of the 20-th century has been the lack of interconnections
between thermodynamics, on one side, and classical and quantum mechanics, on
the other side. This is due to the fact that the very notion of entropy,
indexEntropy let alone all thermodynamical laws, are centrally dependent on ir-
reversibility, while classical and quantum Hamiltonian mechanics are structurally
reversible (since all known potentials are reversible in time).

As recalled in Section 4.1, said lack of interconnection was justified in the 20-th
century on the belief that the nonconservative forces responsible for irreversibility
according to Lagrange and Hamilton, are “fictitious” in the sense that they only
exist at the classical level and they “disappear” when passing to elementary
particles, since the latter were believed to be completely reversible. In this way,
thermodynamics itself was turned into a sort of "fictitious” discipline.

This imbalance has been resolved by hadronic mechanics beginning from its
inception. In fact, Theorems 1.3.3 has established that, far from being “ficti-
tious,” nonconservative forces originate at the ultimate level of nature, that of
elementary particles in conditions of mutual penetration causing contact nonpo-
tential (NSA) interactions. The insufficiency rested in the inability by quantum
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mechanics to represent nonconservative forces, rather than in nature. In fact,
hadronic mechanics was proposed and developed precisely to reach an operator
representation of the nonconservative forces originating irreversibility along the
legacy of Lagrange and Hamilton.

As a result of the efforts presented in this chapter, we now possess not only
classical and operator theories, but more particularly we have a new mathematics,
the genomathematics, whose basic axioms are not invariant under time reversal
beginning from the basic units, numbers and differentials.

Consequently, hadronic mechanics does indeed permit quantitative studies of
the expected interplay between thermodynamics and classical as well as oper-
ator mechanics. These studies were pioneered by J. Dunning Davies [30] who
introduced the first known study of thermodynamics via methods as structurally
irreversible as their basic laws, resulting in a formulation we hereon call Dunning-
Davies Lie-admissible thermodynamics. This section is dedicated to a review of
Dunning-Davies studies.

Let us use conventional thermodynamical symbols, a classical form of thermo-
dynamics, and the simple construction of irreversible formulations via two differ-
ent complex valued quantities A and B. Then, the first law of thermodynamics
can be lifted from its conventional formulation, that via reversible mathematics,
into the form permitted by genomathematics

Q— Q> =AQB'=QI>, U—-U>=AUB' =UI", etc., (4.6.11a)
dQ =dU +pdV — d°Q° =d”U” +p” >d°V~, (4.6.11b)

where, in the absence of operator forms, Hermitian conjugation is complex con-
jugation. For the second law we have

dQ=TdS — d°Q°=T" >d”S~, (4.6.12)
thus implying that
TdS =dU +pdV — T> >d°S” =d"U” +p~ >d°V~. (4.6.13)

As one can see, genomathematics permits the first known formulation of entropy
with a time arrow, the only causal form being that forward in time. When
the genounit does not depend on the local variables, the above genoformulation
reduces to the conventional one identically, e.g.,

T> >d>S” = (TI") > I71d(ST17) = TdS =
=17 YWV + (pI>) 77 (V) = dU + pdV. (4.6.14)

This confirms that genomathematics is indeed compatible with thermodynamical
laws.
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However, new vistas in thermodynamics are permitted when the genounit is
dependent on local variables, in which case reduction (4.6.13) is no longer possi-
ble. An important case occurs when the genounit is explicitly dependent on the
entropy. In this case the Lh.s. of Eq. (4.6.13) becomes

TdS +TS(I>'dI”) = dU + pdV. (4.6.15)
We then have new thermodynamical models of the type
7 =e® 17> > ¢8> =T <1 + sagg)> dS = dU + pdV, (4.6.16)

permitting thermodynamical formulations of the behavior of anomalous gases
(such as magnegases [21]) via a suitable selection of the f(S) function and its fit
to experimental data. Needless to say, equivalent models can be constructed for
an explicit dependence of the genounit from the other variables. For these and
other aspects we have to refer the interested reader to Volume II.

4.5.7 Ongoing Applications to New Clean Energies

A primary objective of Volume II is to study industrial applications of hadro-
nic mechanics to new clean energies that are under development at the time of
writing this first volume (2002). Hence, we close this chapter with the following
preliminary remarks.

The societal, let alone scientific implications of the proper treatment of irre-
versibility are rather serious. Our planet is afflicted by increasingly catastrophic
climactic events mandating the search for basically new, environmentally accept-
able energies, for which scope the studies reported in these monographs were
initiated.

All known energy sources, from the combustion of carbon dating to prehistoric
times to the nuclear energy, are based on irreversible processes. By comparison,
all established doctrines of the 20-th century, such as quantum mechanics and
special relativity, are reversible, as recalled in Section 4.1.

It is then easy to see that the serious search for basically new energies requires
basically new theories that are as structurally irreversible as the process they are
expected to describe. At any rate, all possible energies and fuels that could be
predicted by quantum mechanics and special relativity were discovered by the
middle of the 20-th century. Hence, the insistence in continuing to restrict new
energies to verify preferred reversible doctrines may cause a condemnation by
posterity due to the environmental implications.

An effective way to illustrate the need for new irreversible theories is given
by nuclear fusions. All efforts to date in the field, whether for the “cold fusion”
or the “hot fusion,” have been mainly restricted to verify quantum mechanics
and special relativity. However, whether “hot” or “cold,” all fusion processes are
wrreversible, while quantum mechanics and special relativity are reversible.
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It has been shown in Ref. [31] that the failure to date by both the “cold” and
the “hot” fusions to achieve industrial value is primarily due to the treatment of
irreversible nuclear fusions with reversible mathematical and physical methods.

In the event of residual doubt due to protracted use of preferred theories, it
is sufficient to compute the quantum mechanical probability for two nuclei to
“fuse” into a third one, and then compute its time reversal image. In this way
the serious scholar will see that special relativity and quantum mechanics may
predict a fully causal spontaneous disintegration of nuclei following their fusion,
namely, a prediction outside the boundary of science.

The inclusion of irreversibility in quantitative studies of new energies suggests
the development, already partially achieved at the industrial level (see Chapter 8
of Ref. [20]), of the new, controlled “intermediate fusion” of light nuclei [31],
that is, a fusion occurring at minimal threshold energies needed: 1) To verify
conservation laws; 2) To expose nuclei as a pre-requisite for their fusion (a fea-
ture absent in the “cold fusion” due to insufficient energies), and 3) To prevent
uncontrollable instabilities (as occurring at the very high energies of the “hot
fusion”).

It is hoped that serious scholars will participate with independent studies on
the irreversible treatment of new energies, as well as on numerous other open
problems, because in the final analysis lack of participation in basic advances is
a gift of scientific priorities to others.
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Chapter 5

HYPERSTRUCTURAL BRANCH
OF HADRONIC MECHANICS
AND ITS ISODUAL

5.1 The Scientific Imbalance in Biology

In our view, the biggest scientific imbalance of the 20-th century has been
the treatment of biological systems (herein denoting DNA, cells, organisms, etc.)
via conventional mathematics, physics and chemistry because of various reasons
studied in detail in Chapter 1.1.

We here limit ourselves to recall that biological events, such as the growth
of an organism, are irreversible over time, while the mathematics of the 20-th
century and related formulations are structurally reversible, that is, reversible
for all possible Hamiltonians. Therefore, any treatment of biological systems via
reversible mathematics, physical and chemical formulations can indeed receive
temporary academic acceptance, but cannot pass the test of time.

Quantum mechanics is ideally suited for the treatment of the structure of the
hydrogen atom or of crystals, namely, systems that are fully reversible. These
systems are represented by quantum mechanics as being ageless. Recall also that
quantum mechanics is unable to treat deformations because of incompatibilities
with basic axioms, such as that of the rotational symmetry.

Therefore, the strict application to biological systems of the mathematics un-
derlying quantum mechanics and chemistry implies that all organisms from cells
to humans are perfectly reversible, totally rigid and fully eternal.

