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CHAPTER 4

THE GRAVITATIONAL FIELD OF AN OBJECT
MOVING WITH CONSTANT VELOCITY

To characterize the gravitational field of a moving object we need a vector field
with two components: the g-field Eg and the g-induction §g that respectively
define the density of the flow of g-information and the density of the cloud of B-
information at every point of space and time. We show that the gravitational field
of an object moving with constant velocity is governed by the Maxwell-Heaviside
equations and that these equations in no way lead to the conclusion that there are
causal relations between the changes in time and the spatial variations of E g and

Eg. The gravitational field is a dual entity having a field and an induction
¢omponent.

4.1 INTRODUCTION - REST MASS AND RELATIVISTIC MASS

Additional to the postulate of the emission of informatons, we posit that N - the
rate at which a particle emits informatons in the space linked to an inertial
reference system O — is independent of the motion of that particle. Thus N is
completely defined by the rest mass of the particle:

N=E=K.mo

That implies that, if the time ¢ is read on a standard clock anchored to O, dN - the
number of informatons that during the interval dt is emitted by a (whether or not
moving) point mass - is:

In fig 3, we consider a particle that is moving with constant velocity ¥ = v.é,
along the Z-axis of an inertial reference frame O . At the moment ¢ = 0, it passes
through the origin O and at ¢ = ¢ through the point P;.

An observer in O can also read the time on a clock that is at rest in the inertial
reference frame O’ (fig 3) whose origin is anchored to the moving point mass and
that at the moment ¢ = 0 coincides with 0. Such a clock is moving relative to O
with the velocity ¥ = v.é,, and ¢’ is the time read on that clock (while ¢ is the
time read on the standard clock at rest in O).
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Fig 3

If the clock at rest in O indicates that the emission of dN informatons takes dr
seconds, the moving clock - the clock coupled to O’ - indicates a time interval of
dt’ seconds for that phenomenon. According to the Lorentz transformation
equations!!), the relationship between df and dr’ is:

dt' v
dt=—=  with B==

1— B2
So:
dN = K.my.dt = K 2 K dt’ N
=K mydt=Kmy———==K.——.at = ——.
. \ 0 0 /1_32 /1._52 /1_[,!2

And the emission rate determined with the moving clock is:

N’—dN— Y = K =K.m
N J1= B2
Where
my
m=
1-—- 2

is the “relativistic mass” of the moving particle.
We conclude:

For an observer in O, the rate at which a moving object emits informatons is
determined by its rest mass when the time is read on a clock at rest in 0, and by
the relativistic mass when the time is read on a moving clock that is anchored to
the point mass.
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42 THE g-FIELD OF A PARTICLE MOVING WITH CONSTANT
VELOCITY

In fig 4,a, we consider a point mass with rest mass o that is moving with constant
velocity ¥ = v.&, along the Z-axis of an inertial reference frame O. At the
moment ¢ = 0, it passes through the origin O and at the moment ¢ = ¢ through the
point P;. It is evident that:

OP 1=Z Py =v.t

P is an arbitrary fixed point in 0. In O, its position relative to the moving point
—_—

mass is determined by the time dependent position vector 7 = Py P.
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Fig 4

The origin O’ of the inertial reference frame O’ is anchored to the moving point
mass and we assume that # = ¢’ = 0 when that particle passes through O. Relative
to 0’ (fig 4,b), the position of the point P is determined by the time dependent

—-—
position vector 7' = O'P

Because it is anchored in the inertial reference frame 0, the emission of
informatons by the point mass is, relative to that reference frame, governed by the
rules of the postulate of the emission of informatons for a particle at rest. In that
context the emission rate is - according to §4.1 - determined by the relativistic
mass of the particle. So, relative to O’ we can - in extension of §3.1 - conclude
that the density of the flow of g-information at P (the g-field) is:
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B = ———t 7
= 4mn,yr'3.1 — B2

With (x’, y°, z°) the Cartesian coordinates of P in O’X’Y’Z’ , the components of
E';’, in O’, are:

El. = L x'
9! 4mnor'3.4/1 — B2
my
' ’
Egy: 4mner'3 Y
mg ,

E,,, =— .z
& 4mnor'3./1 — B?

