
Chapter 3

LIE-ISOTOPIC BRANCH OF HADRONIC
MECHANICS AND ITS ISODUAL

3.1 INTRODUCTION
3.1.1 Conceptual Foundations

As recalled in Chapter 1, the systems generally considered in the 20-th
century are the conventional exterior dynamical systems, consisting of closed-
isolated and reversible systems of constituents approximated as being point-
like while moving in vacuum under sole action-at-a-distance potential interac-
tions, as typically represented by planetary and atomic systems.

More technically, we can say that exterior dynamical systems are character-
ized by the exact invariance of the Galilean symmetry for the nonrelativistic
case and Poincaré symmetry for relativistic treatments, with the consequential
verification of the well known ten total conservation laws.

In this chapter we study the more general interior dynamical systems of
extended particles and, separately, of extended antiparticles, consisting of sys-
tems that are also closed-isolated, thus verifying the same ten total conser-
vation laws of the exterior systems, yet admit additional internal force of
nonlocal-integral and nonpotential type due to actual contact and/or mutual
penetration of particles, as it is the case for the structure of planets at the
classical level (see Figure 3.1), and the structure of hadrons, nuclei, stars, and
other systems at the operator level (see Figure 3.2).

To avoid excessive complexity, the systems considered in this chapter will
be assumed to be reversible, that is, invariant under time reversal. The open-
irreversible extension of the systems will be studied in the next chapter.

The most important methodological differences between exterior and inte-
rior systems are the following:

1) Exterior systems are completely represented with the knowledge of only
one quantity, the Hamiltonian, while the representation of interior systems
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Figure 3.1. A view of Jupiter, a most representative interior dynamical system, where one
can see with a telescope the dramatic differences with exterior systems, such as internal
exchanges of linear and angular momentum always in such a way to verify total conservation
laws. As repeatedly stated in the literature on hadronic mechanics, the structure of Jupiter
has been assumed as fundamental for the construction of new structure models of hadrons,
nuclei and stars, and the development of their new clean energies and fuels.

requires the knowledge of the Hamiltonian for the potential forces, plus addi-
tional quantities for the representation of nonpotential forces, as done in the
true Lagrange and Hamilton equations, those with external terms,

d

dt
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∂vk

a
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L = Σa
1
2
× ma × vak × vk

a − V (t, r, v), (3.1.1c)

H = Σa
pak × pak

2 × ma
+ V (t, r, p), (3.1.1d)

V = ΣaU(t, r)ak × vk
a + Uo(t, r), (3.1.1e)

F (t, r, v) = F (t, r, p/m), (3.1.1f)

a = 1, 2, 3, . . . , N ; k = 1, 2, 3.

Consequently, by their very conception, interior systems are structurally
beyond the representational capability of classical and quantum Hamiltonian
mechanics, in favor of covering disciplines.

2) Exterior systems are of Keplerian type, while interior systems are not,
since they do not admit a Keplerian center (see, again, Figures 3.1 and 3.2).
Consequently, also by their very conception, interior systems cannot be char-
acterized by the Galilean and Poincaré symmetries in favor of covering sym-
metries.
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3) Exterior systems are local-differential, that is, they describe a finite set
of isolated points, thus being fully treatable with the mathematics of the 20-th
century, beginning with conventional local-differential topologies. By contrast,
interior systems are nonlocal-integral, that is, they admit internal interactions
over finite surfaces or volumes that cannot be consistently reduced to a finite
set of isolated points. Consequently, interior systems cannot be consistently
treated via the mathematics of classical and quantum Hamiltonian mechanics
in favor of a basically new mathematics.

4) The time evolution of the Hamiltonian treatment of exterior systems
characterizes a canonical transformation at the classical level, and a unitary
transformation at the operator level, that we shall write in the unified form

U × U † = U † × U = I, (3.1.2)

where × represents the usual (associative) multiplication.1 By contrast, the
time evolution of interior systems, being non-Hamiltonian, characterizes non-
canonical transformations at the classical level and nonunitary transformations
at the operator level, that we shall jointly write

U × U † �= I. (3.1.3)

In particular, the noncanonical-nonunitary character is necessary to exit from
the class of equivalence of classical and quantum Hamiltonian theories.

5) The invariance (rather than ”covariance”) of exterior systems under the
Galilean or Poincaré symmetry has the fundamental implication of preserving
the basic units, predicting the same numerical values under the same con-
ditions at different times, and admitting all conditions needed for consistent
applications of the theory to experimental measurements. By comparison,
the loss of the Galilean and Poincaré invariance, combined with the necessary
noncanonical-nonunitary structure of interior systems activate the theorems of
catastrophic mathematical and physical inconsistencies studied in Chapter 1
whenever treated with the mathematics of canonical-unitary theories.

In this chapter we report the rather long scientific journey that lead to a
mathematically and physically consistent, classical and operator treatment of
interior dynamical systems via the isotopic branch of hadronic mechanics for
matter, and the isodual isotopic branch for antimatter including the resolution
of all the above problems.

Besides a number of experimental verifications reviewed in this chapter, the
achievement of a consistent treatment of interior systems offers basically new
structure models of hadrons, nuclei, stars, Cooper pairs, molecules and other

1Since we shall use several types of multiplications, to avoid confusions, it is essential to identify the
assumed multiplication in any mathematical treatment.
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Figure 3.2. A schematic view of nuclei as they are in the physical reality, bound states of
extended particles without a Keplerian center, under which conditions quantum mechanics
cannot possibly be exact due to the breaking of the fundamental Galilean and Poincaré
symmetries in favor of covering theories. As we shall see in this chapter, even though these
breakings are small (because nucleons are in conditions of mutual penetration in nuclei of
about 10−3 parts of their volumes), said breakings permit the prediction and industrial
development of new clean energies and fuels that are prohibited by the exact validity of
quantum mechanics.

interior structures. In turn, these new models permit quantitative studies
of new clean energies and fuels already under industrial, let alone scientific
development.

Stated in a nutshell, a primary aim of this chapter is to show that the
assumption of a final character of quantum mechanics and special relativity
beyond the conditions of their original conception (isolated point particles in
vacuum) is the primary origin of the current alarming environmental problems.

The reader should be aware that, nowadays, the literature on hadronic me-
chanics is rather wast, having surpassed the mark of 15,000 pages of published
research. As such, to avoid a prohibitive length, the presentation in this chap-
ter is restricted to the an outline of the origination of each topic and of the
most important developments. Scholars interested in a comprehensive list of
literature are suggested to consult the quoted references as well as those of
Chapter 1.

Also to avoid a prohibitive length, the presentation of this chapter is re-
stricted to studies of direct relevance for hadronic mechanics, namely, research
fundamentally dependent on a generalization of the basic unit. The quotation
of related studies not fundamentally dependent on the generalization of the
basic unit cannot be reviewed for brevity.

3.1.2 Closed Non-Hamiltonian Systems
The first step in the study of hadronic mechanics is the dispelling of the

belief that nonpotential forces, being nonconservative, do not permit total
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conservation laws, namely, that the external terms in the analytic equations
(3.1.1) solely applies for open-nonconservative systems, such as an extended
object moving within a resistive medium considered as external.

This belief was disproved, apparently for the first time, by Santilli in mono-
graphs [1,2]. Ref. [1] presented a comprehensive treatment of the integrability
conditions for the existence of a potential or a Hamiltonian, Helmholtz’s con-
ditions of variational selfadjointness, according to which the total force is
divided into the following two components

F (t, r, p, . . . ) = FSA(t, r, p) + FNSA(t, r, p, . . . ) (3.1.4)

where the selfadjoint(SA) component FSA admits a potential and the non-
selfadjoint (NSA) component FNSA does not.

We should also recall for clarity that, for be Newtonian as currently un-
derstood, a force should solely depend on time t, coordinates r and velocity
v = dr/dt or momenta p = m × v, F = F (t, r, v). Consequently, forces de-
pending on derivatives of the coordinates of order bigger than the first, such
as forces depending on the acceleration F = F (t, r, v, a), a = dv/dt, are not
generally considered Newtonian forces.

Ref. [2] then presented the broadest possible realization of the conditions
of variational selfadjointness via analytic equations derivable from a varia-
tional principle, and included the first known identification of closed non-
Hamiltonian systems (Ref. [2], pages 233–236), namely, systems that violate
the integrability conditions for the existence of a Hamiltonian, yet verify all
ten total conservation laws of conventional Hamiltonian systems.

Let us begin by recalling the following well known property:

THEOREM 3.1.1: Necessary and sufficient conditions for a system of N
particles to be closed, that is, isolated from the rest of the universe, are that
the following ten conservation laws are verified along an actual path

dXi(t, r, p)
dt

=
∂Xi

∂bµ
× dbµ

dt
+

∂Xi

∂t
= 0, (3.1.5a)

X1 = Etot = H = T + V, (3.1.5b)

(X2, X3, X4) = Ptot = Σapa, (3.1.5c)

(X5, X6, X7) = Jtot = Σara ∧ pa, (3.1.5d)

(X8, X9, X10) = GTot = Σa(ma × ra − t × pa), (3.1.5e)

i = 1, 2, 3, . . . , 10; k = 1, 2, 3; a = 1, 2, 3, . . . , N.

It is also well known that Galilean or Poincaré invariant systems do verify
the above conservation laws since the Xi quantities are the generators of the
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indicated symmetries. However, in this case all acting forces are derivable
from a potential and the systems are Hamiltonian.

Assume now the most general possible dynamical systems, those according
to the true Lagrange’s and Hamilton equations (3.1.1) where the selfadjoint
forces are represented with the Lagrangian or the Hamiltonian and the non-
selfadjoint forces are external.

DEFINITION 3.1.1 [2]: Closed-isolated non-Hamiltonian systems of par-
ticles are systems of N ≥ 2 particles with potential and nonpotential forces
characterized by the following equations of motion

dbµ
a

dt
=

(
drk

a/dt
dpka/dt

)
=

(
pak/ma

FSA
ka + FNSA

ka

)
, (3.1.6)

verifying all conditions (3.1.5), where the term “non-Hamiltonian” denotes
the fact that the systems cannot be entirely represented with the Hamiltonian,
thus requiring additional quantities, such as the external terms.

The case n = 2 is exceptional, yet it admits solutions, and closed non-
Hamiltonian systems with N = 1 evidently cannot exist (because a single free
particle is always Hamiltonian).

Closed non-Hamiltonian systems can be classified into:
CLASS α: systems for which Eqs. (3.1.5) are first integrals;
CLASS β: systems for which Eqs. (3.1.5) are invariant relations;
CLASS γ: systems for which Eqs. (3.1.5) are subsidiary constraints.
The case of closed non-Hamiltonian systems of antiparticles are defined

accordingly.

The study of closed non-Hamiltonian systems of Classes β and γ is rather
complex. For the limited scope of this presentation it is sufficient to see that
interior systems of Class α exist.

THEOREM 3.1.2 [2]: Necessary and sufficient conditions for the existence
of a closed non-Hamiltonian systems of Class α are that the nonselfadjoint
forces verify the following conditions:∑

a

FNSA
a ≡ 0, (3.1.7a)

∑
a

pa ⊗ FNSA
a ≡ 0, (3.1.7b)

∑
a

ra ∧ FNSA
a ≡ 0. (3.1.7c)
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Proof. Consider first the case N > 2 and assume first for simplicity that
FSA

a = 0. Then, the first nine conservation laws are verified when

∂Xi

∂pka
× FNSA

ka ≡ 0 (3.1.8)

in which case the 10-th conservation law, Eq. (3.1.5e), is automatically veri-
fied, and this proves the necessity of conditions (3.1.7) for N > 2.

The sufficiency of the conditions is established by the fact that Eqs. (3.1.7)
consist of seven conditions on 3N unknown functions FNSA

ka . Therefore, a
solution always exists for N ≥ 3.

The case N = 2 is special inasmuch as motion occurs in a plane, in which
case Eqs. (3.1.7) reduce to five conditions on four functions FNSA

ka , and the
system appears to be overdetermined. Nevertheless, solutions always exist be-
cause the verification of the first four conditions (3.1.5) automatically implies
the verification of the last one, Eqs. (4.1.5e). As shown in Ref. [2], Example
6.3, pages 272–273, a first solution is given by the non-Newtonian force

FNSA
1 = −FNSA

2 = K × a = K × dv

dt
, (3.1.9)

where K is a constant. Another solution is given by

FNSA
1 = −FNSA

2 =

= M × dr

dt
× φ(M × ṙ + V ), M =

m1 × m2

m1 + m2
. (3.1.10)

Other solutions can be found by the interested reader. The addition of a
non-null selfadjoint force leaves the above proof unchanged. q.e.d.

The search for other solutions is recommended to readers interested in ac-
quiring a technical knowledge iof hadronic mechanics because such solutions
are indeed useful for applications. A general solution of Eqs. (3.1.7), as well
as of their operator counterpart and of their isodual images for antimatter will
be identified later on in this chapter after the identification of the applicable
mathematics.

It should be noted that the proof of Theorem 3.1.2 is not necessary because
the existence of closed non-Hamiltonian systems is established by visual ob-
servations (Figure 3.1). At any rate, the representation of Jupiter’s structure
via one single function, the Lagrangian or the Hamiltonian, necessarily implies
the belief in the perpetual motion within physical media, due to the necessary
condition that constituents move inside Jupiter with conserved energy, linear
momentum and angular momentum.

As recalled in Chapter 1, whenever exposed to departures from closed
Hamiltonian systems, a widespread posture is the claim that the non-Hamil-
tonian character of the systems is ”illusory” (sic) because, when the systems
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are reduced to their elementary constituents, all nonpotential forces ”disap-
pear” (sic) and conventional Hamiltonian disciplines are recovered in full.

The political-nonscientific character of the above posture is established by
the following property of easy proof by any graduate student in physics:

THEOREM 3.1.3 [3]: A classical non-Hamiltonian system cannot be con-
sistently reduced to a finite number of quantum mechanical point-like particles
and, vice-versa, a finite ensemble of quantum mechanical point-like particles
cannot consistently characterize a classical non-Hamiltonian system.

The above property establishes that, rather than being ”illusory,” nonpo-
tential effect originate at the deepest and most elementary level of nature. The
property also establishes the need for the identification of methods suitable for
the invariant treatment of classical and operator non-Hamiltonian systems in
such a way to constitute a covering of conventional Hamiltonian treatments.

This chapter is devoted to the mathematical theoretical and experimental
study of classical and operator interior system of particles and antiparticles,
their experimental verifications and their novel applications.

3.1.3 Need for New Mathematics
By following the main guidelines of hadronic mechanics, we adapt the math-

ematics to nature, rather than adapting nature to preferred mathematics. For
this purpose, we shall seek a mathematics capable of representing the following
main features of interior dynamical systems:

1) Points have no dimension and, consequently can only have action-a-a-
distance potential interactions. Therefore, the first need for the new math-
ematics is the representation of the actual, extended, generally nonspherical
shape of the wavepackets and/or of the charge distribution of the particles
considered, that we shall assume in this monograph for simplicity to have the
shape of spheroidal ellipsoids with diagonal form

Shapea = Diag.(n2
a1, n

2
a2, n

2
a3), a = 1, 2, 3, . . . , N, (3.1.11)

with more general non-diagonal expressions not considered for simplicity, where
n2

a1, n
2
a2, n

2
a3 represent the semiaxes of the spheroidal ellipsoids assumed as de-

viation from, or normalized with respect to the perfect spheridicity

n2
a1 = n2

a2 = n2
a3 = 1. (3.1.12)

The n’s are called characteristic quantities of the particles considered. It
should be stressed that, contrary to a rather popular belief, the n-quantities
are not parameters because they represent the actual shape as derived from
experimental measurements.
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To clarify this important point, by definition a “parameter” can assume any
value as derived form the fit of experimental data, while this is not the case
for the characteristic quantities here considered. As an example, the use for
the n’s of value of the order of 10−16 cm to represent a proton would have no
physical value because the proton charge distribution is a spheroidal ellipsoid
of the order of 10−13 cm.

2) Once particles are assumed as being extended, there is the consequential
need to represent their density. This task can be achieved via a fourth set of
quantities

Densitya = n2
a4, (3.1.13)

representing the deviation of the density of the particle considered from the
density of the vacuum here assumed to be one,

n2
V acuum,4 = 1. (3.1.14)

Again, n4 is not a free parameter because its numerical value is fixed by
experimental data. As an example for the case of a hadron of mass m and
radius r we have the density

n2
4 =

m × c2

4
3 × π × r3

, (3.1.15)

thus establishing that na4 is not a free parameter capable of assuming.
Predictably, most nonrelativistic studies can be conducted with the sole

use of the space components characterizing the shape. Relativistic treatments
require the additional use of the density as the forth component, resulting in
the general form

(Shape−Density)a = Diag.(n2
a1, n

2
a2, n

2
a3, n

2
a4), a = 1, 2, 3, . . . , N. (3.1.16)

3) Perfectly rigid bodies exist in academic abstractions, but not in the
physical reality. Therefore, the next need is for a meaningful representation of
the deformation of shape as well as variation of density that are possible under
interior conditions. This is achieved via the appropriate functional dependence
of the characteristic quantities on the energy Ea, linear momentum pa, pressure
P and other characteristics, and we shall write

nak = nak(E, p, P, . . . ), k = 1, 2, 3, 4. (3.1.17)

The reader is suggested to meditate a moment on the fact that Lagrangian
or Hamiltonian theories simply cannot represent the actual shape and den-
sity of particles. The impossibility of representing deformations of shapes and
variations of density are well known, since the pillar of contemporary relativ-
ities, the rotational symmetry, is notoriously incompatible with the theory of
elasticity.
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4) Once particles are represented as they are in the physical reality (ex-
tended, nonspherical and deformable), there is the emergence of the follow-
ing new class of interactions nonexistent for point-particles (for which reason
these interactions have been generally ignored throughout the 20-th century),
namely, interactions of:

I) contact type, that is, due to the actual physical contact of extended
particle; consequently, of

II) zero range type, since all contacts are dimensionless; consequently of
III) nonpotential type, that is, not representable with any possible action-

at-a-distance potential; consequently, of
IV) non-Hamiltonian type, that is, not representable with any Hamiltonian;

consequently, of
V) noncanonical type at the classical level and nonunitary type at the oper-

ator level; as well as of
VI) nonlinear type, that is, represented via nonlinear differential equations,

such as depending on power of the wavefunction greater than one; and, finally,
of

VII) nonlocal-integral type. Interactions among point-particles are local-
differential, that is, reducible to a finite set of isolated points, while contact
interactions among extended particles and/or their wavepackets are, by con-
ception, nonlocal-integral in the sense of being dependent on a finite surface
or volume that, as such, cannot be reduced to a finite set of isolated points
(see Figure 3.3).

