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CHAPTER 6

THE MAXWELL-HEAVISIDE EQUATIONS

The gravitational field is set upl!?}>! by a given distribution of - whether or not
moving - masses and it is defined by a vector field with two components: the “g-

field” characterized by the vector Eg and the “g-induction” characterized by the

vector §g. These components each have a value defined at every point of space
and time and are thus, relative to an inertial reference frame O, regarded as
functions of the space and time coordinates.

Let us focus on the contribution to a gravitational field of one of its sources: a
certain mass m. We focus, more specifically, on the contribution of m to the flow
of g-information at an arbitrary point P in the field. That flow is made up of
informatons that pass near P in a specific direction with velocity ¢ and it is
characterized by N, the rate per unit area at which these informatons cross an
elementary surface perpendicular to the direction in which they move. The cloud
of these informatons in the vicinity of P is characterized by its density »n: 7 is the
number of informatons per unit volume. N and » are linked by the relationship:

The definition in chapter 2 of an informaton implies that every informaton that
passes near P is characterized by two attributes that refer to its emitter: its g-index
§y and its B-index 5. s¢, the magnitude of the g-index is the elementary quantity
of g-information. It is a fundamental physical constant. Sg refers to the state of
motion of the source of the informaton and is defined by the relationship

., €X3§
F=—oH" @

The informatons emitted by m that pass near P with velocity ¢ contribute there
to the density of the g-information flow with an amount (N.5,). That vectoral
quantity is the rate per unit area at which g-information at P crosses an elementary
surface perpendicular to the direction in which it moves. It is the contribution of
mto the g-field at P. We put

E,=N.3,
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And the same informatons contribute there to the density of the g-information
cloud with an amount (n. §ﬁ). That vectoral quantity determines at P the amount
of B-information per volume unit. It is the contribution of m to the g-induction at
P. We put:

B, =n Sg

Fig 8

In fig 8, we consider the flow of informatons that - at the moment 7 - pass near P
with velocity ¢. These informatons are completely defined by their attributes

and g, respectively their g-index and their B-index. A8 is their characteristic
angle: the angle between the lines carrying $; and C that is characteristic for the
movement of the emitter. '

The infinitesimal change of the attributes of an informaton at P between the
moments ¢ and (¢ + dt), is governed by the kinematics of that informaton. An
informaton that at the moment ¢ passes at P is at the moment (¢ + d?) at Q, with
PQ = c.dt. This implies that the spatial variation of the attributes of an informaton
between P and Q at the moment ¢ equals the change in time of those attributes at
P between the moment (¢ - df) and the moment ¢. -

On the macroscopic level, this implies that there must be a relationship between
the change in time of the gravitational field (Eg, §g) at a point P and the spatial
variation of that field in the vicinity of P.

The intensity of the spatial variation of the compcnents of the gravitational field
at P is characterized by divEg, ding, rotﬁg and by rotﬁg and the rate at which

o 9k, 8B,
these components change in time by T and by ot
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From the above it can be concluded that it makes sense to investigate the
relationships between the quantities that characterize the spatial variations of

(E"g ,§g) and the rate’s at which they change in time.
6.1 divfg - THE FIRST EQUATION IN FREE SPACE

In chapter 3 it is shown that the physical fact that the rate at which g-information
flows inward a closed empty space must be equal to the rate at which it flows
outward, can be expressed as:
> =
{f; E;.dS=0

divE'g =0

So (theorem of Ostrogradsky)™:

In vacuum, the law of conservation of g-information can be expressed as follows:

(1) At a matter free point P of a gravitational field, the spatial variation of Eg
obeys the law: divﬁg =0

This is the first equation of Maxwell-Heaviside in vacuum.

Corollary: At a matter free point P of a gravitational field
d
a[N.cos(AO)] =0

Because!*!
divE, = div(N.3,) = grad(N).3; + N.div(3,) 3)
it follows from the first equation that:
grad(N).3; + N.div(s;) =0
1. First we calculate: grad(N).$,.

Referring to fig 8:



-284 -

N _"N > N _NP -
grad_(N) = —Q—PQ—'E.EC = '—Q{':]t—.ec

Because an informaton that at the moment ¢ passes at P is at the moment
(t + do) at Q, (with PQ = c.d¥).

Ng—Np N(t—dt)=N(®) _ N

dt dt ot

So:
I(N) = 16Na_ 10N ¢
grad(N) ==2.5r 8 =70

And.