5.2  The Need in Biology of Irreversible Multi-Valued
Formulations
It is possible to see that, despite their generality, the invariant irreversible
genoformulations studied in the preceding chapter are insufficient for in depth
treatments of biological systems.
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In fact, recent studies conducted by Illert [1] have pointed out that the shape
of sea shells can certainly be represented via conventional mathematics, such as
the Euclidean geometry.

However, the latter conventional geometries are inapplicable for a represen-
tation of the growth over time of sea shells. Computer simulations have shown
that the imposition to sea shell growth of conventional geometric axioms causes
the lack of proper growth, such as deformations and cracks, as expected, because
said geometries are strictly reversible over time, while the growth of sea shells is
strictly irreversible.

The same studies by Illert [1] have indicated the need of a mathematics that
is not only structurally irreversible, but also multi-dimensional. As an example,
Illert achieved a satisfactory representation of sea shells growth via the doubling
of the Euclidean reference azres, namely, via a geometry appearing to be six-
dimensional.

A basic problem in accepting such a view is the lack of compatibility with
our sensory perception. When holding sea shells in our hands, we can fully
perceive their shape as well as their growth with our three Eustachian tubes.
Hence, any representation of sea shells growth with more than three dimensions
is incompatible with our perception of reality.

Similarly, our sensory perception can indeed detect curvature. Thus, any rep-
resentation of sea shell growth with the Riemannian geometry would equally be
incompatible with our sensory perception. At any rate, any attempt at the use
of the Riemannian geometry for sea shell growth would be faced with fatal incon-
sistencies, such as the inability to represent bifurcations and other aspects since
such representations would be prohibited by curvature.

These occurrences pose a rather challenging problem, the construction of yet
another new mathematics that is

(1) Structurally irreversible over time (as that of the preceding section);

(2) Capable to represent deformations;

(3) Invariant under the time evolution in the sense of predicting the same
number under the same conditions but at different times;

(4) Multi-dimensional; and, last but not least,

(5) Compatible with our sensory perception.

The only solution known to the author is that of building an irreversible multi-
valued (rather than multi-dimensional) new mathematics, in the sense that the
basic axioms of the space representation can remain three-dimensional to achieve
compatibility with our sensory perception, but each axis can have more than one
value, thus being multi-valued.

A search in the mathematical literature soon revealed that a mathematics
verifying all the above requirements did not exist and had to be constructed.
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Figure 5.1. A schematic view of Illert [1] has shown that a representation of the growth over
time of a seashell can be effectively done by doubling the number of reference axes. However,
seashell growth is perceived by our sensory perception as occurring in three-dimensional space.
The multi-valued hyperstructural branch of hadronic mechanics studied in this chapter provides
a solution of these seemingly discordant requirements because, on side, it is as multi-valued as
desired while, on the other side, remains three-dimensional at the abstract, realization-free level.

As an example, in their current formulations, hyperstructures (see, e.g., Ref. [2])
lack a well defined left and right unit thus lacking the applicability to the measure-
ments; they do not have conventional operations, but rather the so-called weak
operations, thus lacking applicability to experiments; they are not structurally ir-
reversible; and they lack invariance. Consequently, conventional hyperstructures
are not suitable for applications in biology.

5.3 Rudiments of Santilli Hyper-Mathematics and
Hypermechanics

After a number of trials and errors, a yet broader mathematics verifying the
above five conditions was identified by R. M. Santilli in monographs [3] of 1995
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and in works [4,5], and subsequently studied by R. M. Santilli and the mathemati-
cian T. Vougiouklis in paper [6] of 1996 (see also mathematical study [7]). These
studies resulted in a formulation today known as Santilli hypermathematics.

For an in depth study, including the all crucial Lie-Santilli hypertheory, we
refer the reader to the mathematical treatments [4-7]. By assuming an in depth
knowledge of genomathematics of the preceding chapter, we here limit ourselves to
indicate that the selected hypermathematics is based on the assumption that the
single-valued forward and backward genounits of the preceding chapter although
replaced with the following multi-valued hyperunits

I (tz,0,0,0,...) = Diag.(ff,l?,f;) =
= Diag. [uﬁ, 2 120, (I3 I3, 120, (B2 T2 o I;m)], (5.1a)
<I(t,x,v,1,...) = Diag.(S1;,< I,< I3) =

= Diag. [(<j11,< jlg, ...,< flm); (<f21,< fzg, ...,< fgm),

(<I31,% I3g, ...,< IASm)}7 (5.1b)

with corresponding ordered hyperproducts to the right and to the left
A>B=AxT>xB,A<B=Ax<TxB, (5.2a)
[P>A=A>1" =4, <I<AA<<I=A, (5.2b)
P =Cnt=1/1>. (5.2¢)

Following the hyperlifting of the methods of the preceding chapter, we reach the
following basic equations of the multi-valued hyperstructural branch of hadronic
mechanics, first proposed by Santilli in monographs [3] of 1995 (see also the
mathematical works [4—6], here written in the finite and infinitesimal forms

i dA/dt = A< H — H > A, (5.3a)
A(t) = e qA(0) eI H (5.3b)

quoted in Footnote 15 of Chapter 1, where the multivalued character of all quan-
tities and their operations is assumed.

In the above expressions the reader should recognize the diagonal elements
of the genounits of the preceding chapter and then identify the multi-valued
character for each diagonal element. Consequently, the above mathematics is not
3m-dimensional, but rather it is 3-dimensional and m-multi-valued, namely, each
axis in three-dimensional space can assume m different values.
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Such a feature permits the increase of the reference axes, e.g., for m = 2 we
have six axes as used by Illert [1], while achieving compatibility with our sen-
sory perception because at the abstract, realization-free level hypermathematics
characterized by hyperunit is indeed 3-dimensional.

It is instructive for readers interested in learning the new mathematics to prove
the following

LEMMA 5.1 [3]: All rings of elements a x I~ (<I x a), where a is an ordinary
(real, complex or quaternionic) number and I> (<I) is the forward (backward)
multivalued hyperunit, when equipped with the forward (backward) hyperproduct,
verify all axioms of a field.

A good understanding of the above property can be reached by comparison
with the preceding studies. The discovery of isofields [8] studied in Chapter 3
was made possible by the observation that the axioms of a field are insensitive
to the value of the unit. As a result of which we have isoproducts of the type

I=1/3=1/T, 2x3=2xTx3=18. (5.4)

The discovery of genofields also in Ref. [8] was due to the observation that
the axioms of a field are additionally insensitive to the ordering of a product to
the right or to the left, provided that all operations are restricted to one selected
order. This lead to two inequivalent multiplications, one to the right and one to
the left, as necessary to represent irreversibility, such as

I>=1/3=T, 2>3=18,<I=3, 2<3=2. (5.5)

Lemma 5.1 essentially reflects the additional property according to which the
axioms of a field are also insensitive as to whether, in addition to the selection of
an ordering as per genofields, the units and (ordered) products are multivalued,

e.g.,
17 ={1/3,1/5}, 253 ={18,30}, <I={3,2}, 23 ={2,3}, (5.6)

where the results of the hypermultiplications should be interpreted as an ordered
set.

Once the notion of hyperfield is understood, the construction of all remaining
aspects of hypermathematics can be conducted via simple compatibility argu-
ments, thus leading in this way to hyperspaces, hyperfunctional analysis, hyper-
differential calculus, hyperalgebras, etc.

Note that the resulting hyperformulations are invariant as it is the case for
genomathematics. The proof of such an invariance is here omitted for brevity,
but recommended to readers interested in a serious study of the field.

The above features serve to indicate that the biological world has a complexity
simply beyond our imagination, and that studies of biological problems conducted
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in the 20-th century, such as attempting an understanding the DNA code via
numbers dating back to biblical times, are manifestly insufficient.