5) Once the above new features of interior systems have been identified,
there is the need not only of their mathematical representation, but above all
of their invariant representation in order to avoid the theorem of catastrophic
inconsistencies of Chapter 1.

As an illustration, Coulomb interactions have reached their towering po-
sition in the physics of the 20-th century because the Coulomb potential is
invariant under the basic symmetries of physics, thus predicting the same
numerical values under the same conditions at different times with consequen-
tially consistent physical applications. The same occurs for other interactions
derivable from a potential )except gravitation represented with curvature as
shown in Section 1.4).

Along the same lines, any representation of the extended, nonspherical and
deformable character of particles, their densities and their novel nonlinear,
nonlocal and nonpotential interactions cannot possibly have physical value
unless it is also invariant, and not ”covariant,” again, because the latter would
activate the theorems of catastrophic inconsistencies of Chapter 1.

It should be indicated that an extensive search conducted by the author in
in 1978–1983 in the advanced libraries of Cambridge, Massachusetts, identified
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Figure 3.3. A schematic view of the fundamental interactions studied in this monograph,
those originating from deep wave-overlappings of the wavepackets of particles also for the
case with point-like charge as occurring in electron valence bonds, Cooper pairs in super-
conductivity, Pauli’s exclusion principle, and other basic structures. These interactions have
been ignored throughout the 20-th century, resulting in the problematic aspects or sheer
inconsistencies identified in Chapter 1. As we shall see in this chapter, the representation
of the new interactions here depicted with generalized units of type (3.1.19) permits the
achievement of the first known, exact and invariant representation of molecular data and
other data that have escaped an exact and invariant representation via quantum mechanics
for about one century.

numerous integral geometries and other nonlocal mathematics. However, none
of them verifies all the following conditions necessary for physical consistency:

CONDITION 1: The new nonlocal-integral mathematics must admit the
conventional local-differential mathematics as a particular case under a well
identified limit procedure, because new physical advances must be a cover-
ing of preceding results. This condition alone is not verified by any integral
mathematics the author could identify.

CONDITION 2: The new nonlocal-integral mathematics must permit the
clear separation of the contributions of the new nonlocal-integral interactions
from those of local-differential interactions. This second condition too was not
met by any of the integral mathematics the author could identify.

CONDITION 3: The new nonlocal-integral mathematics must permit the
invariant formulation of the new interactions. This latter condition was also
violated by all integral mathematics the author could identify, thus ruling
them out in a final form for consistent physical applications.

After clarifying that the mathematics needed for the correct treatment of
interior systems was absent, the author was left with no other choice than
that of constructing the needed mathematics. After extensive search, Santilli
[4,5] suggested as the only possible or otherwise known solution, the invari-
ant representation of nonlinear, nonlocal and nonpotential interactions via a
generalization of the trivial unit of conventional theories. The selection was
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based on the fact that, whether conventional or generalized, the unit is the
basic invariant of any theories. We reach in this way the following:

FUNDAMENTAL ASSUMPTION OF HADRONIC MECHANICS [4-10]:
The actual, extended, nonspherical and deformable shape of particles, their
variable densities and their nonlinear, nonlocal and nonpotential interactions
can be invariantly represented with a generalization of the basic spacetime unit
of conventional Hamiltonian theories

I = Diag.(1, 1, 1, 1), (3.1.18)

into nowhere singular, sufficiently smooth, most general possible integro-
differential forms, today called ”Santilli isounit”, of the type here expressed
for simplicity for the case of two particles:

Î = Î† = Î1−2 = Diag.(n2
11, n

2
12, n

2
13, n

2
14)×

×Diag.(n2
21, n

2
22, n

2
23, n

2
24)×

×eΓ(t,r,ψ,ψ†,... )×
∫

dr3×ψ†(r)×ψ(r) = 1/T̂ > 0, (3.1.19)

with trivial generalizations to multiparticle and nondiagonal forms, where the
n2

ak represents the semiaxes of the spheroidal shape of particle a, n2
a4 repre-

sents its density, the expression Γ(t, r, ψ, ψ, . . . ) represents the nonlinearity of
the interaction and

∫
dr3 × ψ†(r) × ψ(r) provides a simple representation of

its nonlocality. The corresponding features of antiparticles are represented by
Santilli’s isodual isounit

Îd = −Î† = −Î < 0, (3.1.20)

and mixed states of particles and antiparticles are represented by the tensorial
product of the corresponding units and their isoduals.

Explicit examples of classical (operator) systems with nonpotential forces
represented via generalized units will be given in Section 2.3 (Section 2.4).

As we shall see, the entire structure of hadronic mechanics follows uniquely
and unambiguously from the assumption of the above basic unit. As a matter
of fact, some the main features of hadronic mechanics can already be derived
from the above basic assumption.

First, the maps, called in the literature Santilli liftings

I → Î , Id → Îd; (3.1.21)

(where Id = −I is the isodual unit of Chapter 2 [8]) require two corresponding
generalizations of the totality of the mathematical and physical formulations
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of conventional classical and quantum Hamiltonian theories without any ex-
ception known to this author (to avoid catastrophic inconsistencies).

As we shall see in this chapter, even basic notions such as trigonometric
functions, Fourier transforms, differentials, etc. have to be lifted into two
form admitting the new quantity Î and Îd as the correct left and right units.

In view of the assumed Hermiticity and positive-definiteness of Î, the result-
ing new mathematics is called in the literature Santilli’s isotopic mathematics
or isomathematics for short, with the corresponding isodual isomathematics
for antimatter in interior conditions. The resulting new physical formulations
are known as Santilli isotopic mechanics or isomechanics for short for the case
of particles, with the isodual isomechanics for antiparticles.

Again in view of the fact that Î is Hermitean and positive-definite, at the
abstract, realization-free level there is no topological difference between I and
Î and, for this reason Î is called Santilli isotopic unit or isounit for short.

Consequently, the new mathematical and physical formulations are expected
to be new realizations of the same axioms of conventional Hamiltonian me-
chanics, and they should not be intended as characterizing ”new theories”
since they do not admit new abstract axioms. This illustrates the name of
isotopic mathematics from the Greek meaning of preserving the topology.2

Finally, Santilli isounit Î identifies in full the covering nature of isomechanics
over conventional mechanics, as well as the type of resulting covering. This
covering character is illustrated by the fact that at sufficiently large mutual
distances of particles the integral in the exponent of Eq. (3.1.19) is null

lim
r>>1Fm

∫
dr3 × ψ†(r) × ψ(r) = 0, (3.1.22)

in which case the actual shape of particles has no impact in the interactions
and the generalized unit recovers the conventional unit3

lim
r>>Fm

Î = I = Diag.(1, 1, 1, 1). (3.1.23)

under which limit hadronic mechanics recovers conventional quantum mechan-
ics identically and uniquely.

The above limits also identify the important feature according to which
hadronic mechanics coincides with quantum mechanics for all mutual distances
of particles sufficiently bigger than their wavepackets, while at mutual distances

2When Î is no longer Hermitean, we have the more general genotopic mathematics studied in Chapter
4.
3When the exponent of Eq. (3.1.19) is null, that is, when the mutual distances of particles are large,
the characteristic quantities are constant and, consequently, terms such as Diag.(n−2

11 , n−2
12 , n−2

13 , n−2
14 )

factor out of all equations, resulting in reduction (3.1.23).
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below that value hadronic mechanics provides a generally small corrections to
quantum mechanics (see Figure 3.3).

In this chapter we review the long and laborious scientific journey by mathe-
maticians, theoreticians and experimentalists (see the bibliography of Chapter
1) for the achievement of maturity of formulation of the isotopic branch of had-
ronic mechanics, its experimental verification, its novel industrial applications,
and its isodual for antimatter.

We shall begin with a review of recent developments in the construction
of isomathematics that have occurred following the publication of the second
edition of Vol. I of this series in 1995 [6] since these developments have impor-
tant implications. We shall then identify the recent developments in physical
theories occurred since the second edition of Vol. II of this series [7]. We shall
then review the novel industrial applications developed since the appearance
of Volumes I and II.

It should be noted that in this chapter we shall merely present recent devel-
opments. As a consequence, Volumes I and II of this series [6,7] remain useful
for all detailed aspects that will not be repeated in this final volume.

A primary motivation of this volume is to present industrial applications.
Consequently, we have selected the simplest possible mathematical treatment
accessible to any experimentalists. Readers interested in utmost mathematical
rigor are suggested to consult the specialized mathematical literature in the
field.

Finally, the literature on the mathematics, physics and chemistry of classical
and quantum Hamiltonian theories is so vast to discourage discriminatory
quotations. For this reason, unless there is a contrary need, we shall abstain
from quotations of works on pre-existing methods since their knowledge is a
pre-requisite for the understanding of this monograph in any case.

3.2 ELEMENTS OF SANTILLI’S
ISOMATHEMATICS AND ITS ISODUAL

3.2.1 Isounits, Isoproducts and Their Isoduals
As indicated earlier, Santilli isotopic mathematics, [4–10] or isomathematics

for short, is characterized by the map, called lifting, of the trivial unit I = +1
into a generalized unit Î

N-dimensional unit

I = +1 → Î(t, r, p, ψ, ψ†, ∂ψ, ∂ψ†, . . . ), (3.2.1)

or, more generally, by the lifting of N -dimensional units

I = (Ii
j) = Diag.(1, 1, 1, . . . ), i, j = 1, 2, . . . , N
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of conventional Hamiltonian theories4 into a nowhere singular, Hermitean and
positive-definite, matrix Î of the same dimension N whose elements Îi

j have
an arbitrary, nonlinear and integral dependence on time t, space coordinates
r, momenta p, wavefunctions ψ, their derivatives ∂ψ, and any other needed
quantity [loc. cit.]

I = (Ii
j) = Diag.(1, 1, . . . )>0 →

→ Î = (Îj
i ) = Î(t, r, p, ψ, ψ†, ∂ψ, ∂ψ†, . . . ) = 1/T̂ > 0. (3.2.2)

Isomathematics can then be defined as the lifting of all possible branches
of mathematics with left and right unit I into forms admitting Î has the new
left and right unit.

Recall that I is the right and left unit under the conventional associative
product A×B = AB, where A, B are generic quantities (e.g., numbers, vector-
fields, operators, etc.) for which I × A = A × I = A for all element A of the
considered set.

It is easy to see that Î cannot be a unit under the same product because
Î × A �= A. Therefore, for consistency, the conventional associative product
A × B must be lifted into the new form first proposed by Santilli in Ref. [5]
of 1978,

A × B → A×̂B = A × T̂ × B = A × (1/Î) × B, (3.2.3)

where T̂ is fixed for the set considered, under which product Î is indeed the
correct left and right new unit,

I × A = A × I = A → Î×̂A = A×̂Î = A, (3.2.4)

for all elements A of the considered set. In this case (only) Î is called Santilli’s
isotopic unit, or isounit for short, and T̂ is called Santilli’s isotopic element,
or isoelement for short.

Isomathematics was first submitted by Santilli in memoirs [loc. cit.] of 1978
and then worked out in various additional contributions by the same author,
as well as by numerous mathematicians and theoreticians (see the references
of Chapter 1 as well as of this section).

The most salient feature of Santilli’s liftings (3.2.2) and (3.2.3) is that they
are axiom preserving, from which feature they derived their name “isotopic”
[loc. cit.], recently contracted to the prefix “iso.”

In fact, Î preserves the basic topological characteristics of I. Therefore,
isomathematics is expected to provide new realizations of the abstract axioms

4For instance, Hamiltonian theories in 3-dimensional Euclidean space are based on the unit I =
Diag.(1, 1, 1) of the rotational and Euclidean symmetries, while Hamiltonian theories in Minkowski
space are based on the unit I = Diag.(1, 1, 1, 1) that is at the foundation of Lie’s theory of the
Lorentz and Poincaré symmetries.
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of the mathematics admitting I as left and right unit. In particular, the
preservation of the original abstract axioms is an important guiding principle
in the consistent construction of isomodels and their applications.

At this introductory stage the axiom-preserving character of generalized
product (3.2.3) is easily verified by the fact that it preserves all basic axioms
of the original product. In fact, the isoproduct verifies the right and left
isoscalar laws

n×̂(A×̂B) = (n×̂A)×̂B, (3.2.5a)

(A×̂B)×̂n = A×̂(B×̂n), (3.2.5b)

the right and left isodistributive laws5

A×̂(B + C) = A×̂B + A×̂C, (3.2.6a)

(A + B)×̂C = A×̂C + B×̂C, (3.2.6b)

and the isoassociative law

A×̂(B×̂C) = (A×̂B)×̂C. (3.2.7)

A verification of the preservation of the axioms of all subsequent constructions
is crucial for a serious study and application of hadronic mechanics.

The simplest method for the construction of isomathematics as needed for
various applications is given by the use of a positive-definite N -dimensional
noncanonical transform at the classical level or a nonunitary transform at the
operator level, here written in the unified form

U × U † �= I, (3.2.8)

and its identification with the basic isounit of the theory

Î = U × U † = 1/T̂ > 0, (3.2.9)

realization first introduced by Santilli in Ref. [6,7] of 1993.
In this case, the Hermiticity of Î is guaranteed because of the property,

(U × U †)† = U × U †. (3.2.10)

Therefore, realization (3.2.9) of the isounit only requires that U × U † be a
positive-definite N -dimensional matrix other than the unit matrix, from which
the nowhere singularity follows, e.g., via condition

Det(U × U†) > 0, �= I. (3.2.11)

5The reader should keep in mind that the verification of the right and left scalar and distributive laws
are necessary for any product to characterize an algebra as commonly understood in contemporary
mathematics.
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Once the fundamental realization (3.2.9) is assumed, the construction of of
isomathematics follows in a simple, unique and unambiguous way. In fact,
isomathematics can be constructed by submitting conventional mathematics
with left and right unit I to said noncanonical-nonunitary transform, with very
few exception, such as the isodifferential calculus that escapes construction via
noncanonical-nonunitary transforms.

To begin, the isounit itself is simply given by said noncanonical-nonunitary
transform of the conventional unit,

I → U × I × U † = Î , (3.2.12)

the isoproduct too is simply given by said noncanonical-nonunitary transform
of the conventional product

A × B → U × (A × B) × U † =

= (U × A × U †) × (U × U †)−1 × (U × B × U †) =

= Â × T̂ × B̂ = Â×̂B̂, (3.2.13)

and the same simple transform holds for the construction of other aspects of
isomathematics, as illustrated in this section.

As a matter of fact, the use of the above transform provides a method for the
construction of isomathematics that is more rigorous than empirical liftings.
For instance, by comparing Eqs. (3.2.3) and (3.2.13), we see that the lifting
of the unit I → Î = U × I × U † implies not only the lifting of the associative
product × → ×̂ = ×(U × U †)−1×, but also the lifting of all elements of the
set considered, A → Â = U × A × U †.

In view of the above, the claim often expressed in the nontechnical physics
literature that “the mathematics of hadronic mechanics is too difficult to com-
prehend” is just a case of venturing judgment without any serious knowledge
of the topic.

The reader should be aware that other generalizations of the associative
product, such as

A
⊗

B = T̂ × A × B, (3.2.14a)

A
⊙

B = A × B × T̂ , (3.2.14b)

are unacceptable because they violate either the right or the left distributive
and scalar laws, thus being unable to characterize an algebra. As such, liftings
(3.2.14) are not isotopic in Santilli’s sense [loc. cit.].

Examples of isounits have been given in Section 3.1.3. Additional examples
will be provided in Sections 3.3 and 3.4. Note that, since they are Hermitean by
assumption, isounits can always be diagonalized into the form of type (3.1.19).
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Santilli isodual isomathematics [6-10] is the image of isomathematics under
the anti-isomorphic isodual map of an arbitrary quantity

A(t, r, p, ψ, ψ†, . . . ) → Ad(td, rd, pd, ψd, ψ†d, . . . ) =

→ −A†(−t,−rt,−pt,−ψ†,−ψ†, . . . ), (3.2.15)

(where t denotes transposed) first submitted by Santilli in Ref. [8] of 1985 (see
also Chapter 2).

The basic quantity of isodual isomathematics is then the isodual isounit

Îd = −Î†(−t,−r†,−p†,−ψ†,−∂ψ†, . . . )= 1/T̂ d. (3.2.16)

Similarly, we have the isodual isoproduct

B† × T̂ d × A† = B†×̂d
A†, (3.2.17)

under which Îd is indeed the right and left unit,

Îd×̂d
A = A×̂d

Îd = A, (3.2.18)

for all A of the considered set.
Note that, isodual map (3.2.15) must be applied for consistency to the to-

tality of quantities of isomathematics as well as of their operations. As an
illustration, the application of the isodual map only to the quantities A, B of
a product A × B and not to the product itself ×, leads to a host of inconsis-
tencies.