2. Next, we calculate: N.div(sy)

—
o ¢h 5;.dS
div(sy) = ;V

For that purpose, we calculate the double integral over the closed surface S
formed by the infinitesimal surfaces dS that are at P and Q perpendicular
to the flow of informatons (perpendicular to ¢) and by the tube that connects
the edges of these surfaces (and that is parallel to ¢). dV =c.dt.dS is the

infinitesimal volume enclosed by S:

§g.3§ _ §g.dS.cos(46p) — s4.dS. cos(46,)
v dS.c.dt

div(3,) =

Because an informaton that at the moment ¢ passes at P is at the moment
(t + dr) at Q, (with PQ = c.dp):

cos(A0p) — cos(46,)  cos[48(t)] — cos [46(t — dt)] _ O{cos(46)]
dt B de Tt
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. 1 0{cos(46)}
div(3;) = —Sg g
And:

N o{cos(48
N.div(§9)=?.sg.—{&;(t—)—} )

Substitution of (4) and (5) in (3) gives:

1 oN N 9{cos(46)}
ot -

: —.S,. 0
cos(A48) + p Sg- 3t

. Sg
Or-:.
. d

é-t'[N.COS(AH)] =0 (6)

6.2 divl_fg — THE SECOND EQUATION IN FREE SPACE

Fig 8

We refer again to fig 8 and notice that:

Sg = —Sg-€x and sgp =

From mathematics™ we know:
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divB, = div(n.55) = grad(n).3s + n.div(ss) (7

1. First we calculate: grad(n).5g

grad(n).3z = 0 because grad(n) is perpendicular to Sg. Indeed n changes
B B

only in the direction of the flow of informatons, so grad(n) has the same
orientation as C:

2. Next we calculate: n. div(8p)

66 35.dS

diV(S"B) = v

We calculate the double integral over the closed surface S formed by the
infinitesimal surfaces dS = dz.dy that are at P and at Q perpendicular to the
X-axis and by the tube that connects the edges of these surfaces.

Because $j is oriented along the Z-axis the flux of Sg through the planes dz.dy

and dx.dz is zero, while the fluxes through the planes dx.dy are equal and
opposite. So we can conclude that:

§$35-dS _

div(8g) = T

0

Both terms of the expression (7) of div§g are zero, sO divﬁg = 0, what implies
(theorem of Ostrogradsky) that for every closed surface § in a gravitational field:

- - .
5,3 -o
S
We conclude:

(2) At a matter free point P of a gravitational field, the spatial variation of §g
obeys the law: divl—:?g =0
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This is the second equation of Maxwell-Heaviside in vacuum. It is the expression
of the fact that the B-index of an informaton is always perpendicular to both its g-
index §; and to its velocity .

63 rotfg - THE THIRD EQUATION IN FREE SPACE

The density of the flow of informatons that - at the moment ¢ - passes near P with
velocity ¢ (fig 8) is defined as:

E;=N.sg = —N.sg4.€,
We know that!4!

rotE, = {grad(N) x 3} + N.rot(3;) (8)

1. First we calculate: {grad(N) x 54}

This expression describes the component of rotl:fg caused by the spatial
variation of N in the vicinity of P when 48 remains constant.

N has the same value at all points of the infinitesimal surface that, at P, is
perpendicular to the flow of informatons. So grad(N) is parallel to ¢ and its
"magnitude is the increase of the magnitude of N per unit length. Thus,

with PQ = c.dt, grad(N)is determined by:

N _Np E NQ_NP
grad(N) = QPQ T cadt

ooy

And: .
NQ"'NPE -o_NQ_NP..

grad(N) ng =_Ej£’_ zXSg —-W.Sﬁ

The density of the flow of informatons at Q at the moment ¢ is equal to the
density of that flow at P at the moment (¢ - df), so:

NQ—NP_N(t—dt)—N(t)__a_N
dt dt Tt
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And taking into account that :

N
—_— n
c
we obtain:
. an
grad(N) X 55 = ~ 5% €))

2. Next we calculate: {N.r0t(S;) }

This expression describes the component of rotE, 4 caused by the spatial
variation of A6 - the orientation of the g-index - in the vicinity of P - when N
remains constant. (48jp is the characteristic angle of the informatons that
“pass near P and (40)g is the characteristic angle of the informatons that

at the same moment pass near Q. (fig 9)

For the calculation of

§3,.dl
- . aq’
rot(sy) = 5
with dS the encircled area, we calculate § S . dl along the closed path

PQqpP that encircles dS: dS= PQ.Pp = c.dt.Pp. (PQ and gp are parallel
to the flow of the informatons, Qg and pP are perpendicular to it).
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sg-sin[(46)¢).Qq — 5g-Sin[(48)p)].pP
c.dt.Pp €z

N.rot(3;) = N.