The above features appear to be necessary for the representation of biologi-
cal systems. As an example, consider the association of two atoms in a DNA
producing an organ composed by a very large number of atoms, such as a liver.
A quantitative treatment of this complex event is given by representing the two
atoms with « and 3 and by representing their association in a DNA with the
hyperproduct. The resulting large number of atoms 4 in the organ is then rep-
resented by the ordered multi-valued character of the hyperproduct, such as

Oéﬁﬁ: {’717’72/73)’747'--77117}' (57>

The above attempt at decybrings the DNA code is another illustration of our
view that the complexity of biological systems is simply beyond our comprehen-
sion at this time. A mathematical representation will eventually be achieved in
due time. However, any attempt at its “understanding” would face the same diffi-
culties of attempting to understand infinite-dimensional Hilbert space in quantum
mechanics, only the difficulties are exponentially increased for biological struc-
tures.

5.4 Rudiments of Santilli Isodual Hypermathematics

The isodual hypermathematics can be constructed via the isodual map of Chap-
ter 2 here expressed for an arbitrary operator A,

A(fa f'aﬁa Jja . ) - _AT(_I?T? _’ﬁT? _ﬁTa _QZJT’ < ) = Ad(fdv fd)ﬁdv szd7 ce ')7 (58)

applied to the totality of hypermathematics, including its operations, with no
exception (to avoid inconsistencies), thus yielding isodual hyperunits, isodual hy-
pernumbers, isodual hyperspaces, etc.

Consequently, the formulations here considered have four different hyperunits,
the forward and backward hyperunits and their isoduals,

>, <I, 7%, <, (5.9)

that, in turn, have to be specialized into forward and backward space and time
hyperunits and their isoduals.

Consequently, the formulations herein considered have four different hyperco-
ordinates

~> <j;’ £>d

i, , <24, (5.10)

and four different hypertimes,
>, <i, 7, <§, (5.11)

In chapter 2 (see also Figure 2.2) we have studied the need for four different
times. We now have the four different hypertimes for: 1) Motion forward to
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future times characterized by #~; 2) Motion backward to past time characterized
by <t; 3) Motion backward from future times characterized by £>¢, and 4) motion
forward from past times characterized by <?. The main difference between the
four times of Chapter 2 and the four hypertimes of this chapter is that the former
are single-valued while the latter are multi-valued.

Note again the necessity of the isodual map to represent all four possible time
evolutions. In fact, the conventional mathematics, such as that underlying spe-
cial relativity, can only represent two our four possible time evolutions, motion
forward to future time and motion backward to past time, the latter reached via
the conventional time reversal operation.

The following intriguing and far reaching aspect emerges in biology. Until now
we have strictly used isodual theories for the sole representation of antimatter.
However, Illert [1] has shown that the representation of the bifurcations in sea
shells requires the use of all four directions of time.

The latter aspect is an additional illustration of the complexity of biological
system. In fact, the occurrence implies that the “intrinsic time” of a seashell,
that is, the time perceived by a sea shells as a living organism, is so complex
to be beyond our comprehension at this writing. Alternatively, we can say that
the complexity of hypertimes is intended to reflect the complexity of biological
Systems.

In conclusion, the achievement of invariant representations of biological struc-
tures and their behavior can be one of the most productive frontiers of science,
with far reaching implications for other branches, including mathematics, physics
and chemistry.

As an illustration, a mathematically consistent representation of the non-
Newtonian propulsion of sap in trees, all the way up to big heights, automatically
provides a model of geometric propulsion studied in Volume II, namely propulsion
caused by the alteration of the local geometry without any external applied force.

5.5 Santilli Hyperrelativity and Its Isodual

All preceding formulations can be embodied into one single axiomatic structure
submitted in monographs [3,5] and today known as Santilli hyperrelativity and
its isodual, that are characterized by:

1) The irreversible, multi-valued, forward and backward, Minkowski-Santilli
hyperspace with the following forward and backward spacetime hypercoordinates
and forward and backward hyperintervals over forward and backward hyperfields,
and their isoduals

M> (37,97, R”), 872 = #7"507, 537 € R”, (5,12a)

SM(<#,<7,° R),<#% =< 271 < i, <<a” €< R, (5.12b)

m>d(§:>d,ﬁ>d,}?>d,<md(<§;d,< ﬁd,< Rd; (5.126)
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2) The corresponding irreversible, multi-valued, forward and backward
Poincaré-Santilli hypersymmetry and their isoduals here written via the Kro-
necker product

P>(3,1)time<P(3.1) x P>4(3,1)time<P%(3.1), (5.13)

essentially given by the Poincaré-Santilli genosymmetry of the preceding chapter
under a multi-valued realization of the local coordinates and their operations;
3) The corresponding forward and backward hyperaxioms and their isoduals:

FORWARD HYPERAXIOM I. The projection in our spacetime of the maz-
imal causal invariant speed on forward Minkowski-Santilli hyperspace in (3,4)-
dimensions is given by:

> >

A _ox B 2@, &= x b] = -2, (5.14)

VM ax = Co X
> > >
bs ny ng

FORWARD HYPERAXIOM II. The projection in our spacetime of the hyper-
relativistic addition of speeds within MULTI-VALUED physical media represented
by the forward Minkowski-Santilli hyperspace is given by:

S>> 0+ 05
Vo= — tv o . (5.15)

> >
’U xXn XD
1> 1 4 2

c0><n§ X Co

FORWARD HYPERAXIOM III. The projection in our spacetime of the for-
ward hyperdilation of forward hypertime, forward hypercontraction of forward hy-
perlength and the variation of forward hypermass with the forward hyperspeed are
given respectively by

> =47 xtZ, (5.16a)
0> =4 x4, (5.16b)
m” =47 x mZ. (5.16¢)

FORWARD HYPERAXIOM IV. The projection in our spacetime of the Dopp-
ler-Santilli forward hyperlaw is given by the expression (here formulated for sim-
plicity for 90° angle of aberration):

Wy - (5.17)

ISOAXIOM V. The projection in our spacetime of the hyperrelativistic law of
equivalence of forward hypermass and the forward hyperenergy is given by:

E> =m” x V2, = 2 bi2—A>x2xﬁ2 (5.18)
max >2—’I7’L C, =5 .

3 Ny
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Figure 5.2. Samples of sliced seashells showing the complexity of their structure. Illert [1]
has shown that a mathematical representation of their four-lobes bifurcations requires all four
directions of times, namely, the knowledge by the seashell of motions forward in future and
past times as well as motions backward from future and in past times. The need for multi-
valued methods, plus these four different time arrows then identify our hyperstructures and
their isoduals quite uniquely. Whatever the appropriate theory, it can be safely stated that
the complexity of the “intrinsic time” of biological structure (that perceived by said structures
rather than by us) can be safely stated to be beyond our comprehension at this writing.

In the above expressions we have used the following notations: hypergamma
and hyperbeta are given by

A7 = (147712 BT = 0% xng Pk xng P =0" xby %/ xby % (5.19)

the upper symbol ~ denotes motion forward to future times; the upper symbol
Z, etc., denotes multivalued character; and all multiplications are conventional
(rather than being hyperproducts) since the hyperaxioms are expressed in their
projection in our spacetime to avoid excessive complexity.

The study of the backward and isodual hyperaxioms is left to the interested
reader.

A few comments are now inn order:

i) Hyperrelativity and its isodual are the most general forms of relativities
known at this writing that can be formulated on numbers verifying the axioms
of a field, thus admitting a well defined left and right unit with consequential
applicability to measurements;

ii) Hyperrelativity and its isodual are invariant under their respective time
hyperevolutions, thus predicting the same numerical results at different time,
and being applicable to experiments;

iii) Hyperrelativity and its isodual are multi-valued rather than multi-dimen-
sional, namely, they permit the representation of multi-universes in a form com-
patible with our sensory perception of spacetime;



520 RUGGERO MARIA SANTILLI

iv) The speed of light in vacuum ¢, has been assumed to remain unchanged
under hyperlifting, thus meaning that the speed of light is the same for all vacuum
foliations of spacetime.

v) Like all other quantities, hyperspeeds in general and, in particular, the
hyperspeed of light must necessarily be multi-valued for consistency, namely,
assume different values for different foliations of spacetime.