For this and other reasons the conventional associative product is written in
this monograph with the explicit notation A×B rather than the conventional
notation AB. In fact, the latter would lead to gross misunderstandings and
inconsistencies under the various liftings of hadronic mechanics.

Also, the construction of isomathematics is indeed recommended for physi-
cists to be done via a noncanonical-nonunitary transform (3.2.9), while the
construction of isodual isomathematics is recommended via the isodual map
(3.2.15) and not via the use of an anti-isomorphic transform.

In fact, the use of anti-isomorphic transforms causes ambiguities in the very
central issue, the achievement of equivalence of the isodual operator theory
with charge conjugation due to ambiguities and other technical aspects. In
turn, this occurrence illustrates the significance and uniqueness of Santilli
isodual map (3.2.15).

Note also that isodual isomathematics preserves the axioms, not of conven-
tional mathematics, but of the isodual mathematics of Chapter 2, that with
the simplest possible isounit unit Id = −I.

Needless to say, mathematicians do not need the above elementary con-
struction of isomathematics and its isodual since they can be formulated on
abstract realization-free grounds from basic axioms.
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3.2.2 Isonumbers, Isofields and Their Isoduals
The first necessary isotopic lifting following that of the basic unit and prod-

uct, is that of ordinary numbers. The resulting new numbers were first pre-
sented by Santilli at the 1980 meeting in Clausthal, Germany, on Differential
Geometric Methods in Mathematical Physics and then published in a variety of
papers, such as Ref. [8] of 1985, Vols. [15,16] of 1991, memoir [9] of 1993 and
other works. A comprehensive presentation is available in Vol. I [6] of 1995
that also presents industrial applications of the new numbers for cryptograms
and other fields. As a result of these contributions the new numbers are today
known as Santilli’s isonumbers.

The new numbers have also been studied by various authors. An impor-
tant contribution has been made by E. Trell [11] in 1998 consisting in a proof
of Fermat’s celebrated theorem that is the simplest on record and, therefore,
credibly conceivable by Fermat (as compared to other proof requiring mathe-
matics basically unknown during Fermat’s time). Unfortunately, Fermat left
no record of the proof of his celebrated theorem and, therefore, there is no ev-
idence that Fermat first studied numbers with arbitrary units. Nevertheless,
Trell’s proofs of Fermat’s theorems remains the most plausible known to this
author for being conceived during Fermat’s time.

Numerous additional studies on isonumbers have been conducted by other
authors. For a complete bibliography we refer interested readers to the mono-
graph on Santilli isonumber theory by C.-X. Jiang [12] of 2002. Additional
studies on isonumbers have occurred for their use as basis of other isostruc-
tures. Related references will be quoted in the appropriate subsequent sections.

Santilli’s isonumbers have also been subjected to a generalization called
pseudo-isonumbers identified in Ref. [9] and studies by various authors, in-
cluding N. Kamiya [13] and others. However, the latter generalization violates
the axioms of a field and, as such, it cannot be used for hadronic mechanics.

The reader should be aware that in this section we merely present the
minimal possible properties of isonumbers sufficient for industrial applications.

Let us consider: the field R(n, +,×) of real numbers n with ordinary sum +
and product ×; the field C(c,+,×) of complex numbers c = n1 + i× n2 where
i is the imaginary unit and n1, n2 ∈ R; and the field Q(q, +,×) of quaternions
q = io + i1 × n1 + i2 × n2 + i3 × n3, where io is the 2-dimensional unit matrix,
ik, k = 1, 2, 3 are Pauli’s matrices and n1, n2, n3 ∈ R. These fields are hereon
represented with the unified notation6

F (a,+,×) : a = n, c, q, (3.2.19)

6Octonions are not considered “numbers” because they violate the associativity property of the
axioms of a field.
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In this section we present first the simplest possible method for the lifting
of numbers via the use of a positive-definite (thus invertible) noncanonical-
nonunitary transform identified with Santilli’s isounit

I → Î = U × I × U † = 1/T̂ > 0, U × U † �= I. (3.2.20)

We shall then pass to a mathematical presentation.
The isotopic lifting of ordinary numbers is easily achieved via the above

map resulting in Santilli isonumbers for the characterization of matter

a → â = U × a × U † = a × (U × U †) = a × Î , (3.2.21)

and related isoproduct

a × b → U × (a × b) × U † = â × T̂ × b̂ = â×̂b̂, (3.2.22)

under which Î is the correct right and left isounit, Eq. (3.2.4), with the element
isozero coinciding with the ordinary zero

0 → 0̂ = U × 0 × U † ≡ 0, (3.2.23)

and, consequently, the isosum coinciding with the ordinary sum,

a + b → U × (a + b) × U † = â +̂ b̂ ≡ â + b̂. (3.2.24)

The above liftings result in: Santilli isofield R̂(n̂, +̂, ×̂) of isoreal isonumbers;
the isofield Ĉ(ĉ, +̂, ×̂) of isocomplex isonumbers; and the isofield Q̂(q̂, +̂, ×̂) of
isoquaternionic isonumbers; hereon represented with the unified notation

F̂ (â, +̂, ×̂), â = n̂, ĉ, q̂. (3.2.25)

Needless to say, the liftings of the unit and of the product require a corre-
sponding lifting of all conventional operations of numbers depending on the
multiplication. By using the above noncanonical-nonunitary map, one can
easily prove the isopowers

ân̂ = â ×̂ â ×̂ . . . ×̂ â (n times) = an × Î . (3.2.26)

An important particular case is the property that isopowers of the isounits
reproduce the isounit identically,

Î n̂ = Î×̂Î×̂ . . . ×̂Î ≡ Î . (3.2.27)

Similarly we have the isosquare isoroot

â
ˆ1/2 = a1/2 × Î1/2; (3.2.28)
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the isoquotient
â/̂b̂ = (â/b̂) × Î = (a/b) × Î; (3.2.29)

and the isonorm
|̂â̂| = |a| × Î , (3.2.30)

where |a| is the conventional norm. All these properties were first introduced
by Santilli in Refs. [6–9]. The reader can now easily construct the desired
isotopic image of any other operation on numbers.

Despite their simplicity, isonumbers are nontrivial. As an illustration, the
assumption of the isounit Î = 3 implies that “2 multiplied by 3” = 18, while
4 becomes a prime number.

The best way to illustrate the nontriviality of the new numbers is to indicate
the industrial applications of Santilli’s isonumbers, that are a primary
objective of this monograph as indicated earlier.

To begin, all applications of hadronic mechanics are based on isonumbers,
and they will be presented later on in this chapter. In addition to that, San-
tilli’s isonumbers have already found a direct industrial application consisting
of the isotopic lifting of cryptograms used by the industry to protect secrecy,
including banks, credit cards. etc. This industrial application was first pre-
sented by Santilli in Appendix 2.C of the second edition of Vol. I [6] of 1995,
and will be reviewed later on in this chapter.

At this moment we merely mention that all cryptograms based on the mul-
tiplication depend on only one value of the unit, the quantity +1 dating back
to biblical times. A mathematical theorem establishes that a solution of any
cryptogram can be identified in a finite period of time. As a result of this
occurrence, banks and other industries are forced to change continuously their
cryptograms to properly protect their secrecy.

By comparison, Santilli’s isocryptograms are based on the isoproduct and, as
such, they admit an infinite number of possible isounits, such as, for instance,
the values

Î = 7.2; 0.98364; 236; 1, 293′ 576; etc. (3.2.31)

Consequently, it remains to be seen whether Santilli isocryptograms can be
broken in a finite period of time under the availability of an infinite number
of possible isounits.

Independently from that, with the use of isocryptograms banks and other
industries do not have to change the entire cryptogram for security, but can
merely change the value of the isounit to keep ahead of possible hackers, and
even that process can be computerized for frequent automatic changes of the
isounit, with clearly added safety.

Finally, another application of Santilli isocryptograms permitted by their
simplicity is their use to protect the access to personal computers.
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It is hoped this illustrates the industrial significance of Santilli isonumbers
per se, that is, independently from their basic character for hadronic mechan-
ics.

We now pass to a mathematical presentation of the new numbers.

DEFINITION 3.2.1 [9]: Let F = F (a,+,×) be a field of characteristic
zero as per Definition 2.2.1. Santilli’s isofields are rings F̂ = F̂ (â, +̂, ×̂)
with: elements

â = a × Î , (3.2.32)

where a ∈ F , Î = 1/T̂ is a positive-definite quantity generally outside F and
× is the ordinary product of F ; the isosum +̂ coincides with the ordinary sum
+,

â+̂b̂ ≡ â + b̂, ∀ â, b̂ ∈ F̂ , (3.2.33)

consequently, the element 0̂ ∈ F̂ coincides with the ordinary 0 ∈ F ; and the
isoproduct ×̂ is such that Î is the right and left isounit of F̂ ,

Î×̂â = â×̂Î ≡ â, ∀ â ∈ F̂ . (3.2.34)

Santilli’s isofields verify the following properties:
1) For each element â ∈ F̂ there is an element â−1̂, called isoinverse, for

which
â×̂â−1̂ = Î ,∀â ∈ F̂ ; (3.2.35)

2) The isosum is isocommutative

â+̂b̂ = b̂+̂â, (3.2.36)

and isoassociative

(â+̂b̂) + ĉ = â+̂(b̂+̂ĉ), ∀â, b̂, ĉ ∈ F̂ ; (3.2.37)

3) The isoproduct is not necessarily isocommutative

â×̂b �= b̂×̂â, (3.2.38)

but isoassociative

â×̂(b̂×̂ĉ) = (â×̂b̂)×̂ĉ, ∀â, b̂, ĉ ∈ F̂ ; (3.2.39)

4) The set F̂ is closed under the isosum,

â+̂b̂ = ĉ ∈ F̂ , (3.2.40)

the isoproduct,
â×̂b̂ = ĉ ∈ F̂ , (3.2.41)
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and right and left isodistributive compositions,

â×̂(b̂+̂ĉ) = d̂ ∈ F̂ , (3.2.42a)

(â+̂b̂)×̂c = d̂ ∈ F̂ , ∀â, b̂, ĉ, d̂ ∈ F̂ ; (3.2.42b)

5) The set F̂ verifies the right and left isodistributive law

â×̂(b̂+̂ĉ) = (â+̂b̂)×̂ĉ = d̂, ∀â, b̂, ĉ, d̂ ∈ F̂ . (3.2.43)

Santlli’s Isofields are called of the first (second) kind when Î is (is not) an
element of F.

The basic axiom-preserving character of the isotopies of numbers is illus-
trated by the following:

LEMMA 3.2.1 [9]: Isofields of first and second kind are fields (namely, they
verify all axioms of a field).

Note that the isotopic lifting does indeed change the operation of the mul-
tiplication but not that of the sum because the isotopies here considered do
change the multiplicative unit I, but not the additive unit 0, Eq. (3.2.23). This
is a crucial property of hadronic mechanics best illustrated by the following
property:

LEMMA 3.2. [9]: Nontrivial liftings of the additive unit 0 and related
sum violates the axioms of a field (for which reason, they are called “pseu-
doisofields”)

In fact, suppose that one wants to change the value of the element 0, e.g.,

0 → 0̂ = K �= 0, K ∈ F. (3.2.44)

Then, for 0̂ to remain the new additive unit, one must alter the sum into a
new form admitting 0̂ as left and right additive unit, e.g.,

a+̂b = a + (−0̂) + b, (3.2.45)

under which
a+̂0̂ = 0̂+̂a ≡ a, ∀a ∈ F. (3.2.46)

However, there is no single lifting of the product such that

0̂×̂a �= 0̂, ∀a ∈ F, (3.2.47)
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under which there is the loss of the distributive axiom of a field, i.e.,

(a+̂b) × c �= a × c +̂ b × c. (3.2.48)

In turn, the loss of the distributive law causes very serious physical inconsis-
tencies, such as preventing experimental applications of the theory. Therefore,
being axiom-preserving, hadronic mechanics is solely based on the isotopic lift-
ing of the multiplicative unit and related product, but not on any lifting of the
additive unit and related sum.

Santilli’s isodual isonumbers for the characterization of antimatter can be
uniquely and unambiguously characterized via the isodual map (3.2.15). They
are characterized by the additive and multiplicative isodual isounit

0̂ → 0̂d ≡ 0, (3.2.49a)

Îd = −Î < 0, (3.2.49b)

where one should recall that Î is real valued and positive-definite, thus Her-
mitean. Isodual isonumbers are then explicitly given by

âd = −â† = −Î × â†. (3.2.50)

The isodual isonumbers were first introduced by Santilli in Ref. [8] of 1985,
treated mathematically in Ref. [9] of 1993 and studied extensively in Vol. I
of this series [6].

The use of the same isodual map then identifies the isodual isosum

âd+̂db̂d = âd + b̂d, (3.2.51)

the isodual isoproduct

(â×̂b̂)d = b̂d ×d T̂ d ×d Âd = −b̂d×̂âd = −b̂†×̂â†, (3.2.52)

and the isodual isonorm

|̂â̂|d = −|̂â̂| = −|a| × Î . (3.2.53)

that is always negative-definite.
The above liftings result in: Santilli’s isodual isofield R̂d(n̂d, +̂d, ×̂d) of isod-

ual isoreal isonumbers; the isodual isofield Ĉd(ĉd, +̂d, ×̂d) of isodual isocomplex
isonumbers; and the isodual isofield Q̂d(q̂d, +̂d, ×̂d) of isodual isoquaternionic
isonumbers; hereon represented with the unified notation

F̂ d(âd, +̂d, ×̂d), âd = n̂d, ĉd, q̂d. (3.2.54)
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DEFINITION 3.2.3 [9]: Let F̂ (â, +̂, ×̂) be an isofield as per Definition
3.2.1. Then Santilli isodual isofields F̂ d(âd, +̂d, ×̂d) are the image of F̂ under
the isodual map (3.2.15).

LEMMA 3.2.3 [9]: Isodual isofields are fields (that is, they verify all axioms
of a field).

LEMMA 3.2.4 [9]: Isodual isofields are anti-isomorphic to isofields.

As we shall see in this chapter, the latter property, jointly with the anti-
isomorphic character of the isodual map, will result to be crucial for a con-
sistent treatment of antimatter composed of extended particles with potential
and nonpotential internal forces.

The above properties establish the fact (first identified in Ref. [8] that,
by no means, the axioms of a field require that the multiplicative unit to be
the trivial unit +1, because the basic unit can be a negative-definite quan-
tity −1 as it occurs for the isodual mathematics of Chapter 2, an arbitrary
positive-definite quantity Î > 0 as occurring in isomathematics, or an arbitrary
negative-definite quantity Îd < 0 as it occurs for the isodual isomathematics.

The reader should be aware that an in depth knowledge of Santilli’s isonum-
bers and their isoduals requires an in depth study of memoir [9] or of Chapter
2 of Vol. I of this series, Ref. [6], and that an in depth knowledge of Santilli’s
isonumbers theory requires a study of Jiang’s monograph [12].

Finally, the reader should meditate a moment on the viewpoint expressed
several times his his writing to the effect that there cannot be really new phys-
ical theories without new mathematics, and there cannot be really new math-
ematics without new numbers. The basic novelty of hadronic mechanics can,
therefore, be reduced to the novelty of Santilli’s isonumbers.

By remembering that all “numbers” have been fully identified centuries ago,
the novelty of hadronic mechanics can be reduced to the discovery that the
axioms of conventional fields admit new realizations with nonsingular, but
otherwise arbitrary multiplicative units.

3.2.3 Isospaces and Their Isoduals
Following the lifting of units, products and fields, the next necessary lifting

is that of N-dimensional metric or pseudo-metric spaces with local coordinates
r and Hermitean, thus diagonalized metric m over a field F , here written in
the unified notation

S(r, m, F ) : r = (rk), m = [mij(r, . . . )] = Diag.(m11, m22, . . . , mNN ),
(3.2.55)

i, j, k = 1, 2, . . . , N,
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basic invariant

r2 = (ri × mij × rj) × I = (rt × m × r) × I ∈ F (a,+,×), (3.2.56)

(where t stands for transposed) and fundamental N -dimensional unit7

I = Diag.(1, 1, . . . , 1). (3.2.57)

As now familiar, isotopies are based on the lifting of the above N -dimen-
sional unit via a positive-definite noncanonical-nonunitary transform in the
same dimension with an otherwise unrestricted functional dependence

I = Diag.(1, 1, . . . , 1) → Î(t, r, p, ψ, ψ†, . . . ) =

= U × I × U † = 1/T̂ > 0, (3.2.58)

The above liftings requires that of spaces S(r, m, R) into isotopic spaces, or
isospaces for short, for the treatment of matter, hereon denoted Ŝ(r̂, M̂ , F̂ ),
where r̂ denotes the isocoordinates, and M̂ denotes the isometric defined on
the isofields F̂ = F̂ (â, +̂, ×̂) of Section 3.2.2.

Isospaces were first proposal by Santilli in Ref. [14] of 1983 for the axiom-
preserving isotopies of the Minkowskian spacetime and special relativity that
are at the foundations of hadronic mechanics. Isospaces were then used by
Santilli for the liftings of the various spacetime and internal symmetries (such
as SU(2), SO(3), SO(3.1), SL(2.C), G(3.1), P (3.1), SU(3), etc.) as studied
later on in this chapter.

A comprehensive presentation of isospaces first appeared in monographs
[15,16] of 1991 and in the first edition of Volumes I and II of this series,
Ref. [6,7] of 1993 (see the second edition of 1995 for various upgradings). A
mathematical study of isospaces by Santilli was presented in memoir [10] of
1996. In view of all these c contributions, the new spaces are today known as
Santilli’s isospaces.