They determine at P the densities of the flows of g-information respectively
through a surface element dy’.dz’ perpendicular to the X’-axis, through a surface
element dz’ .dx’ perpendicular to the Y’-axis and through a surface element dx’.dy’
perpendicular to the Z’-axis. The rates at which g-information is flowing through
these different surface elements (the g-fluxes) at P are:

!

my. X )

El,.dy.dz' = — .dy'.dz’

gEe s 4mnor'3.[1— B2

mg.y'

El,.dz'.dx' = - .dz'. dx’'

> 4mner'3.4/1 — B2

’ ’ ’ mo.z’ r ’
Egp.dx'.dy = — .dx'.dy

41nr'3. /1 — B2

And the quantities of g-information flowing during the time interval dt’ through
these different surface elements are:

!

my. X
E,y.dy.dz'.dt' = — dy'.dz'.dt’'
o 4mnor'3.4/1 — B2 Y
’ ’ ! ’ mo.y' ! ] !
Egy.dz'.dx.dt’ = — .dz'.dx'.dt

47[7}0?"3. \f 1 = 32
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my. 2’

E.,.dx'.dy.dt' =—
= y 4’?‘[??07'.'3.‘\" 1 - 52

In the inertial reference system O these quantities of g-information are, during the
time interval dt, flowing through the surface elements dy.dz, dz.dx and dx.dy at
P.

Jdx'.dy'. dt’

The Cartesian coordinates of P in the frames O and O’ are related to each
other by!!’:

¥=xo oy =T

- The line elements by:  dx’ =dx dy’=dy dz' = fzﬁ ;

e The time elements by: dt’ = dt./1— B>

e And further:

, 1= p?sin?6
J1-B?
Indeed in O:
i {32 2 z—

r= sz +y2+(z—2p)? SinB = x:y and  cos@ = 1

,/x12+y12

andin0” v =x?+y%2+z? and sinf'= —

Expressing r’ in function of x, y and z we finally obtain:

v = sz +y2 + (z—2py)? _ 72sin?0.(1— %) +1r2.cos?6

-5 Ji-p?

i-p

=7
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So relative to O, the quantities of g-information send by the moving particle in the
positive direction through the surface elements dy.dz, dz dx and dx.dy at P are:

1-— 2
__Mo z B . x.dy.dz.dt
4ot (1 — B2.sin? 0)2
1-— 2
e & 3-y-dz.dx.dt

o
4mnoT (4 _ g2 sin? 6)2

mp 1"ﬁ2
3

o -
Aot (1 —p2.sin*0)2

(z—zp,).dx.dy.dt

And relative to O, the tates at which g-information is flowing through these
different surface elements (the g-fluxes) at P are:

1- 2
s ; £ .x.dy.dz
4Antner3 . i
0" (1 — p2.sin?0)2
My 1-p?
3

_4m1 . _.y.dz.dx
0" (1 - B2.sin?6)2

my 1- BZ
_4m1 et ) 3 (z—zp).dx.dy
0" (1 - B2sin?6)2

By definition, the densities at P of the flows of g-information in the direction of
the X-, the Y- and the Z-axis are the components of the g-field caused by the
moving particle mg at P in 0. So:

_ my 1-p? X

gx — g 3
AT (1 — g2 sin? 0)2

_ my 1- ﬂz
4 4mnor” (1 — B2.sin? 9)%

Eqg

i LF -
gZ _—— . 3" zZ — ZP
4mnoT> (1 _ g2 sin? 6)2 '
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From which it follows that the g-field caused by the particle at the fixed point P
is:

My 1_B2 >

=1 mo 1 - Bz 2
. =2,
4mnor® 4 _ g2, sin? g2

E,=-— ;
? dmigr (1 — B2.sin? 6)%

-
T ==

We conclude:

A particle describing a uniform rectilinear movement relative to an inertial
reference frame O, creates in the space linked to that frame a time dependent

gravitational field. E,, the g-field at an arbitrary point P, points at any time
to the position of the mass at that moment® and its magnitude is:

E = Mo 1-p*
g~ 2° 3
4moT® (4 — p2.sin? 9)2

If the speed of the mass is much smaller than the speed of light, this expression
reduces to that valid in the case of a mass at rest. This non-relativistic result could
directly be obtained if one assumes that the displacement of the point mass during
the time interval that the informatons need to move from the emitter to P can be
neglected compared to the distance they travel during that period.

4.3 THE EMISSION OF INFORMATONS BY A PARTICLE MOVING
WITH CONSTANT VELOCITY

In fig 5 we consider a particle with rest mass m that is moving with constant
velocity ¥ along the Z-axis of an inertial reference frame 0. Its instantaneous
position (at the arbitrary moment 7) is P;. The position of P, an arbitrary fixed

- - . ., v - . .
point in space, is defined by the vector 7 = P; P. This position vector 7 - just like
the distance r and the angle @ - is time dependent because the position of P; is
constantly changing.

The informatons that - with the speed of light - at the moment 7 are passing near

P, are emitted when m, was at Py. Bridging the distance PoP = 1, took the time

R T
interval At = -f.