The characteristic angle of the informatons at Q at the moment ¢ is equal to
the characteristic angle of the informatons at P at the moment (¢ - dr), so:

-

sg.sin[46(t — dt)]. Qq — s, sin[ 40(t)].pP 2

N.rot(3,;) = N. c.di.Pp

The rate at which sin(A8) in P changes at the moment ¢, is:

d{sin(46)} _ sin{[46](t)} — sin{[46](¢ — dt)}

ot dt
And taking into account that
N
n=-—
c
we obtain:
d{sin( A8 a
N.rot(§g) =—n. Sg.-[—a-(T-i}.é'z = — n.a;{sg.sin(ﬂe).é'z}
or
as
N.rot(3;) = —n.aﬁ- (10)

Combining the results (9) and (10), we obtain:

rotE, = grad(N) x 3, + N.rot(3;)
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We conclude:

(3) At a matter free point P of a gravitational field, the spatial variation of Eg
and the rate at which §g is changing are connected by the relation:
0B,

rotk, = ——2
, g at

This is the third equation of Maxwell-Heaviside in vacuum. It is the expression
of the fact that any change of the product n. Sg at a point of a gravitational field is
related to a spatial variation of the product N. 5 in the vicinity of that point.

The relation

68

rotE =it
ot

implies (theorem of Stokes!¥):

R

The orientation of the surface vector dS is linked to the orientation of the path on

L by the “rule of the corkscrew”. ®p = [[ B, .dS is called the “B-information-
flux through S”.

So, in a gravitational field, the rate at which the surface integral of §g over a

surface S changes is equal and opposite to the line integral of Eg over the
boundary L of that surface.

-~ aE . ,
6.4 rotB, and —a:l - THE FOURTH EQUATION IN FREE SPACE

We consider again Eg and B, the contributions of the informatons that - at the
moment ¢ — pass with velocity ¢ near P, to the g-field and to the g-induction at
that point. (fig 10).

s -+ -
E; =N.5; =—N.s;.é,

and
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-

¢ X8, , R
= n.s,.sin(46).¢,

B -
Bg—n. B-—TL

A. Let us calculate rotl_fg.

We know that'!
rotﬁg = {grad(n) x 33} + n.rot(3s) (12)

1. First we calculate:{grad(n) X 3z}

This expression describes the component of rot§g caused by the spatial
variation of r in the vicinity of P when 46 remains constant.

n has the same value at all points of the infinitesimal surface that, at P, is
perpendicular to the flow of informatons. So grad(n) is parallel to ¢ and its
magnitude is the increase of the magnitude of n per unit length.

With PQ =cdr, grad(n)is determined by:

The density of the cloud of informatons at Q at the moment ¢ is equal to the
density of that flow at P at the moment (¢ - dt), so:

ng—np n(t—dt)—n()  dn
dt dt T
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And

n -
=&

t

o=
Q| Q
ﬁ|=
o) oy
=

QD

grad(n) = —

The vector {grad(n) x 53} is perpendicular to het plane determined by ¢
and Sg. So, it lies in the XY-plane and is there perpendicular to ¢ forming
an angle 40 with the axis OY. Taking into account the definition of vectoral
product we obtain:

1 dn N
grad(n) X 3z = —E.a—t-.sg.sin(AG). (é. % &)
With
éc X éz = _é)J_C

. 1 dn , R
grad(n) X S = Z.—a—g.sg.sm(de).elc

a3 N .
And, taking into account thatn = owe obtain:

1 ON
grad(n) x §; = EE.—é}—.sg.sin(AG).élC (13)

2. Next we calculate {n.rot(sg) }

This expression is the component of rot§g caused by the spatial variation of
S in the vicinity of P when n remains constant. For the calculation of

¢

—3
.dl
ds

o

rot(sg) = €.

with dS the encircled area, we calculate ¢ 35 . dl along the closed path
PpqQP that encircles dS: dS= PQ.Pp = c.dt.Pp (fig11). (PQ and gp are
parallel to the flow of the informatons, Qg and pP are perpendicular to it).
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Z
Fig 11

- -3 3 .
$35.dl s S sin[(46)p)]. Pp — s4.sin [(46),].qQ 2
ds e c.dt. Pp =

rot(Sg) =

The characteristic angle of the informatons at Q at the moment ¢ is equal to
the characteristic angle of the informatons at P at the moment (¢ — dt), so:

R $3p.dl Sq-{sin[ A0(t)]. Pp — s4.sin[40(t ~ dt)]}.qQ
rot(S) = ds e = c.dt.Pp ‘e

The rate at which sin(46) at P changes at the moment ¢, is:

d(sin(40)} _ sin{(46)[t]} — sin{(4) [t — dt]}

at dt
So:
X 1 9[sin(26)]
rot(Sz) = S TRRLIT.
And with

al=



-294 -

we finally obtain:

. 1 0d[sin(40)] |
n.rot(sg) = Sg'EE'N'“LT'eLC (14)

Substituting the results (13) and (14) in (12) gives:

. 1 ON d[sin(40)]. |
rotB, = -C—z.sg.{—.sm(AG) + N.——T]. €.