Following the appearances of these contributions, isospaces have been also
studied by a number of authors for both mathematical and physical applica-
tions to be studied in subsequent sections, including the definition of isoconti-
nuity, isotopology, isomanifolds, etc. The related literature will be presented
in the appropriate subsequent sections.

7The basic character of the unit should be recalled here. For the case of the three-dimensional
Euclidean space, I = Diag.(1, 1, 1) is not only the basic geometric unit, but also the unit of the
entire Lie theory of the rotational and Euclidean symmetries. Similarly, for the case of the Minkowski
spacetime, the unit I = Diag.(1, 1, 1, 1) is at the foundations of the entire Lie theory for the Lorentz
and Poincaré symmetries. We begin to see in this way the far reaching implications of isotopic
generalization of the basic unit.
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In this section we identify the basic notions of Santilli isospaces. Specific
types of isospaces needed for applications will be studied in subsequent sec-
tions.

The coordinates r of ordinary spaces S(r, m, F ) are defined on the base
field F = F (a,+,×), thus being real numbers for F = R, complex numbers
for F = C and quaternionic numbers for F = Q.

Consequently, the isocoordinates r̂ on isospaces Ŝ(r̂, m̂, F̂ ) must be defined
on the isofields F̂ = F̂ (â, +̂, ×̂), namely, must be isonumbers and, more par-
ticularly, be isoreal isonumbers for F̂ = R̂, isocomplex isonumbers for F̂ = Ĉ,
and isoquaternionic isonumbers for F̂ = Q̂.

Since isocoordinates are isonumbers, they can be easily constructed via the
same lifting used for isonumbers, resulting in the simple definition

r → r̂ = U × r × U † = r × (U × U †) = r × Î . (3.2.59)

Similarly, the metric m on S(r, m, F ) is an ordinary matrix in N -dimension
whose elements mij are functions defined on the base field F , thus being real,
complex or quaternionic functions depending on the corresponding character
of F .

As we shall see shortly, a necessary condition for Ŝ(r̂, M̂ , F̂ ) to preserve the
geometric axioms of S(r, m, F ) (that is, for Ŝ to be an isotope of S), is that,
when the unit is lifted in the amount I → Î = 1/T̂ , the metric is lifted by
the inverse amount m → m̂ = T̂ × m, thus yielding the transform (where the
diagonal character of m is taken into account)

m → U †−1 × m × U−1 = (U × U †)−1 × m =

= T̂ × m = (m̂ij) = (T̂ k
i × mkj), (3.2.60)

However, in this case the elements m̂ij are not properly defined on Ŝ because
they are not isonumbers on F̂ . For this purpose, the correct definition of the
isometric is given by

M̂ = m̂ × Î = (m̂ij × Î) = (m̂ij) × Î . (3.2.61)

As we shall see in the next section, the above definition is independently
confirmed by the isotopies of matrices. We, therefore, have the following

DEFINITION 3.2.3 [14]: Let S(r, m, F ) be an N -dimensional metric or
pseudo-metric space with contravariant coordinates r = (rk), metric m =
(mij) and invariant r2 = (rk × rk) × I = (ri × mij × rj) × I over a field F
with trivial unit I. Then, Santilli’s isospaces are the N-dimensional isovector
spaces

Ŝ(r̂, M̂ , F̂ ) : r̂ = (r̂k) = (rk) × Î ∈ F̂ , (3.2.62a)
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M̂ = (T̂ ×m)× Î = (T k
i ×mki)× Î ∈ F̂ , M̂ ij = [(M̂pq)−1]ij ∈ F̂ , (3.2.62b)

r̂k = M̂ki×̂r̂i = m̂ki × ri × Î , r̂k = M̂ki×̂r̂i = m̂ki × ri × Î , (3.2.62c)

r̂2̂ = r̂k×̂r̂k = r̂i×̂M̂ij×̂r̂j = (ri × m̂ij × rj) × Î ∈ F̂ , (3.2.62d)

i, j, k, p, q = 1, 2, . . . , N,

and its projection on the original space S(r, m, F ), is characterized by

Ŝ(r, m̂, F ) : r = (rk) = (rk) × I ∈ F ; (3.2.63a)

m̂ = T̂ × m = (T̂ k
i × mkj) ∈ F, m̂ij = [(m̂ps)−1]ij ∈ F, (3.2.63b)

rk = m̂ki × ri ∈ R, rk = m̂ki × r1 ∈ F, (3.2.63c)

r2 = ri × m̂ij × rj) × I = ri × (T̂ k
i × mkj) × rj) × I ∈ F. (3.2.63d)

As one can see, expression (3.2.62) is the proper formulation of the isoin-
variant on isospaces over the base isofield, and we shall write Ŝ(r̂, M̂ , F̂ ), while
expression (3.2.63) is the “projection” of the preceding space in the original
space S, and we shall write Ŝ(r, m̂, F ), because the latter space is defined with
conventional coordinates, units and products over the conventional field F by
construction.

It should be stressed that isospaces are mathematical spaces and, there-
fore, all physical calculations and applications will be done in the projection of
isospaces over conventional spaces. In fact, experimental measurements and
events can only occur in our space time. Therefore, all physical applications
of isospaces can only occur in their projection in our spacetime.

A simple visual inspection of invariants (3.2.56) and (3.2.62) establish the
following

THEOREM 3.2.1 [10]: All line elements of metrics or pseudo-metric spaces
with metric m and unit I, and all their isotopes possess the following invariance
property

I → Î = n2 × I, m → m̂ = n−2 × m, (3.2.64)

where n is a non-null parameter.

This property too will soon acquire fundamental character, since it permits
the identification, for the first time, of the property that the Galilean and
Poincaré symmetries are “eleven” dimensional, and not ten-dimensional as
believed throughout the 20-th century.

In particular, the 11-th invariance is “hidden” in conventional line elements
and will permit the first and perhaps only known, axiomatically consistent
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grand unification of electroweak and gravitational interactions, as studied later
on in this chapter.

The nontriviality of isospaces is then expressed by the following

THEOREM 3.2.2 [14]: Even though preserving all topological properties of
m (from the positive-definiteness of Î), the projection m̂ of the isometric M̂ on
Ŝ over F̂ into the original space S over F acquires an unrestricted functional
dependence on any needed local variables or quantities,

M̂ → m̂ = m̂(t, r, p, ψ, ψ†, . . . ). (3.2.65)

As we shall see, the above property has truly fundamental implications,
since it will permit the first and only known geometric unification of the Min-
kowskian and Riemannian geometries with the consequential unification of spe-
cial and general relativities, and other applications of manifestly fundamental
nature.

By recalling that the basic invariant r2 represents the square of the “dis-
tance” in S, from Eqs. (3.2.56) and (3.2.62) we derive the following additional
property

THEOREM 3.2.3 [6,7,10]: The basic invariant of a metric or pseudometric
space has the structure:

Invariant = [Length]2 × [Unit]2 (3.2.66)

The above property will soon have deep geometric implications, such as
permitting different shapes, sizes and dimension for the same object under
inspection by different observers, all in a way compatible with our sensory
perception.

Note that invariant structure (3.2.66) is indeed new because identified for
the first time by the isotopies, since the multiplication of the invariant by the
unit is trivial for conventional studies and, as such, it was ignored.

It is now important to indicate the differences between Santilli isospaces
Ŝ(r̂, M̂ , F̂ ) or Ŝ(r, m̂, F ) and deformed spaces that, as well known, are given by
the sole deformations of the metric, for which we use the notation S(r, m̂, F ).

It is easy to see that deformed spaces S(r, m̂, F ) have a conventional non-
canonical or nonunitary structure, thus activating the theorems of catastrophic
inconsistencies of Section 3.4. By comparison, Santilli isospaces have been
constructed precisely to resolve these catastrophic inconsistencies via the re-
construction of canonicity or unitarity on isospaces over isofields.

Moreover, deformed metric spaces S(r, m̂, F ) necessarily break the symme-
tries of the original spaces S(r, m, F ), while, as we shall soon see, isospaces
Ŝ(r̂, M̂ , F̂ ) reconstruct the exact symmetries of S(r, g, F ).
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The implications of the latter property alone are far reaching because all
symmetries believed to be broken in the 20-th century can be proved to remain
exact on suitable isospaces over isofields. In different terms, the “breakings of
spacetime and internal symmetries” studies through the 20-th century are a
direct manifestation of the adaptation of new physical events to a rather lim-
ited, pre-existent mathematics because, the underlying mathematics is suit-
ably lifted, all believed breakings cease to exist, as already proved in Vol. II
of this series [7] and updated in this volume.

Santilli’s isodual isospaces for the treatment of antimatter are the anti-
isomorphic image of isospaces under the isodual map (3.2.15) and can be
written

Ŝd(r̂d, M̂d, F̂ d) : r̂d = −r̂†, M̂d = −M̂, (3.2.67a)

r̂2̂d = r̂d×̂d
M̂d×̂d

r̂t,d. (3.2.67b)

Isodual isospaces were introduced in Vol. I of this series [6] and then treated
in various other works (see, e.g., [10,17,18]). As we shall see, they play a cru-
cial role for the treatment of antimatter in interior conditions. The tensorial
product of isospaces and their isoduals appears to be significant for basic ad-
vances in biology, e.g., to achieve a quantitative mathematical representation
of bifurcations and other biological behavior.

As we shall see, all industrial applications of hadronic mechanics are
based on isospaces to such an extend that the new isogeometries have acquired
evident relevance for new patents assuredly without prior art, evidently in view
of their novelty.

3.2.4 Isofunctional Analysis and its Isodual
The lifting of fields evidently requires a corresponding lifting of functional

analysis into a form known as Kadeisvili isofunctional analysis since it was
first studied by J. V. Kadeisvili [19,20] in 1992. Additional studies were done
by A. K. Aringazin et al. [21] in 1995 and other authors.

A detailed study of isofunctional analysis was also provided in monographs
[6,7] of 1995. A knowledge of these studies is necessary for any application of
hadronic mechanics because all conventional functions and transforms have to
be properly lifted for consistent applications, while the use of conventional (or
improperly lifted) functions and transforms leads to catastrophic inconsisten-
cies.

In essence, the consistent formulation of isofunctional analysis requires not
only the preservation of the original axioms, but also the preservation of the
original numerical values when formulated on isospaces over isofields, under
which conditions the broadening of conventional formulations emerge in the
projection of the isotopic treatment in the original space.
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The latter mathematical requirement has deep physical implications, such
as the preservation of the speed of light in vacuum as the universal invariant
on isospaces over isofield, with consequential preservation under isotopies of
all axioms of special relativity, while locally varying speeds of light within
physical media emerge in the projection of the isospace in our spacetime, as
we shall see in subsequent sections.

The scope of this section is essentially that of providing the guidelines for
the updating of Refs. [19,20,16,6,7] along the above requirements so as so
achieve compatibility with the main lines of this presentation.

DEFINITION 3.2.4 [19,20,21, 6,7] Let f(x) be an ordinary (sufficiently
smooth) function on a vector space S with local variable x (such as a coordi-
nate) over the reals R. The isotopic image of f(x), called isofunctions, can
be constructed via the use of a noncanonical-nonunitary transform

U × f(x) × U † = f(x) × Î ∈ F̂ , (3.2.68)

reformulated on isospace Ŝ(x̂, F̂ ) over the isofield F̂

f(x) × Î = f(T̂ × x̂) × Î = f̂(x̂) ∈ F̂ , (3.2.69)

with projection in the original space S(x, F )

f(T̂ × x) ∈ F. (3.2.70)

As one can see, expression (3.2.68) coincides with the definition of iso-
function in the quoted references. A feature identified since that time is the
re-interpretation in such a way that the function f(x) preserves its numerical
value when formulated as f̂(x̂) on the isospace Ŝ over the isofield F̂ because the
variable x̂ is multiplied by T̂ while the unit to which such a variable is referred
to is multiplied by the inverse amount Î = 1/T̂ . All numerical differences
emerge in the projection of f̂(x̂) in the original space.

This is essentially the definition of isofunctions that will allow us to preserve
the basic axioms of special relativity on isospaces over isofields and actually ex-
pand their applicability from motion in empty space to motion within physical
media.

For the case of the simple function f(x) = x we have the lifting

x̂ = U × x × U † = x × (U × U †) = x × Î = T̂ × x̂ × Î ∈ F̂ , (3.2.71)

with the projection in the original space S being simply given in this case by
T̂ × x.
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More instructive is the lifting of the exponentiation into the isoexponentia-
tion given by

ex → U × ex × U † =

= U × (I + x/1! + x × x/2! + . . . ) × U † =

= Î + x̂/̂1̂! + x̂×̂x̂/̂2̂! + . . . ) =

= êx̂ = (ex̂×T̂ ) × Î = Î × (eT̂×x̂) ∈ F̂ , (3.2.72)

with projection in the original space S given by

êx = (ex × T̂ ) × I = I × (eT̂×x) ∈ F, (3.2.73)

where one should note that the function in isospace is computed over F̂ while
its projection in the original space is computed in the original; field F .

The above lifting is nontrivial because of the appearance of the nonlinear
integro-differential quantity T̂ (t, x, ψ, ∂ψ, . . . ) in the exponent. As we shall see
shortly, this feature permits the first known extension of the linear and local
Lie theory to nonlinear and nonlocal formulations.

Let M(x) = (Mij(x)) be an N -dimensional matrix with elements Mij(x) on
a conventional space S(x, F ) with local coordinates x over a conventional field
F with unit I. Then, the isotopic image of M(x) or it isomatrix, is defined by

M̂(x̂) = (M̂ij(x̂)) = M(T̂ × x̂) × Î , M̂ij ∈ F̂ , (3.2.74)

Similarly, the isodeterminant of M̂ is defined by

D̂etM̂ = [Det(T̂ × M)] × Î (3.2.75)

where Det represents the conventional determinant, with the preservation of
the conventional axioms, e.g.,

D̂et(M̂1×̂M̂2) = D̂et(M̂1)×̂D̂et(M̂2); (3.2.76a)

D̂et(M̂−Î) = (D̂etM̂)−Î , (3.2.76b)

Note that, by construction, isomatrices and isodeterminant preserve the
original values on isospaces over isofields, although show deviations when the
same quantities are observed from the original space, that is, referred to the
original unit.

Similarly, the isotrace of M̂ is defined by8

T̂ rM̂ = [Tr(T̂ × M)] × Î , (3.2.77)

8The isodeterminant introduced in Ref. [6], Eq. (6.3.19) is the correct form as in Eq. (3.2.77) above.
However, the isotrace introduced in Eq. (6.3.20a) of Ref. [6] preserves the axioms of a trace, but not
its value, as a consequence of which it is not fully invariant, the correct definition of isotrace being
given by Eq. (3.2.77) above.
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where Tr is the conventional trace, and it also verifies the conventional axioms,
such as

T̂ r(M̂1×̂M̂2) = T̂ rM̂1×̂T̂ rM̂2, (3.2.78a)

T̂ r(M̂−Î) = (T̂ rM̂)−Î . (3.2.78b)

The isologarithm is hereon defined by9

ˆlogêâ = loge a × Î , (3.2.79)

and admit the unique solution

ˆlogêâ = loge(T̂ × a) × Î , (3.2.80)

under which the conventional axioms are preserved,

ê
ˆlogêâ = â, (3.2.81a)

ˆlogêê = Î , ˆlogêÎ = 0, (3.2.81b)

ˆlogê(â×̂b̂) = ˆlogêâ + ˆlogêb̂, (3.2.81c)

ˆlogê(â/̂b̂) = ˆlogêâ − ˆlogêb̂, (3.2.81d)

ˆlogê(â
−Î) = − ˆlogêâ, (3.2.81e)

b̂×̂ ˆlogêâ = ˆlogê(â
b̂). (3.2.81f)

The lifting of trigonometric functions is intriguing and instructive (see
Chapter 6 of Ref. [6] and Chapter 5 of Ref. [7] whose results in this case
require no upgrading). Let E(r, δ, R) be a conventional two-dimensional Eu-
clidean space with coordinates r = (x, y) on the reals R and polar represen-
tation x = r × cos θ and y = r × sin θ, x2 + y2 = r2 × (cos2 θ + sin2 θ) = r2.
Consider now the isoeuclidean space in two dimension

Ê(r̂, δ̂, R̂) : δ̂ = Diag.(n−2
1 , n−2

2 ), Î = Diag.(n2
1, n

2
2), (3.2.82a)

r̂2̂ = (x2/n2
1 + y2/n2

2) × Î ∈ R̂. (3.2.82b)

Then, the isopolar coordinates and related isotrigonometric functions on Ê are
defined by

x̂ = r̂×̂ ˆcosφ̂, (3.2.83a)

ˆcosφ̂ = n1 × cos(φ/n1 × n2), (3.2.83b)

ŷ = r̂×̂ ˆsinφ̂, (3.2.83c)

ˆsinφ̂ = n2 × sin(φ/n1 × n2), (3.2.83d)
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Figure 3.4. A schematic view of the conventional sinus function in Euclidean and isoeu-
clidean spaces (top view) and of the projection of a possible example of the isosinus function
in the conventional space.

and they preserve the axioms of conventional trigonometric functions, such as,

r̂2̂ = (x2/n2
1 + y2/n2

2) × Î = r2 × Î ∈ R̂. (3.2.84)

The isotopy of spherical coordinates are treated in detail in Section 5.5 of
Ref. [7]. For self-sufficiency of this volume we recall that their definition
requires a three-dimensional iso-Euclidean space

Ê(r̂, δ̂, R̂) : δ̂ = Diag.(n−2
1 , n−2

2 , n−2
3 ), Î = Diag.(n2

1, n
2
2, n

2
3), (3.2.85a)

r̂2̂ = (x2/n2
1 + y2/n2

2 + z2/n2
3) × Î ∈ R̂. (3.2.85b)

The isotopies of the conventional spherical coordinates in E(r, δ, R) then
yields the following isospherical coordinates here presented in the projected
form on Ê(r, δ̂, R)

x = r × n1 × sin(θ/n3) × sin(φ/n1 × n2), (3.2.86a)

y = r × n2 × sin(θ/n3) × cos(φ/n1 × n2), (3.2.86b)

z = r × n3 × cos(θ/n3). (3.2.86c)

Via the use oif the above general rules, the reader can now construct all
needed isofunctions.

