CHAPTER 5

THE GRAVITATIONAL FIELD OF AN ACCELERATED OBJECT

An accelerated object is the source of a gravitational field that, at a sufficient great distance r from that object, is characterized by a transverse g-field and g-induction that are both inversely proportional to r.

5.1 THE g-INDEX OF AN INFORMATON EMITTED BY AN ACCELERATED PARTICLE

In fig 6 we consider a point mass m that, during a finite time interval, moves with constant acceleration $\vec{a} = a$. \vec{e}_z relative to the inertial reference frame OXYZ. At the moment t = 0, m starts from rest at the origin O, and at t = t it passes at the point P_I . Its velocity is there defined by $\vec{v} = v$. $\vec{e}_z = a$. t. \vec{e}_z , and its position by

$$z = \frac{1}{2}$$
. a . $t^2 = \frac{1}{2}$. v . t .

We suppose that the speed v remains much smaller than the speed of light: $\frac{v}{c} \ll 1$.

The informatons that during the infinitesimal time interval (t, t+dt) pass near the fixed point P (whose position relative to the moving mass m is defined by the time dependent position vector \vec{r}) have been emitted at the moment $t_0 = t - \Delta t$, when m – with velocity $\vec{v}_0 = v_0$. $\vec{e}_z = v(t - \Delta t)$. \vec{e}_z – passed at P_0 (the position of P relative to P_0 is defined by the time dependent position vector $\vec{r}_0 = \vec{r}(t - \Delta t)$). Δt , the time interval during which m moves from P_0 to P_1 is the time that the informatons need to move – with the speed of light – from P_0 to P. We can conclude that $\Delta t = \frac{r_0}{c}$, and that

$$v_0 = v(t - \Delta t) = v(t - \frac{r_0}{c}) = v - a.\frac{r_0}{c}$$

Between the moments $t = t_0$ and $t = t_0 + \Delta t$, m moves from P_0 to P_1 . That movement can be considered as the resultant (the superposition) of

- 1. a uniform movement with constant speed $v_0 = v(t \Delta t)$ and
- 2. a uniformly accelerated movement with constant acceleration a.

1.

In fig. 7,a, we consider the case of the point mass m moving with constant speed v_0 along the Z-axis. At the moment $t_0 = t - \Delta t$ m passes at P_0 and at the moment t at P_1' : $P_0P_1' = v_0.\Delta t$. The informations that, during the infinitesimal time interval (t, t + dt), pass near the point P - whose position relative to the uniformly moving mass m at the moment t is defined by the position vector \vec{r}' -

have been emitted at the moment t_0 when m passed at P_0 . Their velocity vector \vec{c} is on the line P_0P , their g-index \vec{s}_g points to P'_1 :

$$P_0 P_1' = v_0 . \Delta t = v_0 \frac{r_0}{c}$$

2. In fig 7,b we consider the case of the point mass m starting at rest at P_0 and moving with constant acceleration a along the Z-axis.

At the moment $t_0 = t - \Delta t$ it is at P_0 and at the moment t at P_1'' :

$$P_0 P_1^{"} = \frac{1}{2} \cdot a \cdot (\Delta t)^2$$

The informatons that during the infinitesimal time interval (t, t + dt) pass near the point P (whose position relative to the uniformly accelerated mass m is at t defined by the position vector \vec{r} ") have been emitted at t_0 when m was at P_0 . Their velocity vector \vec{c} points away from P_0 , their g-index \vec{s}_g to P_2 ".

Fig. 7,c

To determine the position of $P_2^{"}$, we consider the trajectory of the informations that at t_0 are emitted in the direction of P relative to the accelerated reference frame OX'Y'Z' that is anchored to m (fig 7,c; $\alpha = \frac{\pi}{2} - \theta_0$).

Relative to OX'Y'Z' these informations are accelerated with an amount $-\vec{a}$: they follow a parabolic trajectory described by the equation:

$$z' = tg\alpha. y' - \frac{1}{2} \cdot \frac{a}{c^2 \cdot \cos^2 \alpha} \cdot y'^2$$

At the moment $t = t_0 + \Delta t$, when they pass at P, the tangent line to that trajectory cuts the Z'-axis at the point M, that is defined by:

$$z'_{M} = \frac{1}{2} \cdot a \cdot (\Delta t)^{2} = \frac{1}{2} \cdot a \cdot \frac{r_{0}^{2}}{c^{2}}$$

That means that the g-indices of the informations that at the moment t pass at P, point to a point M on the Z-axis that has a lead of

$$P_1''P_2'' = P_0M = \frac{1}{2} \cdot a \cdot (\Delta t)^2 = \frac{1}{2} \cdot a \cdot \frac{r_0^2}{c^2}$$

on $P_1^{"}$, the actual position of the mass m. And since $P_0P_1^{"}=P_0P_1^{"}+P_1^{"}P_2^{"}$, we conclude that:

$$P_0 P_2^{"} = a \cdot \frac{r_0^2}{c^2}$$

In the inertial reference frame OXYZ (fig 6), \vec{s}_g points to the point P_2 on the Z-axis determined by the superposition of the effect of the velocity (1) and the effect of the acceleration (2):

$$P_0 P_2 = P_0 P_1' + P_0 P_2'' = \frac{v_0}{c} \cdot r_0 + \frac{a}{c^2} \cdot r_0^2$$

The carrier line of the g-index \vec{s}_g of an information that - relative to the inertial frame OXYZ - at the moment t passes near P forms a "characteristic angle" $\Delta\theta$ with the carrier line of its velocity vector \vec{c} , that can be deduced by application of the sine-rule in triangle P_0P_2P (fig 6):

$$\frac{\sin(\Delta\theta)}{P_0 P_2} = \frac{\sin(\theta_0 + \Delta\theta)}{r_0}$$