at
1 0 : :
=%% 3 [N.sin(40)].e, . (15)
dE,

B. Now we calculate —=
at

We know that!);
LR
And that: .
So:
0E, ON a(46) .
St = " ar 5ol + N.sg.—ét——.ey

Taking into account:
éy = cos(A40).é; —sin(46).€,. and €, = sin(46).é. + cos(46).8,,

we obtain:
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aE [ AB) + N.s 989) o 40)|.¢e
T .S5g.c0s(A46) 93¢ .sin( )].ec
ON _ 2(40) .
+ [—a—t-.sg.sm(AG) + N.sg. 3 .cos(AB)].elC
or:
6E
5 = Sg- {-——[N cos(AG)] €. —[N sin(40)).é, .}

Taking into account (6), we find:

0By _ 9. o iov 16
= _sg.a—t-[ .sin(46)].€,, (16)

C. From (15) an (16), we conclude:
= 1 aE

B, = _.___
rot n

(4) At a matter free point P of a gravitational field, the spatial variation of By

and the rate at which Eg is changing are connected by the relation:

L 13E,

rotB, = ——
9 2 ot

This is the fourth equation of Maxwell-Heav1s1de in vacuum. It is the expression
of the fact that any change of the product N. 8, at a point of a gravitational field

is related to a spatial variation of the product n. 8, in the vicinity of that point.

This relation implies (theorem of Stokes): In a gravitational field, the rate at
which the surface integral of E"g over a surface S changes is proportional to the

line integral of §g over the boundary L of that surface:

B,.dl= 8 =2 ff B=2%%
fg ﬂ ctot 2 ot
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—
The orientation of the surface vector dS is linked to the orientation of the path on

- =
L by the “rule of the corkscrew”. ®g = [fEg.dS is called the “g-information-
flux through 5.

6.5 THE MAXWELL-HEAVISIDE EQUATIONS

The volume-element at a point P inside a mass continuum is in any case a source
of g-information and, if the mass is moving, also a source of B-information.
According to §3.3, the instantaneous value of p; - the mass density at P -

contributes to the instantaneous value of divﬁ"g at that point with an amount — %g;
0

and according to §4.7 the instantaneous value of fG - the mass flow density -
contributes to the instantaneous value of rotB;-, at P with an amount —vy. ;.

It is evident that at a point of a gravitational field - linked to an inertial reference
frame O - one must take into account the contributions of the local values of
pc(x,y,z;t) and of T ¢(x,v,2; t) . This results in the generalization and expansion
of the laws at a mass free point. By superposition we obtain:

(1) At a point P of a gravitational field, the spatial variation of Eg obeys the

law:
divﬁg = _ag)
Mo

In integral form:

o — 1
s Mo G

(2) Atapoint P of a gravitational field, the spatidl variation of Eg obeys the law:
divﬁg =0

In integral form:
- 2
& = # B,.dS =0
S
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(3) At a point P of a gravitational field, the spatial variation of Eg and the rate
at which §g is changing are connected by the relation:

In integral form:

L - 0B, —» 0 ([5z —»_ 0P
ng. l=—JL—E".dS=—'aJ’J;Bg. S=——éT

(4) At a point P of a gravitational field, the spatial variation of §g and the rate
at which Eg is changing are connected by the relation:
. 10E, .

rotB, = ———— V.
0 g Cz ot 0]G

In integral form:
O 4 1 agg —_— O 4 1 a - > 5 =
fBg.dl —EE—H;E“.dS—VO.-U;]g.dS —ﬁ-aILEg'qs—vo-.U;]Glds

These are the laws of Heaviside-Maxwell or the laws of GEM.
6.6 CONCLUSION

The mathematical deductions of the laws of GEM confirm that these equations
indicate that there is no causal link between E g and ﬁg. Therefore, we must
conclude that a gravitational field is a dual entity always having a “field-” and
an “induction-" component simultaneously created by their common sources:
time-variable masses and mass flows®. '

The GEM equations are analogue to Maxwell’s equations in EM and it is proved"”’
that these are consistent with special relativity. Thus, the Maxwell-Heaviside
equations are invariant under a Lorentz transformation and GEM is consistent
with special relativity. In this context it should be noted that the fact that the rate
at which a material body emits informatons is independent of its velocity and
completely defined by its rest mass myo, implies that in equation (1) the value of

* On the understanding that the induction-component equals zero if the source of the field is
time independent.
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dm . . . . .
P = d—VO depends on the state of motion — relative to the considered inertial

reference system - of the mass element dmy. Indeed in the case of a moving mass
element, the Lorentz contraction must be taken into account in the determination

of dV. Because a mass flow is made up of moving mass elements its density fG
also depends on the inertial reference frame in which it is considered. This implies

that in equation (4) the expression of fG also depends on the inertial reference
frame.

In appendix B it is proven that the GEM equations are mathematically consistent.
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