The reader should meditate a moment on the isotrigonometric functions. In
fact, they provide a generalization of the Pythagorean theorem to curvilinear

9Note, again, that a different definition of isologarithm was assumed in Eq. (6.7.5) of Ref. [6].
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Figure 3.5. An intriguing application of isotrigonometric functions, the generalization of the
conventional Pythagorean Theorem (left view) to triangles with curvilinear sides (right view).
This is due to the fact that conventional triangles and the Pithagoream theorem are preserves
identically on isospaces over isofields, but the projection on conventional Eyckudean spaces of
straight lines in isospaces over isofields are curves. Therefore in isospace we have expressions
such as Â = D̂×̂isosinus(γ̂) with projections in the conventional space for curvilinear sides
A = D × isosinus(γ), where A and D are now the lengths of the curvilinear sides.

triangles. This is due to the fact that the projection of Ê(r̂, δ̂, R̂) into the
original space E(r, δ, R) characterizes indeed curvilinear triangles, trivially,
because the n-characteristic quantities are functions.

However, the reader is suggested to verify that the isotriangle, that is, the
image on Ê of an ordinary triangle on E coincides with the latter because the
changes caused by the lifting are compensated by the inverse changes of the
unit.

By noting that their value must be isonumbers, the isointegral can be de-
fined by (here expressed for the simple case of isounits independent form the
integration variable)∫̂

d̂r̂ = Î ×
∫

T̂ × d(r × Î) = Î ×
∫

dr, (3.2.87)

whose extension to the case of isounits with an explicit functional dependence
on the integration variables has a complexity that goes beyond the elementary
level of this presentation.

Isointegrals and isoexponentiations then permit the introduction of the fol-
lowing Fourier-Kadeisvili isotransforms, first studied in Ref. [19,20] (also rep-
resented here to avoid excessive mathematical complexities for the simpler case
of isounits without an explicit dependence on the integration variables)10

f̂(x̂) = (1̂/̂2̂π)×̂
∫̂ +∞

−∞
ĝ(k̂)×̂êî×̂x̂d̂k̂, (3.2.88a)

10The reader should be aware that in most applications of hadronic mechanics the isounits can be ef-
fectively approximated into constants, thus avoiding the complex mathematics needed for isointegrals
and isotransforms with an explicit functional dependence on the integration variables.
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ĝ(x̂) = (1̂/̂2̂π)×̂
∫̂ +∞

−∞
f̂(k̂)×̂êî×̂x̂d̂x̂, (3.2.88b)

with similar liftings for Laplace transforms, etc. Other transforms can be
defined accordingly [6].

We confirm in this way a major feature of isomathematics, the fact that
Hamiltonian quantities preserve not only their axioms, but also their numerical
value under isotopic lifting when defined on isospaces over isofields, and all
deviations occur in the projection of the lifting into the original space.

The explicit construction of the isodual isofunctional analysis is also in-
structive and intriguing because they reveal properties that have essentially
remained unknown until recently, such as the fact that the isofourier trans-
forms are isoselfdual (see also Refs. [6,7]).

3.2.5 Isodifferential Calculus and its Isodual
As indicated in Chapter 1, the delay to complete the construction of hadro-

nic mechanics since its proposal in 1978 [5] was due to difficulties in identifying
the origin of the non-invariance of its initial formulation, that is, the lack of
prediction of the same numerical values for the same quantities under the
same conditions, but at different times, a fundamental invariance property
fully verified by quantum mechanics.

These difficulties were related to the lack of a consistent isotopic lifting of
the familiar quantum mechanical momentum. More particular, all aspects of
quantum mechanics could be consistently and easily lifted via a nonunitary
transforms, except the eigenvalue equation for the linear momentum, as shown
by the following lifting

p × ψ(t, r) = −i × h̄ × ∂

∂r
ψ(t, r) = K × ψ(t, r) →

→ U × [p × ψ(t, r)] = (U × p × U †) × (U × U †)−1 × [U × ψ(t, r)] =

= p̂ × T̂ × ψ̂(t̂, r̂) = p̂×̂ψ̂(t̂, r̂) =

= −i × h̄ × U [
∂

∂r
ψ(t, r)] = K × U × ψ(t, r) = K̂×̂ψ̂(t̂, r̂), (3.2.89)

where K̂ = K × Î is an isonumber.
As one can see, the initial and final parts of the lifting are elementary.

The problem rested in the impossibility of achieving a consisting lifting of the
intermediate step, that based on the partial derivative.

In the absence of a consistent isotopy of the linear momentum, the early
studies of hadronic mechanics lacked consistent formulations of physical quan-
tities depending on the isomomentum, such as the isotopies of angular mo-
mentum, kinetic energy, etc.
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The origin of the above problem resulted in being where expected the least,
in the ordinary differential calculus, and this explains the delay in the resolu-
tion of the impasse.

The above problem was finally resolved by Santilli in the second edition
of Refs. [6,7] of 1995 (see Section 5.4.B of Vol. I and Section 8.4.A of Vol.
II) with a mathematical presentation in memoir [10] of 1996. The resulting
generalization of the ordinary differential calculus, today known as Santilli’s
isodifferential calculus, plays a fundamental role for these studies beginning
with the first known structural generalization of Newton’s equations in New-
tonian mechanics, and then passing to the correct invariant formulation of all
dynamical equations of hadronic mechanics.

For centuries, since its discovery by Newton and Leibnitz in the mid 1600,
the ordinary differential calculus had been assumed to be independent from the
basic unit and field, and the same assumption was kept in the earlier studies
on hadronic mechanics, resulting in the lack of full invariance, inability to
formulate physical models and other insufficiencies.

After exhausting all other possibilities, an inspection of the differential cal-
culus soon revealed that, contrary to an erroneous belief kept in mathematics
for about four centuries, the ordinary differential calculus is indeed dependent
on the basic unit and related field.

In this section we review Santilli’s isodifferential calculus in its version
needed for applications and verifications of hadronic mechanics. This update
is recommendable because of various presentations in whicb the role of Î and
T̂ were interchanged, resulting in possible ambiguities that could cause loss of
invariance even under the lifting of the differential calculus.

A main feature is that, unlike all other aspects of hadronic mechanics, the
isotopies of the differential calculus cannot be reached via the use of a non-
canonical or nonunitary transform, and have to be built via different, yet com-
patible methods.

Let S(r, m, R) an N -dimensional metric or pseudo-metric space with con-
travariant coordinates R = (rk), metric m = (mij), i, j, k = 1, 2, . . . , N , and
conventional unit I = Diag.(1, 1, . . . , 1) on the reals R. Let f(r) be an ordi-
nary (sufficiently smooth) function on S, let drk be the differential in the local
coordinates, and let ∂f(r)/∂rk be its partial derivative.

As it is well known, the connection between covariant and contravariant
coordinates is characterized by the familiar rules

rk = mkj × rj , ri = mik × rk, (3.2.90a)

mij = [(mqw)−1]ij . (3.2.90b)
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Let Ŝ(r̂, M̂ , R̂) be an isotope of S with N -dimensional isounit Î = (Îi
j),

contravariant isocoordinates r̂ = (rk) × Î and isometric M̂ = (M̂ij) = (T̂ s
i ×

msj) × Î on the isoreals R̂.
The connection between covariant and contravariant isocoordinates is then

given by
r̂k = M̂kj×̂r̂j , r̂i = M̂ik×̂r̂k, (3.2.91a)

M̂ ij = [(M̂qw)−1]ij . (3.2.91b)

Therefore, on grounds of compatibility with the metric and subject to verifi-
cations later on on geometric grounds, we have the following:

LEMMA 3.2.5 [10]: Whenever the isounit of contravariant coordinates r̂k

on an isospace Ŝ(r̂, M̂ , R̂) is given by

Î = (Îi
j(t, r, . . . )) = 1/T̂ = (T̂ j

i )−1, (3.2.92)

the isounit for the related covariant coordinates r̂k is given by its inverse

T̂ = (T̂ i
j (t, r, . . . )) = 1/Î = (Îi

j)
−1, (3.2.93)

and viceversa.

The ordinary differential of the contravariant isocoordinates is given by dr̂k

with covariant counterpart dr̂k and they clearly do not constitute an isotopy.
The condition for the preservation of the original axioms and value for constant
isounits then leads to the following

DEFINITION 3.2.5 [6,7,10]: The isodifferentials of contravariant and co-
variant coordinates are given respectively by11

d̂r̂k = d̂(rk × Î) = T̂ k
i × d(ri × Î), (3.2.94a)

d̂r̂k = d̂(rk × T̂ ) = Îi
k × d(ri × T̂ ). (3.2.94b)

LEMMA 3.2.6 [loc. cit.]: For one-dimensional isounits independent from
the local; variables, isodifferentials coincide with conventional differentials,

d̂r̂k ≡ drk, d̂r̂k ≡ drk. (3.2.95)

11It should be noted that the role of Î and T̂ in this definition and that of Ref. [10] are inverted.
Also, the reader should keep in mind that, since they are assumed to be Hermitean, isounits can
always be diagonalized. In fact, diagonal isounits are sufficient for the verifications and applications
of hadronic mechanics, while leaving to the interested reader the formulation of hadronic mechanics
according to the broader isodifferential calculus of Refs. [6,7,10].
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Note that the above property constitutes a new invariance of the differen-
tial calculus. Its trivial character explains the reason isodifferential calculus
escaped detection for centuries. Needless to say, the above triviality is lost for
isounit with nontrivial functional dependence from the local variables as it is
generally the case for hadronic mechanics.

The ordinary derivative of an isofunction oof contravariant coordinates is
evidently given by

∂f̂(r̂k)
∂r̂k

= lim
d̂r̂k→0

f̂(r̂k + d̂r̂k) − f̂(r̂k)

d̂r̂k
. (3.2.96)

with covariant version

∂f̂(r̂k)
∂r̂k

= lim
d̂r̂k→0

f̂(r̂k + d̂r̂k) − f̂(r̂k)

d̂r̂k

. (3.2.97)

It is then simple to reach the following

DEFINITION 3.2.4 [ loc. cit.]: The isoderivative of isofunctions on con-
travariant and covariant isocoordinates are given respectively by

∂̂f̂(r̂k)

∂̂r̂k
= Îi

k × ∂f̂(r̂i)
∂r̂k

, (3.2.98a)

∂̂f̂(r̂k)

∂̂r̂k

= T̂ k
i × ∂f̂(r̂i)

∂r̂k
, (3.2.98b)

where the isoquotient is tacitly assumed.12

A few examples are now in order to illustrate the axiom-preserving character
of the isodifferential calculus. Assume that the isounit is not dependent on r.
Then, for f̂(r̂k) = r̂k we have

d̂r̂i

d̂r̂j
= δ̂i

j = δi
j × Î . (3.2.99)

Similarly we have
d̂(r̂i)n̂

d̂r̂j
= δ̂i

j × (̂ri)n̂−1̂. (3.2.100)

12Note that the isofunction in the numerator contains an additional isounit, f̂ = f× Î, that, however,

cancels out with the isounit of the isoquotient, /̂ = /× Î, resulting in expressions (3.2.98). Note also
the lack of presence of a factorized isounit in the definition of the isodifferentials and isoderivatives,
and this explains why the isodifferential calculus cannot be derived via noncanonical or nonunitary
transforms.
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It is instructive for the reader interested in learning Santilli isodifferential
calculus to prove that isoderivatives in different variables “isocommute” on
isospace over isofields,

∂̂

∂̂r̂i

∂̂

∂̂r̂j
=

∂̂

∂̂r̂j

∂̂

∂̂r̂i
, (3.2.101)

but their projections on ordinary spaces over ordinary fields do not necessarily
“commute”.

We are now sufficiently equipped to point out the completion of the con-
struction of hadronic mechanics. First, let us verify the axiom-preserving
character of the isoderivative of the isoexsponent in a contravariant coordi-
nate for the simple case in which the isounit does not depend on the local
variables. In fact, we have the expression

∂̂

∂̂r̂
êr̂ = Î × ∂

∂r̂
[Î × eT̂×r̂] = Î × T̂ × [Î × eT̂×r̂] = êr̂. (3.2.102)

Consider now the isoplanewave as a simply isotopy of the conventional
planewave solution (again for the case in which the isounit does not depend
explicitly on the local coordinates),

êî×̂r̂×̂K̂ = Î × ei×T̂×K×r̂, (3.2.103)

for which we have the isoderivatives

∂̂

∂̂r̂
êî×̂r̂×̂K̂ = Î × ∂

∂r̂
[Î × ei×T̂×K×r̂] =

= −i × K × Î × ei×T̂×K×r̂ = î×̂K̂×̂êî×̂r̂×̂K̂ . (3.2.104)

We reach in this way the following fundamental definition of isomomentum,
first achieved by Santilli in Refs. [6,7] of 1995, that completed the construction
of hadronic mechanics (its invariance will be proved later on in Section 3.5).

DEFINITION 3.2.7 [6,7,10]: The isolinear momentum on an iso-Hilbert
space over the isofield of isocomplex numbers Ĉ (see Section 3.5 for details) is
characterized by

p̂k×̂ψ̂(t̂, r̂) = −î×̂ ∂̂

∂̂r̂k
ψ̂(t̂, r̂) =

= −i×̂Îi
k × ∂

∂r̂i
ψ̂(t̂, r̂) = K̂×̂ψ̂(t̂, r̂). (3.2.105)

Comparing the above formulation with Eq. (3.2.89), and in view of invari-
ance (3.2.95),we reach the following
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THEOREM 3.2.4 [6,7,10]: Planck’s constant h̄ is the fundamental unit
of the differential calculus underlying quantum mechanics, i.e., quantum me-
chanical eigenvalue equations can be identically reformulated in terms of the
isodifferential calculus with basic isounit h̄,

p × ψ(t, r) = −i × h̄ × ∂

∂r
ψ(t, r) ≡

≡ −i × ∂̂

∂̂r
ψ(t, r). (3.2.106)

In conclusion, Santilli’s isodifferential calculus establishes that the isounit
not only is the algebraic unit of hadronic mechanics, but also replaces Planck’s
constant with an integro-differential operator Î, as needed to represent contact,
nonlinear, nonlocal and nonpotential effects.

More specifically, Santilli’s isodifferential calculus establishes that, while in
exterior dynamical systems such as atomic structures, we have the conven-
tional quantization of energy, in interior dynamical systems such as in the
structure of hadrons, nuclei and stars, we have a superposition of quantized
energy level at atomic distances plus continuous energy exchanges at hadronic
distances.

Needless to say, all models of hadronic mechanics will be restricted by the
condition

lim
r→∞

Î ≡ h̄, (3.2.107)

under which hadronic mechanics recovers quantum mechanics uniquely and
identically.

DEFINITION 3.2.8 [6,7,17]: The isodual isodifferentials are defined by

d̂dr̂d = (−d̂†)(−r̂†) = d̂r̂, (3.2.108)

while isodual isoderivatives are given by

∂̂df̂d(r̂d)/̂dd̂dr̂d = −∂̂f̂(r̂)/̂d̂r̂. (3.2.109)

THEOREM 3.2.5 [6,7,17]: Isodifferentials are isoselfduals.

The latter new invariance constitutes an additional, reason why the isodual
theory of antimatter escaped attention during the 20-th century.
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3.2.6 Isocontinuity and its Isodual
The notion of continuity on an isospace was first studied by Kadeisvili [19]

in 1992 and it is today known as Kadeisvili’s isocontinuity. A review up
to 1995 was presented in monographs [6,7]. Rigorous mathematical study
of isocontinuity has been done by Tsagas and Sourlas [22–23], R. M. Falcón
Ganfornina and J. Núñez Valdés [24–26] and others. For mathematical studies
we refer the interested reader to the latter papers. For the limited scope of
this volume we shall present the notion of isocontinuity in its most elementary
possible form.

Let f̂(r̂) = f(T̂ × r̂)× Î be an isofunction on an isospace Ŝ over the isofield
R̂. The isomodulus of said isofunction is defined by [19]

|̂f̂(r̂)̂| = |f(T̂ × r̂)| × Î . (3.2.110)

DEFINITION 3.2.9 [19,20]: An infinite sequence of isofunctions f̂1(r̂),
f̂2(r̂), . . . is said to be “strongly isoconvergent” to the isofunction f̂(r̂) when

lim
k→∞

|̂f̂k(r̂) − f̂(r̂)̂| =̂ 0̂. (3.2.111)

while the “iso-Cauchy condition” can be defined by

|̂f̂m(r̂) − f̂n(r̂)̂| < δ̂ = δ × Î , (3.2.112)

where δ is a sufficiently small real number, and m and n are integers greater
than a suitably chosen neighborhood of δ.

The isotopies of other notions of continuity, limits, series, etc. can be eas-
ily constructed (see Refs. [6,7] for physical treatments and Refs. [22–26] for
mathematical treatments).

Note that functions that are conventionally continuous are also isocontin-
uous. Similarly, a series that is strongly convergent is also strongly isocon-
vergent. However, a series that is strongly isoconvergent is not necessarily
strongly convergent. We reach in this way the following important

THEOREM 3.2.6 [6,7]: Under the necessary continuity and regularity con-
ditions, a series that is conventionally divergent can always be turned into a
convergent isoform under a suitable selection of the isounit.