* The orientation of the field strength implies that the g-indices of the informatons that at a
certain moment pass near P, point to the position of the emitting mass at that moment and not
to their light delayed position.
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Fig 5

During their rush from Py to P, their emitter - the particle - moved from Py to P;:
PP, = v. At

1. C the velocity of the informatons, points in the direction of their
movement, thus along the radius PoP;

78 §g, their g-index, points to P;, the position of 1, at the moment ¢. This is
an implication of rule B.1 of the postulate of the emission of informatons,
confirmed by the conclusion of §4.2.

The lines carrying §; and ¢ form an angle 46. We call this angle - that is
characteristic for the speed of the point mass - the “characteristic angle” or the
“characteristic deviation”. The quantity sg = sg.sin(46), referring to the speed
of its emitter, is called the “characteristic g-information” or the “B -information”
of an informaton.

We conclude that an informaton emitted by a moving particle, transports
information referring to the velocity of that particle. This information is
represented by its “gravitational characteristic vector” or its “f -index” Sp that
is defined by:
¢ XS,

c

Sﬁ=

- The B-index is perpendicular to the plane formed by the path of the
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informaton and the straight line that carries the g-index, thus it is
perpendicular to the plane formed by the point P and the path of the emitter.

- Its orientation relative to that plane is defined by the “rule of the
corkscrew”.

- Its magnitude is: sg = 5. sin(46), the B -information of the informaton.

In the case of fig 5 the B-indices have the orientation of the positive X-axis.
Applying the sine-rule to the triangle PoP /P, we obtain:

sin(40) _sin8
v.At  c.At

From which it follows:

v :
Sgp = sg.—c-.smﬂ = 5g.B.s5in 6 = Sg-By

J

. . . . > (4 . -
B, is the component of the dimensionless velocity g = p perpendicular to Sg.

Taking into account the orientation of the different vectors, the B-index of an
informaton emitted by a point mass moving with constant velocity, can also be
expressed as:

- -
B x 3,

SB= p

44 THE GRAVITIONAL INDUCTION OF A PARTICLE MOVING
WITH CONSTANT VELOCITY

We consider again the situation of fig 5. All informatons in dV - the volume
element at P - carry both g-information and B-information. The f-information
refers to the velocity of the emitting mass and is represented by the B-indices Sg:

§ - =
B c
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If n is the density at P of the cloud of informatons (number of informatons per
unit volume) at the moment ¢, the amount of B-information in dV is determined
by the magnitude of the vector:

¢ %X 3

. 7 X 3,
n.sp.dV=n. p .dV =n.

av

And the density of the cloud of B-information (characteristic information per unit
volume) at P is determined by:

n.S5p =n. =n.
B c
We call this (time dependent) vectoral quantity - that will be represented by §g -
the “gravitational induction” or the “g-induction”* at P:

- Its magnitude B, determines the density of the B-information at P;

- Its orientation determines the orientation of the B-indices S"ﬁ of the
informatons passing near that point.

So, the g-induction caused by the moving mass my (fig 5) at P is:

N - the density of the flow of informatons at P (the rate per unit area at which the
informatons cross an elementary surface perpendicular to the direction of
movement) - and # - the density of the cloud of informatons at P (number of
informatons per unit volume) - are connected by the relation:

N
n=-—
c

with E, g = N. §g , We can express the gravitational induction at P as:

* This quantity is also called the “cogravitational field”, represented as K or the “gyrotation”,
represented as Q .
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. B .. DXE,
Bg =C—2X(N.Sg)= o
Taking the result of §4.2 into account, namely:
= mo 1 — Bz -

E,=— . !
g 3 3
4mtor (1 — B2.sin? 0)2

We find:

mO 1_ﬂ2 - -
g — §.(vxr)
0% T (1 — B?isin? 0)2

e
=

By

We define the constant vy = 9,34.10%7 mkg' as:

1
- c2.1mp

Vo

And finally, we obtain:

- _Vo.mo 1"'ﬂ2

= 5. (F X V)
4mr g _ g2, sin? g)2

§g at P is perpendicular to the plane formed by P and the path of the point mass;
its orientation is defined by the rule of the corkscrew; and its magnitude is:

Vo My 1-pB? }
= 3.v.sm9

2,
4mr® - _ g2 sin? )z

If the speed of the mass is much smaller than the speed of light, the expression for
the gravitational induction reduces itself to:

S Vo.M
9 Aqr3

(7 X D)
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This non-relativistic result could directly be obtained if one assumes that the
displacement of the point mass during the time interval that the informatons need
to move from the emitter to P can be neglected compared to the distance they
travel during that period. This means that for situations where v <c, in the

previous calculation the formula
5 m,

-

9% T amnert
can be used to express the g-field.

Soif v, §g at P is perpendicular to the plane formed by P and the path of
the point mass; its orientation is defined by .the rule of the corkscrew; and its
magnitude is:

_ Vg-My

= .v.sin@
9 4Apr?