We conclude:

$$sin(\Delta\theta) = \frac{v_0}{c}.sin(\theta_0 + \Delta\theta) + \frac{a}{c^2}.r_0.sin(\theta_0 + \Delta\theta)$$

From the fact that P_0P_1 - the distance travelled by m during the time interval Δt can be neglected relative to P_0P - the distance travelled by light during the same period - it follows that $\theta_0 \approx \theta_0 + \Delta \theta \approx \theta$ and that $r_0 \approx r$. So:

$$sin(\Delta\theta) \approx \frac{v_0}{c}. sin \theta + \frac{a}{c^2}. r. sin \theta$$

We can conclude that the g-index \vec{s}_g of an information that at the moment t passes near P, has a longitudinal component, this is a component in the direction of \vec{c} (its velocity vector) and a transversal component, this is a component perpendicular to that direction. It is evident that:

$$\begin{split} \vec{s}_g &= -s_g.\cos(\Delta\theta).\vec{e}_c - s_g.\sin(\Delta\theta).\vec{e}_{\perp c} \\ &\approx -s_g.\vec{e}_c - s_g.\left(\frac{v_0}{c}.\sin\theta + \frac{a}{c^2}.r.\sin\theta\right).\vec{e}_{\perp c} \end{split}$$

5.2 THE GRAVITATIONAL FIELD OF AN ACCELERATED PARTICLE

The informations that, at the moment t, are passing near the fixed point P - defined by the time dependent position vector \vec{r} - are emitted when m was at P_0 (fig 6). Their velocity \vec{c} is on the same carrier line as $\vec{r}_0 = \overrightarrow{P_0P}$. Their g-index is on the carrier line P_2P . According to §5.1, the characteristic angle $\Delta\theta$ - this is the angle between the carrier lines of \vec{s}_q and \vec{c} - has two components:

1. a component $\Delta\theta'$ related to the velocity of m at the moment $(t-\frac{r_0}{c})$ when the considered informations were emitted. In the framework of our assumptions, this component is determined by:

$$sin(\Delta\theta') = \frac{v(t - \frac{r}{c})}{c}.sin \theta$$

2. a component $\Delta\theta$ " related to the acceleration of m at the moment when they were emitted. This component is, in the framework of our assumptions, determined by:

$$sin(\Delta\theta") = \frac{a(t - \frac{r}{c}).r}{c^2}.sin\theta$$

The macroscopic effect of the emission of g-information by the accelerated mass m is a gravitational field (\vec{E}_g, \vec{B}_g) . We introduce the reference system $(\vec{e}_c, \vec{e}_{\perp c}, \vec{e}_{\varphi})$ (fig 6).

1. \vec{E}_g , the g-field at P, is defined as the density of the flow of g-information at that point. That density is the rate at which g-information crosses per unit area the elementary surface perpendicular to the direction of movement of the informatons. So \vec{E}_g is the product of N, the density of the flow of informatons at P, with \vec{s}_g their g-index:

$$\vec{E}_g = N.\,\vec{s}_g$$

According to the postulate of the emission of informations, the magnitude of \vec{s}_g is the elementary g-information quantity:

$$s_g = \frac{1}{K \cdot \eta_0} = 6.18 \cdot 10^{-60} m^3 s^{-1}$$

and the density of the flow of informatons at P is:

$$N = \frac{\dot{N}}{4\pi . r_0^2} \approx \frac{\dot{N}}{4 . \pi . r^2} = \frac{K . m}{4\pi . r^2}$$

Taking into account that $\frac{1}{\eta_0 \cdot c^2} = \nu_0$, we obtain:

$$\vec{E}_{g} = -\frac{m}{4\pi . \eta_{0} . r^{2}} . \vec{e}_{c}$$

$$-\{\frac{m}{4\pi . \eta_{0} . c . r^{2}} . v(t - \frac{r}{c}) . \sin \theta + \frac{v_{0} . m}{4\pi . r} . a(t - \frac{r}{c}) . \sin \theta\} . \vec{e}_{\perp c}$$

2. \vec{B}_g , the g-induction at P, is defined as the density of the cloud of β information at that point. That density is the product of n, the density of the cloud of informations at P (number per unit volume) with \vec{s}_{β} , their β -index:

$$\vec{B}_a = n \cdot \vec{s}_\beta$$

The β -index of an information refers to the information it carries about the state of motion of its emitter; it is defined as:

$$\vec{s}_{\beta} = \frac{\vec{c} \times \vec{s}_g}{c}$$

And the density of the cloud of informatons at P is related to N, the density of the flow of informatons at that point by: $n = \frac{N}{c}$.

So:

$$\vec{B}_g = n.\,\vec{s}_\beta = \frac{N}{c}.\frac{\vec{c} \times \vec{s}_g}{c} = \frac{\vec{c} \times (N.\,\vec{s}_g)}{c^2} = \frac{\vec{c} \times \vec{E}_g}{c^2}$$

And with the expression of that we have derived above under l we finally obtain:

$$\vec{B}_g = -\{\frac{\nu_0 \cdot m}{4 \cdot \pi, r^2} \cdot v(t - \frac{r}{c}) \cdot \sin\theta + \frac{\nu_0 \cdot m}{4 \cdot \pi \cdot c \cdot r} \cdot a(t - \frac{r}{c}) \cdot \sin\theta \} \cdot \vec{e}_{\varphi}$$

From this it can be concluded that at a point P, sufficient far from the accelerated particle m, the components of its gravitational field are both transverse to the velocity of the informations and they are proportional to $\frac{1}{r}$.