This mathematically trivial property has far reaching implications, e.g., the
achievement, for the first time in physics, of convergent perturbative series for
strong interactions, which perturbative treatments are conventionally diver-
gent (see Section 3.4).
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Similarly, the reader may be interested in knowing that, given a function
which is not square-integrable in a given interval, there always exists an isotopy
which turns the function into a square-integrable form [6,7]. The novelty is
due to the fact that the underlying mechanism is not that of a weight function,
but that of altering the underlying field.

The isodual isocontinuity is a simple isodual image of the preceding notions
of continuity and will be hereon assumed.

3.2.7 Isotopology and its Isodual
Topology is the ultimate foundation of quantitative sciences because it iden-

tifies on rigorous mathematical grounds the limitations of the ensuing descrip-
tion.

Throughout the 20-th century, all quantitative sciences, including particle
physics, nuclear physics, astrophysics, superconductivity, chemistry, biology,
etc., have been restricted to the use of mathematics based on the conven-
tional local-differential topology, with the consequence that the sole admitted
representations are those dealing with a finite number of isolated point-like
particles.

Since points are dimensionless, they cannot have contact interactions. There-
fore, an additional consequence is that the sole possible interactions are those
of action-at-a-distance type representable with a potential.

In conclusion, the very assumption of the conventional local-differential
topology, such as the conventional topology for the Euclidean space, or the
Zeeman topology for the Minkowski space, uniquely and unambiguously re-
strict the admitted systems to be local, differential and Hamiltonian.

This provided an approximation of systems that proved to be excellent
whenever the mutual distances of particles are much greater than their size as
it is the case for planetary and atomic systems.

However, the above conditions are the exception and not the rule in nature,
because all particles have a well define extended wavepacket and/or charge
distribution of the order of 10−13 cm. It is well known in pure and applied
mathematics that the representation of the actual shape of particles is impos-
sible with a local-differential topology.

Moreover, once particles are admitted as being extended, there is the emer-
gence of the additional contact, zero-range nonpotential interactions that are
nonlocal in the sense of occurring in a finite surface or volume that cannot be
consistently reduced to a finite number of isolated points.

Consequently, it is equally know by experts that conventional local-differen-
tial topologies cannot represent extended particles at short distances and their
nonlocal-nonpotential interactions, as expected in the structure of planets,
strongly interacting particles, nuclei, molecules, stars and other interior dy-
namical systems.
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The need to build a new topology, specifically conceived and constructed
for hadronic mechanics was suggested since the original proposal [5] of 1978.
It was not only until 1995 that the Greek mathematicians Gr. Tsagas and
D. S. Sourlas [22,23] proposed the first isotopology on scientific record formu-
lated on isospaces over ordinary fields. in 1996, the Italian-American physicist
R. M. Santilli [10] extended the formulation to isospaces over isofields. Finally,
comprehensive studies on isotopology were conducted by the Spanish Mathe-
maticians R. M. Falcón Ganfornina and J. Núñez Valdés [24,25]. As a result,
the new topology is hereon called the Tsagas-Sourlas-Santilli-Falcón-Núñez
isotopology (or TSSFN Isotopology for short).

The author has no words to emphasize the far reaching implications of
the new TSSFN isotopology because, for the first time in the history of sci-
ence, mathematics can consistently represent the actual extended, generally
nonspherical and deformable shape particles, their densities as well as their
nonpotential and nonlocal interactions.

As an example, Newton’s equations have remained unchanged in Newtonian
mechanics since the time of their conception to represent point-particles. No
consistent generalization was possible due to the underlying local-differential
topology and related differential calculus. As we shall see in the next section,
the isodifferential calculus and underlying isotopology will permit the first
known structural generalization of Newton’s equations in Newtonian mechan-
ics for the representation of extended particles.

New coverings of quantum mechanics, quantum chemistry, special relativity,
and other quantitative sciences are then a mere consequence. Perhaps more
importantly, the new clean energies and fuels permitted by hadronic mechanics
can see their origin precisely in the TSSFN isotopology, as we shall see later
on in this chapter.

In their most elementary possible form accessible to experimental physicists,
the main lines of the new isotopology can be summarized as follows. Being
nowhere singular, Hermitean and positive-definite, N -dimensional isounits can
always be diagonalized into the form

Î = Diag.(n2
1, n

2
2, . . . , n2

N ), nk = nk(t, r, v, . . . ) > 0, k = 1, 2, . . . , N.
(3.2.113)

Consider N isoreal isofields R̂k(n̂, +̂, ×̂) each characterized by the isounit
Îk = n2

k with (ordered) Cartesian product

R̂N = R̂1 × R̂2 × . . . × R̂N . (3.2.114)

Since each isofield R̂k is isomorphic to the conventional field of real numbers
R(n, +,×), it is evident that R̂N is isomorphic to the Cartesian product of N
ordinary fields

RN = R × R × . . . × R. (3.2.115)
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Let
τ = {RN , Ki} (3.2.116)

be the conventional topology on RN (whose knowledge is here assumed for
brevity), where Ki represents the subset of RN defined by

Ki = {P = (a1, a2, . . . , aN )/ni < a1, a2, . . . , aN < m; ni, mi, ai ∈ R}.
(3.2.117)

We therefore have the following:

DEFINITION 3.2.8 [10,22-25]: The isotopology can be defined as the simple
lifting on R̂N of the conventional topology on RN , and we shall simply write

τ̂ = {R̂N , K̂i}, (3.2.118a)

K̂i = {P̂ = (â1, â2, . . . , âN )/̂n̂i < â1, â2, . . . , âN < m̂; n̂i, m̂i, âi ∈ R̂}.
(3.2.118b)

As one can see, the above isotopology coincides everywhere with the conven-
tional topology of RN except at the isounit Î. In particular, τ̂ is everywhere
local-differential, except at Î which can incorporate nonlocal integral terms.

It is evident that isotopology can characterize for the first time in scientific
history, extended, nonspherical and deformable particles. In fact, for the case
of three-dimensions in diagonal representation (3.2.113), we have the charac-
terization of deformable spheroidal ellipsoids with variable semiaxes n2

1, n
2
2, n

2
3

depending on local quantities, such as energy, density, pressure, etc. For the
case of four-dimension the quantity n2

4 represents, for the first time in scientific
record, the density of the particle considered13.

The reader should be aware that the above formulation of the isotopology
is the simplest possible one, being restricted to the description of one isolated
isoparticle, that is, an extended and nonspherical particle on isospace over
isofields that, as such, has no interactions.

Consequently, numerous generalizations of the above formulations are possi-
ble and actually needed for hadronic mechanics. The first broadening is given
by the case of two or more isoparticles in which case the basic isounit is given
by the Cartesian product of two isounits of type (3.2.113). The second broad-
ening is given by exponential factors incorporating nonlinear integral terms as
in the general isounit (3.1.19). In the preceding formulation, these exponential
factors have been incorporated in the n’s since they are common factors.

13The reader is encouraged to inspect any desired textbook in particle physics and verify the complete
lack of representation of the density of the particle considered.
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A lesser trivial broadening of the above formulation of isotopology is given
by nondiagonal isounits that are capable of representing nonspheroidal shapes
and other complex geometric occurrences (see in Ref. [6], page 213 the case of
a nondiagonal isotopy contracting the dimensions from three to one, also re-
viewed in the next section). The study of the latter more general formulations
of isotopology is left to the interested reader.

DEFINITION 3.2.11 [22-25]: An isotopological isospace τ̂(R̂N ) is the iso-
space R̂N equipped with the isotopology τ̂ . An isocartesian isomanifold M̂(R̂N )
is the isotopological isospace M̂(R̂N ) equipped with a isovector structure, an
isoaffine structure and the mapping

F̂ : R̂N → R̂N ; â → f̂(â), ∀â ∈ R̂N . (3.2.119)

An iso-Euclidean isomanifold M̂(Ê(r̂, δ̂, R̂)) occurs when the N -dimensional
isospace Ê is realized as the Cartesian product (3.2.106) and equipped with
isotopology (3.2.118) with basic isounit (3.2.113).

The isodual isotopology and related notions can be easily constructed with
the isodual map (3.2.15) and its explicit study is left as an instructive exercise
for the interested reader.

3.2.8 Iso-Euclidean Geometry and its Isodual
The isotopies of the Euclidean space and geometry were introduced for the

first time by Santilli in Ref. [14] of 1983 as a particular case of the broader
isotopies of the Minkowski space and geometry treated in the next section.

The same isotopies were then studies in various works by the same author
and a comprehensive treatment was presented in Chapter 5 of Vol. I [6]. These
isotopies are today known as the Euclid-Santilli isospace and isogeometry.
The presentation of Vol. I will not be repeated here for brevity. We merely
limit ourselves to outline the main aspects for minimal self-sufficiency of this
monograph.

Consider the fundamental isospace for nonrelativistic hadronic mechanics,
the three-dimensional Euclid-Santilli isospace with contravariant isocoordi-
nates r̂, isometric δ̂ over the isoreals R̂ = R̂(n̂, +̂, ×̂) (see Section 3.3)

Ê(r̂, δ̂, R̂) : r̂ = (r̂k) = (x̂, ŷ, ẑ) = (rk) × Î = (x, y, z) × Î , k = 1, 2, 3;
(3.2.120a)

Î = Diag.(n2
1, n

2
2, n

2
3) = 1/T̂ > 0, nk = nk(t, r, v, a, µ, τ, . . . ) > 0,

(3.2.120b)
∆̂ = δ̂ × Î; δ̂ = T̂ × δ = Diag.(n−2

1 , n−2
2 , n−2

3 ), (3.2.120c)
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with basic isoinvarioant on Ê

r̂2̂ = r̂i×̂∆̂ij×̂r̂j = r̂i × δ̂ij × r̂j = r̂i × (T̂ k
i × δkj) × r̂j =

= x̂2̂ + ŷ2̂ + ẑ2̂ ==
x̂2

n2
1

+
ŷ2

n2
2

+
ẑ2

n2
3

∈ R̂. (3.2.121)

and projection on the conventional Euclidean space

r2 =
x2

n2
1

+
y2

n2
2

+
z2

n2
3

∈ R. (3.2.121)

where the scalar functions nk, besides being sufficiently smooth and positive-
definite, have an unrestricted functional dependence on time t, coordinates r,
velocities v, acceleration a, density µ, temperature τ , and any needed local
variable.

The Euclid-Santilli isogeometry is the geometry of the above isospaces. A
knowledge of the following main features is essential for an understanding of
nonrelativistic hadronic mechanics.

Since the isospaces Ê are all locally isomorphic to the conventional Eu-
clidean space E(r, δ, R), it is evident that the Euclid-Santilli isogeometry veri-
fies all axioms of the conventional geometry, as proved in detail in Section 5.2
of Vol. I [6]. In fact, the conventional and isotopic geometries coincide at the
abstract, realization free level to such an extent that they can be expressed
with the same abstract symbols, the differences between the conventional and
the isotopic geometries emerging only in the selected realizations of said ab-
stract axioms.

Note that, while the Euclidean space and geometry are unique, there exist
an infinite family of different yet isomorphic Euclid-Santilli isospaces and iso-
geometries, evidently characterized by different isometrics in three dimension
and signature (+,+,+).

Recall from Section 3.2.3 that the structure of the basic invariant is given
by Eq. (3.2.66). Therefore, the isosphere, namely, the image on Ê of the
perfect sphere on E remains a perfect sphere. However, the projection of the
isosphere on the original space E is a spheroidal ellipsoid, as clearly indicated
by invariant (3.2.121). Therefore, the isosphere on isospace over isofields uni-
fies all possible spheroidal ellipsoids on ordinary spaces over ordinary fields.
These features are crucial to understand later on the reconstruction of the
exact rotational symmetry for deformed spheres (see Fig. 3.6).

Since the functional dependence of the isometric is unrestricted except ver-
ifying the condition of positive-definiteness, it is easy to see that the Euclid-
Santilli isogeometry unifies all possible three-dimensional geometries with the
signature) (+,+,+), thus including as particular cases the Riemannian, Fins-
lerian, non-Desarguesian and other geometries. As an example, the Rie-
mannian metric gij(r) = gt is a trivial particular case of Santilli’s isometric
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Figure 3.6. A schematic view of the “isosphere”, namely, the perfect sphere on isospace over
isofield represented by isoinvariant (3.2.121), that is assumed as the geometric representation
of hadrons used in this monograph. The actual nonspherical and deformable shape of hadrons
is obtained by projecting the isosphere in our Euclidean space, as illustrated in the last
identify of Eq. (3.2.122).

δ̂ij(t, r, . . . ). This occurrence has profound physical implications that will be
pointed out in Section 3.5.

Yet another structural difference between conventional and isotopic geome-
tries is that the former has the same unit for all three reference axes. In fact,
the geometric unit I = Diag.(1, 1, 1) is a dimensionless representation of the
selected units, for instance, I = diag.(1 cm, 1 cm, 1 cm). In the transition to
the isospace, the units are different for different axes and we have, for in-
stance, Î = Diag.(n2

1 cm, n2
2 cm, n2

3 cm). It then follows that shapes detected
by our sensory perception are not necessarily absolute, in the sense that they
may appear basically different for an isotopic observer (see Fig. 3.7).

Note that in the conventional space E(r, δ, R) there are two trivially different
trivial units, namely, the unit I = +1 of the base field R and the unit I =
Diag.(1, 1, 1) of the space, related geometry and symmetries. The isotopies
have identified for the first time the fact that the unit of the space must coincide
with the unit of the base field.

In fact, the isounit of isospace Ê(r̂, δ̂, R̂) must coincide with the isounit of
the isofield R̂. It is then evident that, at the limit Î → I = Diag.(1, 1, 1) the
unit matrix I = Diag.(1, 1, 1) must be the unit of both the Euclidean space
and of the basic field. This implies a trivial reformulation of R that is ignored
hereon.

Another important notion is that of isodistance between two points P1 and
P2 on Ê that can be defined by the expression

D̂2
1−2 = (x̂1 − x̂2)2/n2

1 + (ŷ1 − ŷ2)2/n2
2 + (ẑ1 − ẑ2)2/n2

3. (3.2.123)
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Figure 3.7. A schematic view of the “space isocube”, namely, an ordinary cube inspected
by two observers, an exterior observer in Euclidean space with basic units of measurements
I = Diag.(1 cm, 1 cm, 1 cm) and an interior observer on isospace with basic isounits Î =
Diag.(n2

x cm, n2
y cm, n2

z cm). It it then evident that, if the exterior observer measures, for
instance, the sides of the cube to be 3m, the interior observers measures different length
that can be bigger or smaller than 3m depending on whether the isounit is smaller or bigger,
respectively, than the original unit. Also, for the case of the Euclidean observer, the units
in the three space directions are the same, while the corresponding isounits have different
values for different directions. Therefore, the same object appears as a cube of a given size
to the external observer, while having a completely different shape and size for the internal
observer.

It then follows that local alterations of the space geometry cause a change
in the distance, an occurrence first identified in Ref. [6] as originating from
a lifting of the units, and today known as isogeometric locomotion studied in
Chapter 13. We are here referring to a new form of non-Newtonian locomotion
in which objects can move without the application of a force or, equivalently,
without any application of the principle of action and reaction (see Figure
3.8).

Finally, it is important to point out that the dimensionality of the original
Euclidean space is not necessarily preserved under isotopies. This occurrence
constitutes another intriguing epistemological feature because isotopies are
axiom-preserving. Therefore, our senses based on the three Eustachian lobes
perceive no difference in dimension between a conventional and an isotopic
shape.
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The epistemological question raised by the isotopies is then whether our
perception of space as three-dimensional is real, in the sense of being intrinsic,
or it is a mere consequence of our particular sensory perception, with different
dimensions occurring for other observers.14

The occurrence was discovered by Santilli in Ref. [6], page 213, via the
following isotopic element

T̂ =

 1 0 0
0 0 1
0 −1 0

 (3.2.124)

that is positive definite since Det T̂ = 1, thus being a fully acceptable isotopic
element.

It is easy to see that the isoinvariant of the Euclid-Santilli isospace charac-
terized by the above non-diagonal isotopy is given by

r̂2̂ = r̂i × T̂ k
i × δkj × r̂j =

= x̂ × ẑ + ŷ × ẑ − ẑ × ŷ = x̂ × x̂, (3.2.125)

namely, in this case the isotopic image of the three-dimensional Euclidean
space is one dimensional.

This occurrence provides another illustration of the fact that, despite their
simplicity, the geometric implications of the isotopies are rather deep indeed.

The isodual Euclid-Santilli isospace in three dimension can be represented
by the expressions

Êd(r̂d, ∆̂d, R̂d) : r̂d = (−x̂,−ŷ,−ẑ); (3.2.126a)

Îd = Diag.(−n2
1,−n2

2,−n2
3) = −1/T̂ > 0, nk = nk(t, r, . . . ) > 0,

∆̂d = δ̂d × Î , δ̂d = T̂ d ×d δd = Diag.(−n−2
1 ,−n−2

2 ,−n−2
3 ), (3.2.126b)

with isodual isoinvariant on R̂d

r̂d2̂d

= r̂di×̂d∆̂d
ij×̂dr̂dj =

= −x̂d2̂d

− ŷd2̂d

− ẑd2̂d

∈ R̂d. (3.2.127)

and projection on the isodual Euclidean space

rd2
= (−x2/n2

1 − y2/n2
2 − z2/n2

3) × Î ∈ Rd. (3.2.128)

A study of the isodual Euclide-Santilli isogeometry from Vol. I [6] is essential
for a study of antimatter in interior conditions.