Note the covering character of hyperrelativity in the sense of admitting as
particular cases the genorelativity of Chapter 4, the isorelativity of Chapter 3
and the conventional special relativity whenever all units return to have the value
1 dating back to biblical times.

As we shall see in Volume II, hyperrelativity and its isodual, with particular
reference to the 44-multi-valued hyperdimensional hypersymmetry (5.13)!, will
allow the formulation of the most general known, thus the most complex known,
cosmology that includes, for the first time, biological structure as a condition for
the appropriate use of the word “cosmology” in its Greek sense.

IThe reader should recall that the Poincaré symmetry is eleven-dimensional and not ten dimensional
as popularly believed because of the discovery permitted by isomathematics of the additional, 11-th
dimensional isoscalar isoinvariance studied in Section 3.5.
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Appendix 5.A
Vougiouklis Studies on the Lie-Santilli Hyper-
Theory

5.A.1 Foreword

In this appendix we report ad litteram the studies on the Lie-Santilli hyperthe-
ory conducted by Thomas Vougiouklis, Democritus University of Thrace, School
of Education, 681 00 Alexandroupolis, Greece, email tvougiou@eled.duth.gr.
These studies are fundamental for the proper mathematical formulation of the
class of hyperstructures necessary for hadronic mechanics, that with a well defined
left and right hyperunit.

5.A.2 Introduction

The hyperstructures were introduced by F. Marty in 1934 when he first defined
the hypergoup as a set equipped with an associative and reproductive hyperop-
eration. The motivating example was the quotient of a group by any, not nec-
essarily normal, subgroup. M. Koskas in 1970 was introduced the fundamental
relation 8*, which it turns to be the main tool in the study of hyperstructures.
T. Vougiouklis in 1990 was introduced the H,-structures, by defining the weak
axioms. The motivating example of those hyperstructures is the quotient of any
group by any partition. Therefore the class of H,-structures is the largest class
of hyperstructures.

In 1996 R. M. Santilli and T. Vougiouklis, point out that in physics the most
interesting hyperstructures are the one called e-hyperstructures. These hyper-
structures contain a unique left ant right scalar unit, which is the most impor-
tant tool in Lie-Santilli theory. In what follows we present the related hyper-
structure theory mainly from the paper [6], enriched with some new results on
the related hyperstructures. However one can see the books by T. Vougiouklis
[27] and by P. Corsini-V. Leoreanu [13], for more definitions as well as the site:
aha.eled.duth.gr, for an extensive bibliography on the concept. Moreover, in this
site one can see the Vougiouklis’s point of view on the birth and the history of H,-
structures in the above site: An H,-interview, i.e. weak, with Th. Vougiouklis,
Interviewer N. Lygeros.

5.A.3 Basic definitions

In a set H is called hyperoperation or multivalued operation, any map from
H x H to the power set of H. Therefore, in a hyperoperation

HxH— pH): (z,y) >z -yCH

the result is a subset of H, instead of an element as we have in usually operations.
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In a set H equipped with a hyperoperation -: H x H — p(H) — {@}, we
abbreviate by

WASS the weak associativity: (xy)z Nx(yz) # &, Va,y,z € H and by

COW the weak commutativity: zy Nyx # I, Ve, y € H.

The hyperstructure (H, ) is called H,-semigroup if it is WASS and it is called
H,-group if it is reproductive H,-semigroup, i.e. *tH = Hx = H, Vx € H. The
hyperstructure (R, +, ) is called H,-ring if (+) and (-) are WASS, the reproduc-
tion axiom is valid for (+) and () is weak distributive with respect to (+):

z(y+z2)N(zy+zz) #9, (x+y)zN(zz+yz)#9, Vzr,y,z€R.

An extreme class of hyperstructures is the following [23]: An H,-structure is
called very thin iff all hyperoperations are operations except one, which has all
hyperproducts singletons except one, which is a subset of cardinality more than
one.

A H,-group is called cyclic [27], if there is an element, called generator, which
the powers have union the underline set. The minimal power with the above
property is called period of the generator. Moreover if there exist an element
and a special power, the minimum one, is the underline set, then the H,-group
is called single-power cyclic.

The main tool to study all hyperstructures are the fundamental relations 3%,
~* and €*, which are defined, in H,-groups, H,-rings and H,-vector spaces, re-
spectively, as the smallest equivalences so that the quotient would be group, ring
and vector space, respectively [27]. A way to find the fundamental classes is given
by analogous theorems to the following [24, 27, 28]:

THEOREM: Let (H,-) be a Hy,-group and U be all finite products of elements
of H. Define the relation 3 by setting By iff {x,y} Cu, uw € U. Then 3* is the
transitive closure of 3.

Analogous theorems for the relations v* in H,-rings and £* in H,-modules and
H,-vector spaces, are also proved.

An element is called single if its fundamental class is singleton.

Fundamental relations are used for general definitions. Thus, in the definition
of the H,-field the v* is used: A H,-ring (R,+,) is called H,-field if R/~* is a
field.

Let (H,-), (H,*) be H,-semigroups defined on the same set H. (-) is called
smaller than (*), and (*) greater than (-), iff there exists an

f € Aut(H,*) such that zy C f(z*y), Vx,y € H.

Then we write - <* and we say that (H,* ) contains (H,-). If (H,-) is a structure
then it is called basic structure and (H,*) is called Hy-structure.

THEOREM: Greater hyperoperations than the ones which are WASS or COW,
are also WASS or COW, respectively.
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The definition of the H,-field introduced a new class of hyperstructures [39]:

DEFINITION: The H,-semigroup (H,-) is called h/v-group if the quotient
H/pB* is a group.

The h/v-groups are a generalization of the H,-groups because in h/v-groups
the reproductivity is not necessarily valid. However, sometimes a kind of repro-
ductivity of classes is valid. This leads the quotient to be reproductive. In a
similar way the h/v-rings, h/v-fields, h/v-modulus, h/v-vector spaces etc., are
defined.

Definitions [33, 36, 37]. Let (H,-) be hypergroupoid. We remove heH, if we
consider the restriction of (-) in the set H — {h}. h € H absorbs h € H if we
replace h by h and h does not appear in the structure. h € H merges with h € H,
if we take as product of any x € H by h, the union of the results of x with both
h, h, and consider h and h as one class with representative h, therefore, h does
not appear in the hyperstructure.

Hyperoperations on any type of matrices can be defined:

DEFINITION [42]: Let A = (aij) € Myxn be matriz and s,t € N, with
1 <s<m, 1<t < n Then helixz-projection is a map st: My,xn — Mgxy:
A — Ast = ( a;;), where Ast has entries

Qij:{ai+ns,j+)\t‘1< s, 1<j<tandk, A€ N, i+ ks <m,j+ A\t <n}.
Let A = (ai;) € Myxpn, B = (bij) € Myx, be matrices and s = min(m,u),
t = min(n,v). We define a hyper-addition, called heliz-addition, by
@ Mpxn X Myxy — P(Msx) : (A,B) - A® B
= Ast + Bst = (a;;) + (b;j) C Mxy,

where ( j)—l-( ) = {(Czj) = (aij +bz‘j) ‘ aij € Qyj and bij € le)} Let A= (aij) €
M, xn, B = (bij ) € My x, and s = min(n,u). We define the heliz-multiplication,
by

® : Mysn X Myxy = P(Myxy) : (A,B) - AR B

= Ams - Bsv = (g;;) - (b;;) € Minxu,
where (a;;) - (b;;) = {(cij) = (X auby) | aij € a;; and bij € b;;)}.

The helix-addition is commutative, WASS but not associative. The helix-
multiplication is WASS, not associative and it is not distributive, not even weak,
to the helix-addition. For all matrices of the same type, the inclusion distribu-
tivity, is valid.