45 THE GRAVITATIONAL FIELD OF A PARTICLE MOVING WITH
CONSTANT VELOCITY

A particle my, moving with constant velocity v=ve, along the Z-axis of an
inertial reference frame, creates and maintains an expanding cloud of informatons
that are carrying both g- and B-information. That cloud can be identified with a
time dependent continuum. That continuum is called the gravitational field® of
the point mass. It is characterized by two time dependent vectoral quantities: the
gravitational field (short: g-field) Eg and the gravitational induction* (short: g-

induction) §g.

1. With N the density of the flow of informatons at P (the rate per unit area
at which the informatons cross an elementary surface perpendicular to the
direction of movement), the g-field at that point is:

mo 1'—ﬁ2 F

E,=N.3 = - . .
O Amner® g pa ginz gz

The orientation of Eg learns that the direction of the flow of g-information at P is
not the same as the direction of the flow of informatons.

* Also called: “gravito-electromagnetic field * (GEM field)
* Also called: “gravito-magnetic field” (GM field)
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2. With n, the density of the cloud of informatons at P (number of
informatons per unit volume), the g-induction at that point is:

Vo.mg 1‘—32

5. (F X V)

B,=n3 = :
9 B 3
AT (1 — p2.sin2 0)2

One can verify (Appendix 1) that:

1. divE, =0 2. divB; =0
. 0B, . o 1 8E,
3. TOtEg = ——é"t_— 4, TOth = C—Z—é-g-

These relations are the laws of GEM (Maxwell-Heaviside) in the case of the
gravitational field of a particle describing a uniform rectilinear motion. It is
important to notice that (3) and (4) express how the respective changes in space
and time are linked to each other, and to note that (3) and (4) don’t express causal
relationships. The gravitational field is a dual entity having a field and an
induction component.

If v <<, the expressions for the g-field and the g-induction reduce to:

E.’ mO -
=— T

g 4mnor®

3 Vo my (‘F % 1_7,)
9 4qr3

46 THE GRAVITATIONAL FIELD OF A SET OF PARTICLES
MOVING WITH CONSTANT VELOCITIESs

We consider a set of particles my,...m,...m, that move with constant velocities
Dy eoes By, v, U Telative to an inertial reference frame 0. This set creates and
maintains a gravitational field that at each point of the space linked to O, is

characterised by the vector pair (E o §g).
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1. Each mass m; continuously emits g-information and contributes with an

amount Egi to the g-field at an arbitrary point P. Asin §3.2 we conclude that the
effective g-field E g at P is defined as:

By =) By

2. If it is moving, each mass m; emits also B-information, contributing to the
g- induction at P with an amount §gi. It is evident that the B—information in the
volume element dV at P at each moment ¢ is expressed by:

| Z(ﬁgi- av) = (Z B,).dv

j"I‘hus, the effective g-induction §g at Pis:

Eg = ZBgi

On the basis of the superposition principle we can conclude that the laws of GEM
mentioned in the previous section remain valid for the effective g-field and g-
induction in the case of the gravitational field of a set of particles describing
uniform rectilinear motions. -

4.7 THE GRAVITATIONAL FIELD OF A STATIONARY MASS FLOW

The term “stationary mass flow” refers to the movement of an homogeneous and
incompressible fluid that, in an invariable way, flows relative to an inertial
reference frame. The intensity of the flow at an arbitrary point P is characterized
by the flow density J;. The magnitude of this vectoral quantity at P equals the
rate per unit area at which the mass flows through a surface element that is
perpendicular to the flow at P. The orientation of fG corresponds to the direction
of that flow. If ¥ is the velocity of the mass element pg;.dV that at the moment ¢
flows through P, then:

-

Jo = pc-¥

So, the rate at which the flow transports — in the positive sense (defined by the
orientation of the surface vectors dS) - mass through an arbitrary surface 45, is:
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s =
o= [ Jo@8

AS

We call i the intensity of the mass flow through AS.

Since a stationary mass flow is the macroscopic manifestation of moving mass
elements pg.dV, it creates and maintains a gravitational field. And since the
velocity ¥ of the mass element at a certain point is time independent, the
gravitational field of a stationary mass flow will be time independent. It is evident
that the rules of §3.3 also apply for this time independent g-field:

Pe

1. divE; = — "
B . 0

2.7otE; = 0 what implies: E, = —grady,

One can prove?"3H4! that the rules for the time independent g-induction are:

1. divﬁg = 0 what implies the existence of a vector gravitational potential

function /-l'g for which §g = rotf-l’g
2. T0t§g = —Vo.jG

These are the laws of GEM in the case of the gravitational field of a stationary
mass flow.
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