14As we shall see in Chapter 4, an even deeper epistemological issue emerges from our hyper-isotopies
in which the unit is characterized by a set of values. In this case, space can be “three-dimensional”
yet be “hyper-dimensional”, in the sense that each dimension can be multi-valued.
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Figure 3.8. A view of the three Eustachian lobes allowing us to perceive three-dimensional
shapes. The intriguing epistemological issue raised by the Euclid-Santilli isogeometry is
whether living organisms with different senses perceive the same object with different shape
and size than ours. As illustrated with the isobox of Figure 3.7, the same object can appear
with dramatically different shapes and sizes to a conventional and an isotopic observer, as well
as in dimension different than the original ones, as illustrated in the text. Another illustration
of the meaning and importance of isotopies is that being axiom-preserving, different shapes,
sizes and dimensions on isospaces are rendered compatible with our sensory perception.

3.2.9 Minkowski-Santilli Isogeometry and its Isodual
3.2.9A. Conceptual Foundations. The isotopies of the Minkowski space
and geometry are the main mathematical methods of relativistic hadronic me-
chanics, because they are at the foundations of the Poincaré-Santilli isosym-
metry, and related broadening of special relativity for relativistic interior dy-
namical systems.

The isotopies of the Minkowski space and geometry were first proposed
by Santilli in Ref. [14] of 1983 and then studies in numerous papers (see
monographs [6,7,14,15] and papers quoted therein) and are today known as
Minkowski-Santilli isospace and isogeometry.

Due to their fundamental character, the new spaces and geometry were
treated in great details in Refs. [6,7], particularly in the second edition of
1995, and that presentation is here assumed as known for brevity.
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The primary purpose of this section is to identify the most salient advances
occurred since the second edition of Refs. [6,7] with particular reference to
the geometric treatment of gravitation.

In essence, the original efforts in the construction of relativistic hadronic me-
chanics were based on two different isotopies, the isotopies of the Minkowskian
geometry for nongravitational profiles, and the isotopies of the Riemannian ge-
ometry for gravitational aspects. The presentation of Refs. [6,7] was based on
this dual approach.

Subsequently, it became known that the isotopies of the Riemannian geome-
try could not resolve the catastrophic inconsistencies of gravitation identified in
Chapter 1 because they are inherent in the background Riemannian treatment
itself, thus persisting under isotopies.

The resolution of these catastrophic inconsistencies was finally reached by
Santilli in Ref. [26] of 1998 via the unification of the Minkowskian and Rie-
mannian geometries into Minkowski-Santilli isogeometry. In fact, the isomet-
ric of the latter geometry admit, as a particular cases, all possible Riemannian
metrics.

Consequently, it became clear that the various methods used for the Rie-
mannian geometry (such as covariant derivative, Christoffel, symbols, etc.) are
inapplicable to the conventional Minkowski space evidently because flat, but
the same methods are fully applicable to the Minkowski-Santilli isogeometry.

The achievement of a geometric unification of the Minkowskian and Rie-
mannian geometries reached in memoir [26] permitted truly momentuous ad-
vances, such as the geometric unification of the special and general relativities,
an axiomatically consistent grand unification of electroweak and gravitational
interactions, the first known axiomatically consistent operator form of gravity,
and other basic advances reviewed in Section 3.5.

3.2.9B. Minkowski-Santilli Isospaces. We now review in this subsec-
tion the foundations of the Minkowski-Santilli isospaces by referring interested
readers to volumes [6,7] for details.

DEFINITION 3.2.12 [26]: Consider the conventional Minkowski space

M = M(x, η, R) : x = (xµ) = (r, cot), (3.2.129a)

xµ = ηµν × xν , xµ = ηµν × xν , (3.2.129)

where co is the speed of light in vacuum, metric

η = (ηµν)Diag.(+1,+1,+1,−1), ηµν = [(ηα,β)−1]µν , (.3.2.130)

basic unit
I = Diag.(+1,+1,+1,+1), (3.2.131)
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and invariant on the reals

x2 = xµ × xµ = (xµ × ηµν × xν) × I ∈ R = R(n, +,×), (3.2.132)

µ, ν, α, β = 1, 2, 3, 4.

Then, the Minkowski-Santilli isospaces can be defined by isotopies

M̂ = M̂(x̂, Ĝ, R̂) : x̂ = (x̂µ) = (r, cot) × Î , (1.33a)

x̂µ = Ĝµν×̂x̂ν , x̂µ = Ĝµν×̂x̂ν , (3.2.133)

with isometric on isospaces over isofields

Ĝ = η̂ × Î = (T̂ ρ
µ × ηρν) × Î =

= Diag.(T̂11, T̂22, T̂33, T̂44) × Î ∈ R̂ = R̂(n̂, +̂, ×̂), (3.2.134a)

Ĝµν = [(Ĝα,β)−1]µν , (3.2.134b)

and isounit
Î = Diag.(T̂−1

11 , T̂−1
22 , T̂−1

33 , T̂−1
44 ) (3.2.135)

where T̂µν are positive-definite functions of spacetime coordinates x, velocities
v, accelerations a, densities µ, temperature τ , wavefunctions, their derivatives
and their conjugates and any other needed quantity

T̂µν = T̂µν(x, v, a, µ, τ, ψ, ψ†, ∂ψ, ∂ψ†, . . . ) > 0 (3.2.136)

isoinvariant on isospaces over the isofield of isoreal numbers

x̂2̂ = x̂µ×̂x̂µ = (x̂µ×̂Ĝµν×̂x̂ν) × I ∈ R̂ = R(n̂, +̂, ×̂) (3.2.137)

with projection in our spacetime

M̂(x, η̂, R) : x = (xµ) × I, (3.2.138a)

xµ = η̂µν × xν , xµ = η̂µν × xν , (3.2.138b)

metric over the field of real numbers

η̂ = (η̂µν) =

= (T̂ ρ
µ × ηρν) = Diag.(T̂11, T̂22, T̂33, T̂44) ∈ R = R(n, +,×), (3.2.139a)

η̂µν = [(η̂α,β)−1]µν , (3.2.139b)

and invariant in our spacetime over the reals

x2 = xµ × xν = xµ × η̂µν(x, v, a, µ, τ, ψ, ψ†, ∂ψ, ∂ψ†, . . . ) × xν =
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= T11 × x2
1 + T̂22 × x2

2 + T̂33 × x2
3 − T̂44 × x2

4 ∈ R. (3.2.140)

Note that all scalars on M must be lifted into isoscalars to have meaning
for M̂ , i.e., they must have the structure of the isonumbers n̂ = n × Î. This
condition requires the re-definition x → x̂ = x × Î, ηµν → Ĝµν = η̂µν × Î,
x2 → x̂2̂, etc.

The reader interested in learning in depth the new isogeometry should also
study from the preceding sectyions the different realizations of the isometry
whether realized in the original Minkowskian coordinates or in the isocoordi-
nates, since the functional dependence is different in these two cases.

Note however the redundancy in practice for using the forms x̂ = x× Î and
Ĝ = η̂× Î because of the identity x̂2̂ = x̂µ×̂Ĝµν×̂x̂ν ≡ (xµ × η̂ν ×xν)× Î. For
simplicity we shall often use the conventional coordinates x and the isometric
will be referred to η̂ = T̂ × η. The understanding is that the full isotopic
formulations are needed for mathematical consistency.

A fundamental property of the infinite family of generalized spaces (3.2.133)
is the lifting of the basic unit I → Î while the metric is lifted of the inverse
amount, η → η̂ = T̂ × η, Î = T̂−1. This implies the preservation of all
original axioms, and we have the following:

THEOREM 3.2.7 [26]: All infinitely possible isominkowski spaces M̂(x̂, η̂,-
R̂) over the isofields R̂(n̂, +̂, ×̂) with a common positive-definite isounit Î pre-
serve all original axioms of the Minkowski space M(x, η, R) over the reals
R(n, +,×).

The nontriviality of the lifting is that the Minkowskian axioms are preserved
under an arbitrary functional dependence of the metric η̂ = η̂(x, v, a, µ, τ, . . . )
for which the sole x-dependence of the Riemannian metric g(x) is opnly a
simple particular case. As a matter of fact, we have the following

THEOREM 3.2.8 [26]: Minkowski-Santilli isospaces are “directly universal”
in spacetime, that is, they represent all infinitely possible spacetimnes with
signature (+,+,+,−) (“universality”), directly with the isometric and without
any use of the transformation theory (“direct universality”).

Note that all possible “deformations” of the Minkowski space are also par-
ticular cases of the above isospaces. However, the former are still referred to
the old unit I, thus losing the isomorphic between deformed and Minkowski
spaces, while the isotopies preserve the original axioms by construction.
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A fundamental physical characteristic of the Minkowski-Santilli isospaces is
that it alters the units of space and time. Recall that the unit

I = Diag.({1, 1, 1}, 1)

of the Minkowski space represents in a dimensionless form the units of the three
Cartesian axes and time, e.g., I = (+1 cm,+1 cm,+1 cm,+1 sec). Recall also
that the Cartesian space-units are equal for all axes.

Consider now the isospaces, and recall that Î is positive-definite. Conse-
quently, we have the following lifting of the units in which the T̂µµ quantities
are reinterpreted as constants

I = (+1 cm,+1 cm,+1 cm,+1 sec) →

→ Î = Diag.(n2
1, n

2
2, n

2
3, n

2
4) = 1/T̂ , Îµ

µ = n2
µ, nµ > 0. (3.2.141)

This means that, not only the original units are now lifted into arbitrary
positive values, but the units of different space axes generally have different
values. Jointly, the components of the metric are lifted by the inverse amounts
n−2

µ . This implies the preservation on M̂ over R̂ of the original numerical
values on M over R, including the crucial preservation of the maximal causal
speed co, as we shall see in Section 3.5.

Note also the necessary condition that the isospace and isofield have the
same isounit Î. This condition is absent in the conventional Minkowski space
where the unit of the space is the unit matrix I = Diag.(1, 1, 1, 1), while that
of the underlying field is the number I = +1. Nevertheless, the latter can be
trivially reformulated with the common unit matrix I, by achieving in this
way the form admitted as a particular case by the covering isospaces

M(x, η, R) : x = {xµ × I}, x2 = (xµ × ηµν × xν) × I ∈ R. (3.2.142)

The structure of both the conventional and isotopic invariants is therefore
given by Theorem 3.2.66, namely

Basic Invariant = (Length)2 × (Unit)2. (3.2.143)

which illustrates more clearly the preservation under the dual lifting η → η̂ =
T̂ × η and I → Î = 1/T̂ of the original axioms as well as numerical values.

THEOREM 3.2.9 [6,7,26]: Conventional and isotopic symmetries of space-
time are 11-dimensional.

Proof. In addition to the 10-dimensionality of the Poincaré symmetry,
there is an additional 11-th dimensionality characterized by the isotransform

η → η̂ = η/n2, I → Î = n2 × I, (3.2.144)
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Figure 3.9. A view of the “spacetime isocube” characterized by the “space isocube” of
Figure 3.7 now inspected in two spacetimes, the conventional Minkowski spacetime in the
exterior and Santilli isospacetime in the interior. In addition to the variations of shape, size
and dimensions indicated in Figure 3.7, the same object can be in different times for the two
observers, all in a way fully compatible with our sensory perception. Consequently, seeing in
a telescope a far away quasar or galaxy it does not mean that that astrophysical structure
ie necessarily in our time, since it could be evolving far away in the future or in the past.

where n is a non-null constant. q.e.d.
Note the crucial role of Santilli’s isonumbers in the above property. This

explains why the 11-th dimensionality remained undiscovered throughout the
20-th century.

A significant difference between the conventional space M and its isotopes
M̂ is that the former admit only one formulation, the conventional one, while
the latter admit two formulations: that on isospace itself (i.e., expressed with
respect to the isounit Î) and its projection in the original space M (i.e., ex-
pressed with respect to the conventional unit I).

Note that the projection of M̂(x̂, M̂ , R̂) into M(x, η, R) is not a confor-
mal map, but an inverse isotopic map because it implies the transition from
generalized units and fields to conventional units and fields.

The axiomatic motivation for constructing the isotopies of the Minkowskian
geometry is that any modification of the Minkowski metric requires the use of
noncanonical transforms x → x′(x),

ηµν → η̂µν =
∂x′α

∂xµ
ηαβ

∂x′β

∂xν
�= ηµν , (3.2.145)

and this includes the case of the transition from the Minkowskian metric η to
the Riemannian metric g(x).
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In turn, all noncanonical theories, thus including the Riemannian geometry,
do not possess invariant units of space and time, thus having the catastrophic
inconsistencies studied in Chapter 1. A primary axiomatic function of the
isospace is that of restoring the invariance of the basic units, as established by
the Poincaré-Santilli isosymmetry.

This is achieved by embedding all noncanonical content in the generalization
of the unit. Invariant for noncanonical structures such as Riemannian metrics,
is then assured by the fact indicated earlier that, whether conventional or
generalized, the unit is the basic invariant of any theory.

Stated in different terms, a primary axiomatic difference between the special
and general relativities is that the time evolution of the former is a canonical
transform, thus implying the majestic mathematical and physical consistency
of special relativity recalled in Chapter 1, while the time evolution of the latter
is a noncanonical transform, thus implying a number of unresolved problematic
aspects that have been lingering throughout this century.

The reformulation of the Riemannian geometry in terms of the Minkowskian
axioms is the sole possibility known to this author for achieving axiomatic
consistency under a nontrivial functional dependence of the metric.

In summary, Minkowski-Santilli isospaces have the following primary appli-
cations. First, they are used for a re-interpretation of the Riemannian metrics
g(x) for the particular case

η̂ = η̂(x) = g(x) (3.2.146)

characterizing exterior gravitational problems in vacuum. Second, the same
isospaces are used for the characterization of interior gravitational problems
with isometrics of unrestricted functional dependence

η̂ = η̂(x, v, a, µ, τ, . . . ) = g(x, v, a, µ, τ, . . . ) (3.2.147)

while preserving the original Minkowskian axioms.
Since the explicit functional dependence is inessential under isotopies, our

studies will be generally referred to the interior gravitational problem. Unless
otherwise stated, only diagonal realizations of the isounits will be used hereon
for simplicity. An example of nondiagonal isounits inherent in a structure
proposed by Dirac is indicated in Section 3.5. More general liftings of the
Minkowski space of the so-called genotopic and multivalued-hyperstructural
type will be indicated in Chapter 4.

3.2.9C. Isoderivative, Isoconnection, and Isoflatness. In the preced-
ing subsections we have presented the Minkowskian aspects of the new iso-
geometry. We are now sufficiently equipped to present the novel part of the
Minkowski-Santilli isogeometry, its Riemannian character as first derived in
Ref. [26].
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Our study is strictly in local coordinates representing the fixed frame of the
observer without any un-necessary use of the transformation theory or ab-
stract treatments. Our presentation will be as elementary as possible without
reference to advanced topological requirements, such as Kadeisvili’s isocon-
tinuity (Section 3.2.6), isomanifolds and related TSSFN isotopology (Section
3.2.7) .

Also, our presentation is made, specifically, for the (3+1)-dimensional iso-
spacetime, with the understanding that the extension to arbitrary dimensions
and signatures or signatures different than the conventional one (+,+,+,−)
is elementary, and will be left to interested readers.

Let M̂(x̂, Ĝ, R̂) be a Minkowski-Santilli isospace and let M̂(x, η̂, R) be its
projection in our spacetime as per Definition 3.2.12. To illustrate the transition
from isocoordinates x̂ to conventional spacetime coordinates x, we shall denote
the projection M̂ = M̂(x̂, η̂, R). This notation emphasizes that the referral
of the isospace to the conventional units and field causes the reduction of the
isometric from the general form Ĝ = η̂× Î to η̂ = T̂×η, where, as now familiar,
Î = 1/T̂ and η = Diag.(1, 1, 1,−1) is the familiar Minkowskian metric.

According to this notation the Riemannian content of the Minkowski-Santilli
isogeometry can be unified in both its isospace formulation properly speak-
ing and its projection in our spacetime. All differences in the interpretations
whether occurring in isospace or in our spacetime are then deferred to the
selection of the basic unit.

Consider now the infinitesimal version of isoinvariant (3.2.137) permitted
by the isodifferential calculus

d̂ŝ2̂ = d̂x̂µ×̂d̂x̂µ ∈ R̂. (3.2.148)

The isonormal coordinates occur when the isometric η̂ is reduced to the Min-
kowski metric η as in conventional Riemannian geometry. Consequently,
isonormal coordinates coincide with the conventional normal coordinates, and
the Minkowski-Santilli isogeometry verifies the principle of equivalence as for
the conventional Riemannian geometry.

By using the isodifferential calculus, we now introduce the isodifferential of
a contravariant isovector field on M̂ over R̂ 15

d̂X̂β = (∂̂µX̂β)×̂d̂x̂µ = Îρ
µ × (∂ρX̂

β)×̂T̂µ
σ × dx̂σ ≡

≡ (∂µXβ) × dx̂µ = (∂ρXβ) × η̂ρσ × dx̂σ, (3.2.149)

where the last expression is introduce to recall that the contractions are in
isospace. The preceding expression then shows that isodifferentials of isovec-

15We should note that the role of the isounit and of the isoelement in this presentation and in that of
Ref. [26] are interchanged for general compatibility with the various applications and developments.
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tor fields coincide at the abstract level with conventional differentials for all
isotopies of the class here admitted (that with Î > 0).