5.A.4 Small sets

The problem of enumeration and classification of H,-structures, was started
from the beginning [23, 22]. However, the problem becomes more complicate in
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H,-structures because we have very great numbers in this case. The partial order
in H,-structures [24], transfers and restrict the problem in finding the minimal,
up to isomorphisms, H,-structures. In this direction we have results by Bayon &
Lygeros [10, 11]:

Let H = {a, b} a set of two elements. There are 20 H,-groups, up to isomor-
phism.

Suppose in H = {e, a, b}, a hyperoperation is defined and there exists a scalar
unit, then, there are 13 minimal H,-groups. The number of all H,-groups with
three elements, up to isomorphism, which have a scalar unit, is 292.

In a set with three elements there are, exactly 6.494 minimal H,-groups. 137
are abelians and the 6.357 are non-abelians; the 6.152 are cyclic and the 342 are
not cyclic.

The number of H,-groups with three elements, up to isomorphism, is 1.026.462.
More precisely, there are 7.926 abelians and 1.018.536 non-abelians; the 1.013.598
are cyclic and the 12.864 are not cyclic. The 16 of them are very thin.

The number of all H,-groups with four elements, up to isomorphism, which
have a scalar unit, is 631.609. There are 10.614.362 abelian hypergroups from
which the 10.607.666 are cyclic and the 6.696 are not. There are 8.028.299.905
abelian H,-groups from which the 7.995.884.377 are cyclic and the 32.415.528 are
not.

5.A.5 Uniting elements

The uniting elements method was introduced by Corsini-Vougiouklis [14] in
1989. With this method one puts in the same class, two or more elements. This
leads, through hyperstructures, to structures satisfying additional properties.

The uniting elements method is the following: Let G be algebraic structure
and let d be a property, which is not valid and it is described by a set of equations;
then, consider the partition in G for which it is put together, in the same partition
class, every pair of elements that causes the non-validity of the property d. The
quotient by this partition G/d is an H,-structure. Then, quotient out the H,-
structure G/d by the fundamental relation 5%, a stricter structure (G/d)3* for
which the property d is valid, is obtained.

An interesting application of the uniting elements is when more than one prop-
erties are desired. The reason for this is that some of the properties lead straighter
to the classes than others. So, it is better to apply the straightforward classes
followed by the more complicated ones. The commutativity and reproductivity
are easy applicable properties. One can do this because the following is valid.

THEOREM [27]: Let (G,-) be a groupoid, and F = {fi,..., fm, fm+1,---,
fmin} be a system of equations on G consisting of two subsystems F,, =
{fi,-- s fm} and Fy = {fim+1, -, fman}. Let o, o, be the equivalence relations
defined by the uniting elements procedure using the systems F and Fy, resp., and
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let oy, be the equivalence relation defined using the induced equations of F,, on the

grupoid G, = (G/op)/B*. Then (G/o)/5* = (Gm/on)/B".

5.A.6 Theta (9) hyperoperations

In [40] a hyperoperation, in a groupoid with a map on it, called theta 0, is
introduced.

DEFINITION: Let H be a set equipped with n operations (or hyperoperations)
®1,®2, ...,y and a map (or multivalued map) f: H — H (or f: H— P(H),
resp.), then n hyperoperations 0y, Oa, ..., O, on H can be defined, called theta-
operations by putting

20y ={f(x) @iy, z®; f(y)}, Yo,y € Hand i € {1,2,...,n}
or, in case where ®; is hyperoperation or f is multivalued map, we have
x0iy = (f(z) @i y) U (z®; f(y)), Ve,y € Handi € {1,2,...,n}.
If ®; is associative then 0; is WASS.

DEFINITIONS: Let (G,-) be a groupoid and f; : G — G, i € I, be a set of
maps on G. Take the map f,: G — P(G) such that fu(z) = {fi(z) | i € I} and
we call it the union of the fi(x). We call union theta-operation (0), on G if we
consider the map fu(x). A special case is to take the union of f with the identity,
ie. f=fU(id), so f(z)={z, f(x)}, Vo € G, which is called b-theta-operation.
We denote by (J) the b-theta-operation, so

Remark that this hyperoperation is a b-operation. If f : G — P(G) then the
b-theta-operation is defined by using the map f(z) = {z} U f(z), Vx € G.
Motivation for the definition of the theta-operation is the map derivative where
only the multiplication of functions can be used. Therefore, in these terms, for
two functions s(z), t(x), we have sot = {s't, st'}, where (") denotes the derivative.
Ezxample. Taking the application on the derivative, consider all polynomials of
first degree g;(z) = a;x + b;. We have

glagz = {alagx + albg, a1a9x + blag},

so this is a hyperoperation in the set of the first degree polynomials. Moreover
all polynomials x+c, where ¢ be a constant, are units.

Properties [40, 41]. If (G, -) is a semigroup then:
For every f, the hyperoperation (9) is WASS, and the b-theta-operation () is
WASS.



526 RUGGERO MARIA SANTILLI

If f is homomorphism and projection, then (9) is associative.
Reproductivity. For the reproductivity we must have

20G = Ugea{f(x) - g, - f(9)} = G and Gox = Ugec{f(9) -z, g- f(z)} =G.

Thus, if (-) is reproductive then (9) is also reproductive.

Commutativity. If (-) is commutative then (0) is commutative. If f is into the
centre of G, then (0) is commutative. If (-) is COW then, (09) is COW.

Unit elements. wu is a right unit element if z0u = {f(x) - u, x - f(u)} > z. So
f(u) = e, where e be a unit in (G, ). The elements of the kernel of f, are the
units of (G, 0).

Inverse elements. Let (G, -) be a monoid with unit e and u be a unit in (G, 9),
then f(u) = e. For given z, the element 2’ is an inverse with respect to w, if

vdr’ = {f(x)-a',x- f(a")} 5u and 20z = {f(2') -z, 2" f(2)} > u.

So, @' = (f(x))"'u and 2’ = u(f(x))~!, are the right and left inverses, respec-
tively. We have two-sided inverses iff f(z)u = uf(z).

PROPOSITION: Let (G,-) be a group then, for all f : G — G, the (G,0) is a
H,-group.

For several results one can see [20-22, 6, 23].

In order to see a connection of the merge with the 0-operation, consider the
map f such that f(h) = h and f(z) = 2 in the rest cases.

Ezample. P-hyperoperations. Let (G, -) be commutative semigroup and P C G.
Consider the multivalued map f such that f(z) = P -z, Vo € G. Then we have

x0y=z-y-P, Vr,y € G.

So the d-operation coincides with the well known class of P-hyperoperations [14].
One can define theta-operations on rings and other more complicate structures,
where more than one theta-operations can be defined.

DEFINITION: Let (R,+,-) be aring and f : R — R, g: R — R be two maps.
We define two hyperoperations (04) and (0-), called both theta-operations, on R
as follows

20y ={f(z) +y, x+ f(y)} and 20 -y ={g(x) -y, x-g(y)}, Vz,y € G.

A hyperstructure (R, +, -), where (+), () be hyperoperations which satisfy all
H,-ring axioms, except the weak distributivity, will be called H,-near-ring.

PROPOSITION: Let (R,+,-) ring and f : R — R, g : R — R maps. The
hyperstructure (R, 04, 0-), called theta, is a Hy-near-ring. Moreover (+) is com-
mautative.
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PROPOSITION: Let (R,+,-) ring and f : R — R, g : R — R maps, then
(R, 04+, 0-), is Hy-ring.

Properties. The theta hyperstructure (R, 4, 0-) takes new form in special
cases:
(a) If f(z) = g(x), Yz € R, i.e. the two maps coincide, then we have

z0 - (yO1z) N (20 - y)04 (20 - 2) = @.

If f is homomorphism and projection, then (R, d;4, 0-) is H,-ring.
(b) If f(z) =z, Vx € R, then (R, +,0-) becomes a multiplicative H,-ring:

20 (y+2) N (@0 - y) + (20 - 2) = {gla)y + 9()2} # 2.

5.A.7 The H,-vector spaces and H,-Lie algebras
DEFINITION [27, 34]: Let (F,+,-) be a Hy-field, (V,+) be a COW H,-group

and there exists an external hyperoperation
2 FxV —-PV):(a,z) — ax
such that, for all a,b in F and z,y in V we have
a(x+y)N(ax + ay) # D, (a+b)xN(ax+bx) # , (ab)zNa(bx) # 2,

then V is called a H,-vector space over F.

In the case of a H,-ring instead of H,-field then the H,-modulo is defined.

In the above cases the fundamental relation * is the smallest equivalence
relation such that the quotient V/e* is a vector space over the fundamental field
F/~*.

The general definition of a H,-Lie algebra over a field F is the following [27, 34]:

DEFINITION. Let (L, +) be a H,-vector space over the field (F,+,-), p: F —
F/~*, the canonical map and wrp = {z € F : p(z) = 0}, where 0 is the zero of
the fundamental field F'/~v*. Similarly, let wy, be the core of the canonical map
¢+ L — L/e* and denote by the same symbol 0 the zero of L/e*. Consider the
bracket (commutator) hyperoperation:

[]:LxL—="P(L): (z,y) = [z,9],
then L is a H,-Lie algebra over F' if the following axioms are satisfied:
(L1) The bracket hyperoperation is bilinear, i.e.
[)\lxl + )\21.27y] N (Al[xlvy] + AQ[‘%.Qay]) 7é QJ
[z, Ayr + Aoyl N (M [z, 1] + Aoz, 2]) # @
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for all =, x1,x2,y,y1,y2 € L and A1, Ag in F;

(L2) [z,z] Nwr, # @ for all z in L;

(L3) ([z, [y, 2]] + [y, [z, =]] + |2, [z, y]]) Nwr, # @ for all z,y in L.

We remark that this is a very general definition therefore one can use special
cases in order to face several problems in applied sciences. Moreover, from this
definition we can see how the weak properties can be defined as the above weak
linearity (L1), anti-commutativity (L2) and the Jacobi identity (L3).

We present here a direction to obtain results from special cases by applying
0-operations on more complicated structures, in the sense that they have more
than one operation.

THEOREM: Consider the group of integers (Z,+) and let n # 0 be a natural
number. Take the map f such that f(0) =n and f(x) =z, Vo € Z —{0}. Then
(2,0)/8" = (Zn, +).

THEOREM: Consider the ring of integers (Z,+,-) and let n # 0. Consider
the map f such that f(0) =n and f(x) =z, Vo € Z—{0}. Then (Z,04+,0-) is a
H,-near-ring, with (Z,0+,0-)/~v* = Z,.

PROPOSITION: Let (V,+,-) be an algebra over the field (F,+,-) and f : V —
V' be a map. Consider the 0-operation defined only on the multiplication of the
vectors (-), then (V,+,0) is a Hy-algebra over F', where the related properties are
weak. If, moreover f is linear then we have more strong properties.

DEFINITION: Let L be a Lie algebra, defined on an algebra (V,+,-) over the
field (F,+,-) where the Lie bracket [z,y] = xy—yz. Consider any map f : L — L,
then the 0-operation is defined as follows

z0y = {f(x)y = fy)z, f(@)y —yf(x), 2f(y) — fW)z, 2f(y) —yf(2)}-

PROPOSITION: Let (V,+,-) be an algebra over the field (F,+,-) and f: V —
V' be a linear map. Consider the 0-operation defined only on the multiplication of
the vectors (-), then (V,+,0) is a Hy-algebra over F, with respect to Lie bracket,
where the weak anti-commutatinity and the inclusion linearity is valid.

We can see that the weak linearity is valid, more precisely, the inclusion lin-
earity is valid: [A\z1 + Aexa,y] C Ai]x1,y] + A2]z2,y].

Remark that one can face the weak Jacobi identity in analogous to the above
propositions as well. One can use well known maps as constants or linear.

5.A.8 Adding elements

In [33] the ‘enlarged’ hyperstructures were examined in the sense that an extra
element, outside the underlying set, appears in one result. In both directions,
enlargement or reduction, most useful in representation theory, are those H,-
structures with the same fundamental structure: Suppose we have a structure and
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one element, outside of the structure, then we can attach this element in order
to have a hyperstructure which becomes h/v-structure. Moreover we have the
opposite problem: How one can remove at least one element of an H,-structure
or a classical structure?

The Attach Construction [33, 36, 37]. Let (H,-) be an Hy-semigroup and
v ¢ H. We extend the (-) into the set H = H U {v} as follows: z-v =v -2 =
v,Ve e Hyand v-v = H.

The (H,-) is a h/v-group where (H,-)/3* = Z3 and v is a single element.

We call the hyperstructure (H, ) the attach h/v-group of (H, ).

Remarks. The core of (H,-) is the set H. All scalar elements of (H, ) are also
scalars in (H,-) and any unit element of (H,-) is also a unit of (H,-). Finally, if
(H,-)is COW (resp. commutative) then (H, ) is also COW (resp. commutative).

The motivation of the attach construction is the first kind very thin H,-groups
[23].

In the representation theory of H,-groups by H,-matrices one needs H,-rings
or H,-fields which have non-degenerate fundamental structures in addition with
only few of hypersums and hyperproducts to have cardinals greater than one.

THEOREM: Let (G,-) be semigroup and v ¢ G be an element appearing in a
product ab, where a,b € G, thus the result becomes a hyperproduct a®b = {ab,v}.
Then the minimal hyperoperation (®) extended in G' = G U {v} such that (®)
contains (+) in the restriction on G, and such that (G',®) is a minimal Hy -
semigroup which has fundamental structure isomorphic to (G,-), is defined as
follows:

a®b={ab,v}, @y =y, ¥(z,y) € G> — {(a,b)},

v®uv =abab, x ®v =xab and v xr = abz, Yz € G.

Therefore (G', ®) is a very thin Hy-semigroup.
If (G,-) is commutative then the (G, ®) becomes strongly commutative.

5.A.9 Representations

Representations (we abbreviate here by rep) of H,-groups, can be considered
either by generalized permutations [25] or by H,-matrices [26]. Here we present
the matrix reps.

H,-matriz (or h/v-matriz) is called a matrix with entries elements of a H,-
ring or H,-field (or h/v-ring or h/v-field ). The hyperproduct of H,-matrices
A = (a;5) and B = (b;;), of type m x n and n x r, respectively, is a set of m x r
H,-matrices, defined in a usual manner:

A B =(ay) - (bij) ={C=(cij) | cij €DD_ aip - by,

where (@) denotes the n-ary circle hyperoperation on the hyperaddition [27]: that
is the sum of products of elements of the H,-ring is considered to be the union of
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the sets obtained with all possible parentheses. However, in the case of 2 x 2 H,-
matrices the 2-ary circle hyperoperation which coincides with the hyperaddition
in the H,-ring. Notice that the hyperproduct of H,-matrices does not nessesarily
satisfy WASS.

The rep problem by H,-matrices is the following:

H,-matriz is called a matrix if has entries from a H,-ring.

DEFINITION: Let (H,-) be H,-group, (R,+,-) be Hy-ring and Mp =
{(ai;) | ai; € R}, then any

T:H—>Mpg:h— T(h) with T(hlhg) N T(hl)T(hz) # @, Yhi,hy € H,

is called H,-matriz rep. If T(hihe) C T(h1)T(he), then T is an inclusion rep, if
T(hi1h) = T(h1)T(h2), then T is a good rep.

In reps of H,-groups by H,-matrices, there are two difficulties: To find a H,-
ring and an appropriate set of H,-matrices.

The problem of reps is very complicated mainly because the cardinality of the
product of two H,-matrices is normally very big. The problem can be simplified
in several special cases such as the following;:

(a) The H,-matrices are over H,-rings with 0 and 1 and if these are scalars.
Thus the e-hyperstructures are interesting in the rep theory.

(b) The H,-matrices are over very thin H,-rings.

(c) The case of 2 x 2 H,-matrices, since the 2-ary circle hyperoperation co-
incides with the hyperaddition in H,-rings. This is the lowest dimensional, non
degenerate, rep.

(d) The case of H,-rings in which the strong associativity in hyperaddition is
valid.

(e) The case of H,-rings which contains singles, then these act as absorbings.

The main theorem of reps on h/v-structures, which has a completely analogous
on H,-structures [27], is the following:

THEOREM: A necessary condition in order to have an inclusion rep T of an
h/v-group (H,-) by nxn h/v-matrices over the h/v-ring (R,+, ) is the following:

For all classes 3*(x), x € H there must exist elements a;; € H, 1,5 € {1,...,n}
such that

T(*(a)) C{A= (a;j) ‘ a;j € v (ai;), 1,5 € {1,...,n}}.

Therefore, every inclusion rep T': H — Mg : a — T(a) = (aij) induces a
homomorphic rep T of the group H/3* over the ring R/v* by setting T*(8*(a)) =
[v*(ai;)], VB*(a) € H/*, where the element v*(a;;) € R/~v* is the ij entry of the
matrix T*(5%(a)). Then T* is called fundamental induced rep of T.

In analogous way other concepts of the rep theory can be transferred for h/v
structures. Thus, let T be a rep of an h/v-group H by h/v-matrices over the
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h/v-ring R. Denote try(T(x)) = v*(T(xs)) the fundamental trace, then the
mapping

Xr:H— R/y 12— Xp(x) =try(T(x)) = trT™(z)
is called fundamental character. There are several types of traces.

For an attached h/v-field (H,,+,-), in ) a;j - by; the terms a;, - by; could be
0,v,z or H (where x € H). But any sum is only 0 or v or H. Thus, for finite
h/v-fields (H,,+, ), if the set H appears in ¢ entries then the cardinality of the
hyperproducts is (cardH)’.

The main attached h/v-fields give to rep theory some hyperfields for reps where
the cardinality of any two elements is small. The point is that 0 is absorbing.

5.A.10 The e-constructions

The Lie-Santilli isotopies born in 1970’s to solve Hadronic Mechanics prob-
lems. Santilli [6], proposed a ‘lifting’of the n-dimensional trivial unit matrix of a
normal theory into a nowhere singular, symmetric, real-valued, positive-defined,
n-dimensional new matrix. The original theory is reconstructed such as to admit
the new matrix as left and right unit. The isofields needed in this theory corre-
spond into the hyperstructures called e-hyperfields. The H,-fields or h/v-fields
can give e-hyperfields which can be used in the isotopy theory in applications as
in physics or biology.

DEFINITION: Let (H,,+,-) be the attached h/v-field of the H,-semigroup
(H,-). If (H,-) has a left and right scalar unit e then (H,,+,-) is e-hyperfield,
the attached h/v-field of (H,-).

Applications. (1) The above constructions, especially the ones in enlarging H,-
rings, or H,-fields can be used as entries of H,-matrices to represent H,-groups
for which the cardinality of all hypreproducts equals to 2%, s € N. This is so,
since in the hyperproducts of H,-matrices we can have one or two elements.

(2) The monomial matrix reps are based, on the ring Zs. The enlargments of
the above ring are the following hyperrings
i) 0p0=10l=10v=vdl=vdv=0,

0pl1=00v=100=vad0={1,v},

00=0®1=1®0=0Ruv=v®0=0,

I1l=1Rv=vR1l=0v0v=1,

(i) 0p0=00v=101=ve0={0,v}, v&v=0,
0e1=100=10v=v®l=1, 1®1=1,

and in the rest cases 0.

(iii) 0@0=1®1l=vdv={0,v}, 0BVv=vd0=0,



532 RUGGERO MARIA SANTILLI

0el=190=10v=vdl=1, 1@1=1,

and in the rest cases 0.

CONSTRUCTION I: Let (H,-) be H,-group, then for every (&) such that
x®yD{x,y}, Ve,y € H, the (H,®,-) is an H,-ring. These H,-rings are called
associated to (H,-).

In the theory of reps of the hypergroups, in the sense of Marty, there are three
types of associated hyperrings (H,®,-) to the hypergroup (H,-). The hyperop-
eration (@) is defined respectively, for all z,y in H, as follows:

typea: x @y = {zr,y}, typeb: z®y=3"(z) UB"(y), typec: v @y =H.

In the above types the strong associativity and strong or inclusion distributivity,
is valid.

CONSTRUCTION II: Let (H,+) be H,-group. Then for every hyperoperation
(®) such that z ® y D {x,y}, Yo,y € H, the hyperstructure (H,+,®) is an H,-
ring.

CONSTRUCTION III: Let (H,+) be H,-group with a scalar zero 0. Then for
every (®) such that x @y D {z,y}, Vo,y € H—{0}, 2@0=0®x =0, Vx € H,
the (H,+,®) is an H,-ring.

In this construction 0 is absorbing scalar but not single.

CONSTRUCTION 1V: Let (H,-) be H,-group. Take a 0 ¢ H and set H' =
HU{0}. We define the hyperoperation (+) as follows: 0+0 = 0, 04z = H = 240,
x+y=0,Vx,y € H, and we extend (-) in H' by putting 0-0=0,0-z =z-0=0,
Vz,y € H. Then (H',+,") is a reproductive H,-field with H'/y* & Z5 where 0 is
absorbing and single.
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Appendix 5.B
Eric Trell’s Hyperbiological Structures TO BE
COMPLETED AND EDITED.

A new conception of biological systems providing a true advance over rather
primitive prior conceptions, has been recently proposed by Erik Trell (see Ref.
(164) and contributions quoted therein). It is based on representative blocks
which appear in our space to be next to each other, thus forming a cell or an or-
ganism, while having in reality hypercorrelations, thus having the structure of hy-
pernumbers, hypermathematics and hyperrelativity, with consequential descrip-
tive capacities immensely beyond those of pre-existing, generally single-valued
and reversible biological models. Regrettably, we cannot review Trell’s new hy-
perbiological model to avoid an excessive length, and refer interested readers to
the original literature (164).
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Postscript

In the history of science some basic advances in physics have been preceded by
basic advances in mathematics, such as Newtons invention of calculus and general
relativity relying on Riemannian geometry. In the case of quantum mechanics
the scientific revolution presupposed the earlier invention of complex numbers.
With new numbers and more powerful mathematics to its disposition, physics
could be lifted to explain broader and more complex domains of physical reality.

The recent and ongoing revolution of physics, initiated by Prof. Ruggero Maria
Santilli, lifting the discipline from quantum mechanics to hadronic mechanics, is
consistent with this pattern, but in a more far-reaching and radical way than
earlier liftings of physics made possible from extensions of mathematics.

Santilli realized at an early stage that basic advances in physics required in-
vention of new classes of numbers and more adequate and powerful mathemat-
ics stemming from this. His efforts to develop such expansions of mathematics
started already in 1967, and this enterprise went on for four decades. Its basic
novelties, architecture and fruits are presented in the present volume. During this
period a few dozen professional mathematicians world wide have made more or
less significant contributions to fill in the new Santilli fields of mathematics, but
the honor of discovering these vast new continents and work out their basic topol-
ogy is Santillis and his alone. These new fields initiated by Santilli made possible
realization of so-called Lie-admissible physics. For this achievement Santilli in
1990 received the honor from Estonia Academy of Science of being appointed as
mathematician number seven after world war two considered a landmark in the
history of algebra.

With regard to Sophus Lie it may be of some interest to note that the Nor-
wegian examiners of his groundbreaking doctoral thesis in 1871 were not able to
grasp his work, due to its high degree of novelty and unfamiliarity. However,
due to Lie already being highly esteemed among influential contemporary math-
ematicians at the continent, it was not an option to dismiss his thesis. As in
other disciplines, highly acknowledged after Thomas Kuhns publication of The
structure of scientific revolutions in 1962, sufficiently novel mathematics implies
some paradigmatic challenge. Therefore, it is not strange that some mathemati-
cians and physicists have experienced difficulties taking the paradigmatic leap
necessary to grasp the basics of hadronic mathematics or to acknowledge its far-
reaching implications. Such a challenge is more demanding when scientific novelty
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implies a reconfiguration of conventional basic notions in the discipline. This is,
as Kuhn noted, typically easier for younger and more emergent scientific minds.

Until Santilli the number 1 was silently taken for granted as the primary unit
of mathematics. However, as noted by mathematical physicist Peter Rowlands at
University of Liverpool, the number 1 is already loaded with assumptions, that
can be worked out from a lifted and broader mathematical framework. A partial
and rough analogy might be linguistics where it is obvious that a universal science
of language must be worked out from a level of abstraction that is higher than
having to assume the word for mother to be the first word.

Santilli detrivialized the choice of the unit, and invented isomathematics where
the crux was the lifting of the conventional multiplicative unit (i.e. conservation of
its topological properties) to a matrix isounit with additional arbitrary functional
dependence on other needed variables. Then the conventional unit could be
described as a projection and deformation from the isounit by the link provided
by the so-called isotopic element inverse of the isounit. This represented the
creation of a new branch of mathematics sophisticated and flexible enough to treat
systems entailing sub-systems with different units, i.e. more complex systems of
nature.

Isomathematics proved necessary for the lifting of quantum mechanics to had-
ronic mechanics. With this new mathematics it was possible to describe extended
particles and abandon the point particle simplification of quantum mechanics.
This proved highly successful in explaining the strong force by leaving behind
the non-linear complexities involved in quantum mechanics struggle to describe
the relation between the three baryon quarks in the proton. Isomathematics also
provided the mathematical means to explain the neutron as a bound state of
a proton and an electron as suggested by Rutherford. By means of isomathe-
matics Santilli was also able to discover the fifth force of nature (in cooperation
with Professor Animalu), the contact force inducing total overlap between the
wave packets of the two touching electrons constituting the isoelectron. This
was the key to understanding hadronic superconductivity which also can take
place in fluids and gases, i.e. at really high temperatures. These advances from
hadronic mechanics led to a corresponding lifting of quantum chemistry to hadro-
nic chemistry and the discovery of the new chemical species of magnecules with
non-valence bounds. Powerful industrial-ecological technology exploiting these
theoretical insights was invented by Santilli himself from 1998 on.

Thus, the development of hadronic mathematics by Santilli was not only mo-
tivated by making advances in mathematics per se, but also of its potential to
facilitate basic advances in physics and beyond. These advances have been shown
to be highly successful already. Without the preceding advances in mathematics,
the new hadronic technology would not have been around. The mere existence
of this technology is sufficient to demonstrate the significance of hadronic math-
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ematics. It is interesting to note that the directing of creative mathematics into
this path was initiated by a mathematical physicist, not by a pure mathematician.
In general this may indicate the particular potential for mathematical advances
by relating the mathematics to unsolved basic problems in other disciplines, as
well as to real life challenges.

In the history of mathematics it is not so easy to find parallels to the achieve-
ments made by Santilli, due to hadronic mathematics representing a radical and
general lifting, relegating the previous mathematics to a subclass of isomathe-
matics, in some analogy to taking the step from the Earth to the solar system.
However, the universe also includes other solar systems as well as galaxies.

In addition to isonumbers Santilli invented the new and broader class of genon-
umbers with the possibility of asymmetric genounits for forward vs. backward
genofields, and designed to describe and explain irreversibility, characteristic for
more complex systems of nature. Quantum mechanical approaches to biological
systems never achieved appreciable success, mainly due to being restricted by
a basic symmetry and hence reversibility in connected mathematical axioms. It
represented an outstanding achievement of theoretical biology when Chris Illert in
the mid-1990s was able to find the universal algorithm for growth of sea shells by
applying hadronic geometry. Such an achievement was argued not to be possible
for more restricted hyperdimensional geometries as for example the Riemannian.
This specialist study in conchology was the first striking illustration of the po-
tency as well as necessity of iso- and genomathematics to explain irreversible
systems in biology.

Following the lifting from isomathematics to genomathematics, Santilli also
established one further lifting, by inventing the new and broader class of hyper-
structural numbers or Santilli hypernumbers. Such hypernumbers are multival-
ued and suitable to describe and explain even more complex systems of nature
than possible with genonumbers. Due to its irreversible multivalued structure
hypermathematics seems highly promising for specialist advances in fields such
as genetics, memetics and communication theory. By the lifting to hypermathe-
matics hadronic mathematics as a whole may be interpreted as a remarkable step
forward in the history of mathematics, in the sense of providing the essential and
sufficiently advanced and adequate tools for mathematics to expand into disci-
plines such as anthropology, psychology and sociology. In this way it is possible
to imagine some significant bridging between the two cultures of science: the hard
and the soft disciplines, and thus amplifying a tendency already represented to
some extent by complexity science.

The conventional view of natural scientists has been to regard mathematics as
a convenient bag of tools to be applied for their specific purposes. Considering
the architecture of hadronic mathematics, this appears more as only half of the
truth or one side of the coin. Besides representing powerful new tools to study
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nature, hadronic mathematics also manifests with a more intimate and inherent
connection to physics (and other disciplines), as well as to Nature itself. In this
regard hadronic geometry may be of special interest as an illustration:

Isogeometry provided the new notions of a supra-Euclidean isospace as well
as its anti-isomorphic isodual space, and the mathematics to describe projec-
tions and deformations of geometrical relations from isospace and its isodual into
Euclidean space. However, these appear as more than mere mathematical con-
structs. Illert showed that the universal growth pattern of sea shells could be
found only by looking for it as a trajectory in a hidden isospace, a trajectory
which is projected into Euclidean space and thereby manifest as the deformed
growth patterns humans observe by their senses. Further, the growth pattern of
a certain class of sea shells (with bifurcations) could only be understood from the
addition and recognition of four new, non-trivial time categories (predicted to be
discovered by hadronic mechanics) which manifest as information jumps back and
forth in Euclidean space. With regard to sea shell growth, one of this non-trivial
time flows could only be explained as a projection from isodual spacetime. This
result was consistent with the physics of hadronic mechanics, analyzing masses
at both operator and classical level from considering matter and anti-matter (as
well as positive and negative energy) to exist on an equal footing in our universe
as a whole and hence with total mass (as well as energy and time) cancelling
out as zero for the total universe. To establish a basic physical comprehension of
Euclidean space constituted as a balanced combination of matter and antimatter,
it was required to develop new mathematics with isonumbers and isodual num-
bers basically mirroring each other. Later, corresponding anti-isomorphies were
achieved for genonumbers and hypernumbers with their respective isoduals.

Thus, there is a striking and intimate correspondence between the isodual
architecture of hadronic mathematics and the isodual architecture of hadronic
mechanics (as well as of hadronic chemistry and hadronic biology). Considering
this, one might claim that the Santilli inventions of new number fields in math-
ematics represent more than mere inventions or constructs, namely discoveries
and reconstructions of an ontological architecture being for real also outside the
formal landscapes created by the imagination of mathematics and logic. This
opens new horizons for treating profound issues in cosmology and ontology.

One might say that with the rise of hadronic mathematics the line between
mathematics and other disciplines has turned more blurred or dotted. In some
respect this represents a revisit to the Pythagorean and Platonic foundations
of mathematics in the birth of western civilization. Hadronic mathematics has
provided much new food for thought and further explorations for philosophers of
science and mathematics.

If our civilization is to survive despite its current problems, it seems reasonable
to expect Santilli to be honored in future history books not only as a giant in
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the general history of science, but also in the specific history of mathematics.
Hadronic mathematics provided the necessary fuel for rising scientific revolutions
in other hadronic sciences. This is mathematics that matters for the future of
our world, and hopefully Santillis extraordinary contributions to mathematics
will catch fire among talented and ambitious young mathematicians for further
advances to be made. The present mellowed volume ought to serve as an excellent
appetizer in this regard.

Professor Stein E. Johansen

PhD philosophy, DSc economics Institute for Basic Research, USA,
Division of Physics

Norwegian University of Science and Technology

Department of Social Anthropology

October 8, 2007
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