DEFINITION 3.2.13 [26]: The isocovariant differential are defined by

D̂X̂β = d̂X̂β + Γ̂β
αγ×̂X̂α×̂d̂x̂γ , (3.2.150)

with corresponding isocovariant derivative

X̂β

|̂µ
= ∂̂µX̂β + Γ̂β

αµ×̂X̂ α̂, (3.2.151)

where the iso-Christoffel’s symbols are given by

Γ̂β
αγ(x, v, a, µ, τ, . . . ) =

1̂
2̂
×̂(∂̂αη̂βγ + ∂̂γ η̂αβ − ∂̂β η̂αγ) × Î = Γ̂γβα, (3.2.152a)

Γ̂β
αγ = η̂βρ × Γ̂αργ = Γ̂β

γα. (3.2.152b)

Note the unrestricted functional dependence of the connection which is no-
toriously absent in conventional treatments. Note also the abstract identity
of the conventional and isotopic connections. Note finally that local numerical
values of the conventional and isotopic connections coincide when computed in
their respective spaces. This is due to the fact that in Eq.s (3.2.152) η̂ ≡ g(x)
for exterior problems, while the value of derivatives ∂µ and isoderivatives ∂̂µ

coincide when computed in their respective spaces.
Note however that, when projected in the conventional spacetime, the con-

ventional and isotopic connections are different even in the exterior problem
in which η̂ = g(x),

Γ̂αβγ =
1
2
× (Îµ

α × ∂µgβγ + Îρ
γ × ∂ρη̂αβ − Îσ

β × ∂σgαγ)× Î �= Γαβγ × Î . (3.2.153)

The extension to covariant isovector fields and covariant or contravariant
isotensor fields is consequential.

Without proof we quote the following important result from Ref. [26]:

LEMMA 3.2.7 (Iso-Ricci Lemma) [26]: Under the assumed conditions,
the isocovariant derivatives of all isometrics on Minkowski-Santilli isospaces
spaces are identically null,

η̂
αβ |̂γ ≡ 0, α, β, γ = 1, 2, 3, 4. (3.2.154)

The novelty of the isogeometry is then illustrated by the fact that the Ricci
property persists under an arbitrary dependence of the metric, as well as under
Minkowskian, rather than Riemannian axioms.
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The isotorsion on M̂ is defined by

τ̂β
α γ = Γ̂β

αγ − Γ̂β
γα, (3.2.155)

and coincides again with the conventional torsion at the abstract level, al-
though the two torsions have significant differences in their explicit forms
when both projected in our space-time.

DEFINITION 3.2.14 [26]: The Minkowski-Santilli isogeometry is charac-
terized by the following isotensor: the isoflatness isotensor

R̂β
αγδ = ∂̂δΓ̂β

αγ − ∂̂γΓ̂β
αδ + Γ̂β

ρ δ×̂Γ̂ρ
αγ − Γ̂β

ργ×̂Γ̂ρ
αδ; (3.2.156)

the iso-Ricci isotensor
R̂µν = R̂β

µνβ ; (3.2.157)

the isoflatness isoscalar
R̂ = η̂αβ × R̂αβ ; (3.2.158)

the iso-Einstein isotensor

Ĝµν = R̂µν − 1̂
2
×̂N̂µν×̂R̂, N̂µν = η̂µν × Î; (3.2.159)

and the isotopic isoscalar

Θ̂ = N̂αβ×̂N̂γδ×̂(Γ̂ραδ×̂Γ̂ρ
γβ − Γραβ×̂Γ̂ρ

γδ) =

= Γ̂ραβ×̂Γ̂ρ
γδ×̂(N̂αδ×̂N̂γβ − N̂αβ×̂N̂γδ). (3.2.160)

the latter being new for the Minkowski-Santilli isogeometry.

Note the lack of use of the term “isocurvature” and the use instead of the
term “isoflatness”. This is due to the fact that the prefix “iso-” represents the
preservation of the original axioms. The term “isocurvature” would then be
inappropriate because the basic axioms of the geometry are flat.

In any case, the main problem underlying the studies herein reported is, as
indicated in Chapter 1, that curvature is the ultimate origin of the catastrophic
inconsistencies of general relativity. Consequently, all geometric efforts are
here aimed at the replacement of the notion of curvature with a covering
notion resolving the indicated catastrophic inconsistencies.

As we shall see better in Section 3.5, the notion of “isoflatness” does in-
deed achieve the desired objectives because flatness and its related invariance
of gravitation under the Poincaré-Santilli isosymmetry is reconstructed on
isospaces over isofields, while the ordinary curvature emerge as a mere projec-
tion in our spacetime.
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Figure 3.10. Primary objectives of the Minkowski-Santilli isogeometry are the resolution
of the catastrophic inconsistencies of the Riemannian formulation of exterior gravitation
(Section 1.4) and a representation of interior gravitation as occurring for the Sun depicted
in this figure and any other massive object. These objectives are achieved via the isotopies
of the Minkowskian geometry since they are flat in isospace, thus admitting a well defined
invariance for all possible gravitation, by adding sources requested by the Freud identity
and other reasons, and by unifying exterior and interior gravitational problem in a single
formulation in isospace that formally coincides with that for the exterior problem, the interior
effects being incorporated in the isounit (see Section 3.5).

3.2.9D. The Five Identities of the Minkowski-Santilli Isogeometry.
By continuing our review of memoir [26], tedious but simple calculations yield
the following five basic identities of the Minkowski-Santilli isogeometry:

Identity 1: Antisymmetry of the last two indices of the isoflatness isotensor

R̂β
αγδ = −R̂β

αδγ ; (3.2.161)

Identity 2: Symmetry of the first two indices of the isoflatness isotensor

R̂αβγδ ≡ R̂βαγδ; (3.2.162)
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Identity 3: Vanishing of the totally antisymmetric part of the isoflatness
isotensor

R̂β
αγδ + R̂β

γ δα + R̂β
δ αγ ≡ 0; (3.2.163)

Identity 4: Iso-Bianchi identity

R̂β
αγδ̂|ρ + R̂β

αργ |̂δ + R̂β
αδρ̂|γ ≡ 0; (3.2.164)

Identity 5: Iso-Freud identity

R̂α
β − 1̂

2
×̂δ̂α

β ×̂R̂ − 1̂
2
×̂δ̂α

β ×̂Θ̂ = Ûα
β + ∂̂ρV̂

αρ
β , (3.2.165)

where Θ̂ is the isotopic isoscalar and

Ûα
β = −1

2
∂̂Θ̂

∂̂η̂αβ

|̂α

η̂αβ

|̂β
, (3.2.166a)

V̂ αρ
β =

1
2
[η̂γδ(δα

β Γ̂ρ
αδ − δρ

βΓ̂ρ
γδ)+ (3.2.166b)

+(δρ
β η̂αγ − δα

β η̂ργ)Γ̂δ
γδ + η̂ργΓ̂α

βγ − η̂αγΓ̂ρ
βγ ], (3.2.166c)

Note that the conventional Riemannian geometry is generally thought to
possess only four identities. In fact, the fifth identity (3.2.165) is generally
unknown in the contemporary literature in gravitation as the reader is en-
couraged to verify in the specialized literature in the Riemannian geometry
(that is so vast to discourage discriminatory listings).

The latter identity was introduced by Freud [27] in 1939, treated in detail by
Pauli in his celebrated book [28] of 1958 and then generally forgotten for a half
a century, apparently because of its evident incompatibility between Einstein’s
conception of exterior gravitation in vacuum as pure curvature without source
(see Section 3.4)

Gα
β = Rα

β − 1
2
δα
β R = 0, (3.2.167)

and the need for a source term also in exterior gravitation in vacuum mandated
by the Freud identity and other reasons

Rα
β − 1

2
δα
β R − 1

2
δα
β Θ = Uα

β + ∂̂ρV
αρ
β . (3.2.168)

Freud’s identity was rediscovered by the author during his accurate study of
Pauli’s historical book and studied in detail in Refs. [6,7] of 1992. Additional
studies of the Freud identity were done by Yilmaz [30]. Following a suggestion
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by the author, the late mathematician Hanno Rund [29] studied the identity
in one of his last papers and proved that:

LEMMA 3.2.8 (Rund’s Lemma) [29]: Freud’s identity is a bona fide identity
for all Riemannian spaces irrespective of dimension and signature.

In this way, Rund confirming the general need of a source also in vacuum
(see Sections 1.4 and 3.5).

Following Ref. [26], in this paper we have presented the isotopies of the
Freud identity on Minkowski-Santilli isospaces, as characterized by the isodif-
ferential calculus. Its primary functions for this monograph is to identify the
geometric structure of the interior gravitational problem. The persistence of
the source in vacuum as per the Freud identity, electrodynamics and other
needs will then be consequential, thus confirming the inconsistency of Ein-
stein’s conception of gravity in vacuum as pure curvature without source.

Note that all conventional and isotopic identities coincide at the abstract
level.

3.2.9E. Isoparallel Transport and Isogeodesics. An isovector field X̂β

on M̂ = M̂(x̂, M̂ , R̂) is said to be transported by isoparallel displacement
from a point m̂(x̂) on a curve Ĉ on M̂ to a neighboring point m̂′(x̂ + d̂x̂) on
Ĉ if

D̂X̂β = d̂X̂β + Γ̂β
αγ×̂X̂α×̂d̂x̂γ ≡ 0. (3.2.169)

or in integrated form

X̂β(m̂′) − X̂β(m) =
∫̂ m̂′

m̂

∂̂X̂β

∂̂x̂α

d̂x̂α

d̂ŝ
×̂d̂ŝ. (3.2.170)

where one should note the isotopic character of the integration. The isotopy
of the conventional case then yields the following:

LEMMA 3.2.9 [26]: Necessary and sufficient condition for the existence of
an isoparallel transport along a curve Ĉ on a (3+1)-dimensional Mionkowski-
Santilli isospace is that all the following equations are identically verified along
Ĉ

R̂β
αγδ×̂X̂α = 0, α, β, γ, δ = 1, 2, 3, 4. (3.2.171)

Note, again, the abstract identity of the conventional and isotopic parallel
transport. However, it is easy to see that the projection of the isoparallel
transport in ordinary spacetime is structurally different than the conventional
parallel transport.

Consider, as an example, an extended object in gravitational fall in atmo-
sphere (see Figure 3.12). Its trajectory is evidently irregular and depends on
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Figure 3.11. A schematic view of two objects released from the Pisa tower. The vertical
trajectory represents the approximate geodesic considered by Galileo, used by Einstein and
adopted until the end of the 20-th century, namely, the approximation under the lack of
resistance due to our atmosphere. The Minkowski-Santilli isogeometry has been built to
represent as isogeodesics actual trajectories within physical media.

the actual shape of the object, as well as its weight. The understanding of the
new Minkowski-Santilli isogeometry requires the knowledge of the fact that
said trajectory is represented on isospace over isofields as a straight line, that
is, via the trajectory in the absence of the resistive medium. The actual, ir-
regular trajectory appears only in the projection of said isotrajectory in our
spacetime.

if the latter treatment is represented by a rocket, one would note a twisting
action as occurring in the reality of motion within physical media, which is
evidently absent in the exterior case.

Along similar lines, we say that a smooth isopath x̂α on M̂ with isotangent
v̂α = d̂x̂α/d̂ŝ is an isogeodesic when it is solution of the isodifferential equations

D̂v̂β

D̂ŝ
=

d̂v̂

d̂ŝ
+ Γ̂αβγ×̂

d̂x̂α

d̂ŝ
×̂ d̂x̂γ

d̂ŝ
= 0. (3.2.172)
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It is easy to prove the following:

LEMMA 3.2.10 [26]: The isogeodesics of a Minkowski-Santilli isospace M̂
are the isocurves verifying the isovariational principle

δ̂

∫̂
[Ĝαβ(x̂, v̂, â, µ, τ, . . . )×̂d̂x̂α×̂d̂x̂β]

ˆ1/2 = 0. (3.2.173)

where again isointegration is understood.

Finally, we point out the property inherent in the notion of isotopies ac-
cording to which

COROLLARY 3.2.10A: [26]: Trajectories in an ordinary Riemannian space
coincide with the corresponding isogeodesic trajectories in Minkowski-Santilli
isospace, but not with the projection of the latter in the original space.

For instance, if a circle is originally a geodesic, its image under isotopy in
isospace remains the perfect circle, the isocircle (Section 3.2.9), even though
its projection in the original space can be an ellipse. The same preservation
in isospace occurs for all other curves.

The differences between a geodesic and an isogeodesic therefore emerge only
when projecting the latter in the space of the former.

An empirical but conceptually effective rule is that interior physical media
“disappear” under their isoteometrization, in the sense that actual trajectories
under resistive forces due to physical media (which are not geodesics of a
Minkowski space) are turned into isogeodesics in isospace having the shape of
the geodesics in the absence of resistive forces.

The simplest possible example is given by the isoeuclidean representation of
a straight stick partially immersed in water. In conventional representations
the stick penetrating in water with an angle α appears as bended at the point
of immersion in water with an angle γ = α + β, where β is the angle of
refraction. In isoeuclidean representation the stick remains straight also in its
immersion because the isoangle γ̂ = γ × Îγ recovers the original angle α with
Îγ = α/(α + β).

The situation is essentially the same for our representation of interior grav-
itation because the latter is represented in isospace over isofield via field equa-
tions (this time necessarily with sources) that formally coincide with conven-
tional equations on a conventional Riemannian spacetime. Being noncanoni-
cal, all interior features are invariantly represented via generalized units.

3.2.9F. Isodual Minkowski-Santilli isospaces and isogeometry. The
isodual Minkowski-Santilli isospaces were introduced for the first time by San-
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tilli in Ref. [8] of 1985 and then studied in various works (see the references
of Chapter 1), and can be written

M̂d = M̂d(x̂d, η̂d, R̂d) :

x̂d = {xµd}×dÎd = {xµ} × (−Î) = {rd, cd
o ×d td}×dÎd, (3.2.174a)

η̂d = −η̂. (3.2.174b)

The isodual Minkowski-Santilli isogeometry is the geometry of isodual isospaces
Md over Rd and was studied for the first time by Santilli in Ref. [26] of 1998.

The physically and mathematically most salient property of the latter ge-
ometry is that it is characterized by negative units of space, time, etc., and
negative norms. Therefore, in addition to a change of the sign of the change,
we also have change of sign of masses, energies, and other quantities nor-
mally positive for matter. Similarly, we have the isodual isospace and isotime
coordinates

x̂d = x̂d ×d Î = −x̂, t̂d = td ×d Îd = −t̂. (3.2.175)

Thus, motion under isoduality is in a time direction opposite to the conven-
tional motion. These features are necessary so as to have a classical represen-
tation of antimatter in interior conditions whose operator image yields indeed
antiparticles (rather than particles with the worng sign of the charge).

We also have the following important

LEMMA 3.2.12 [17]: Isodualities are independent from spacetime inversions

r′ = π × r = −r, t′ = τ × t = −t. (3.2.176)

Proof. Inversions occur within the same original space and keep the unit
fixed, while isodualities require a map to a different space, and change the sign
of the unit. Therefore, in addition to maps in different spaces, isodualities have
numerical value different than the inversions. q.e.d.

These are the conceptual roots for the isodual theory of antimatter to pre-
dict a new photon, the isodual photon emitted by antimatter [17]. When
applied to the photon, charge conjugation and, more generally, the PCT the-
orem, do not yield a new photon, as well know. This is not the case under
isoduality because all physical characteristics change in sign and numerical
value. As a result, the isodual photon is indistinguishable from the ordinary
photon under all interactions except graviton. In fact, as indicated in Chap-
ter 1, the isodual photon is predicted to experience antigravity in the field of
matter, thus offering, apparently for the first time, a possibility for the future
study whether far away galaxies and quasars are made up of matter or of
antimatter.
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Another important property of isoduality is expressed by the following:

LEMMA 3.2.13 [26]: The intervals of conventional and isotopic Minkow-
skian spaces are invariant under the joint isodual maps Îd → Îd and η̂ → η̂d,

x̂2 = (xµ × η̂µν × xν) × Î ≡ [xµ × (−η̂µν) × xν ] × (−Î). (3.2.177)

As a result, all physical laws applying in conventional Minkowskian geom-
etry for the characterization of matter also apply to its isodual image for the
characterization of antimatter.

Note that, strictly speaking, the intervals are not isoselfdual because

x̂2̂ = x̂µ×̂M̂µν×̂x̂µ → x̂d2̂d = x̂µd ×d M̂d
µν ×d x̂µd = x̂d2̂d = −x̂2̂. (3.2.178)

To outline the Riemannian characteristics of the isodual Minkowski-Santilli
isogeometry, we consider an isodual isovector isofield X̂d(x̂d) on M̂d which is
explicitly given by X̂d(x̂d) = −Xt(−xt × Î) × Î. The isodual exterior isodif-
ferential of X̂d(x̂d) is given by

D̂dX̂µd(x̂d) = d̂dX̂µd(x̂d)+̂dΓ̂d
α

µ
β×̂

d
X̂αd×̂d

d̂dx̂βd = D̂X̂tµ(−x̂t), (3.2.179)

where the Γ̂d’s are the components of the isodual isoconnection. The isodual
isocovariant isoderivative is then given by

X̂µd(x̂d)̂|dν
= ∂̂dX̂µd(x̂d)/̂d∂̂dx̂νd+̂Γ̂d

α
µ
ν ×̂

d
X̂αd(x̂d) = −X̂tµ(−x̂t)̂|k. (3.2.180)

The interested reader can then easily derive the remaining notions of the
new geometry. It is an instructive exercise for the interested reader to prove
of the following isodualities:

Isodual isounit Î → Îd = −Î ,
Isodual isometric η̂ → η̂d = −η,

Isodual isoconnection coefficients Γ̂αβγ → Γ̂d
αβγ = Γ̂αβγ ,

Isoflatness isotensor Rαβγδ → Rd
αβγδ = −Rαβγδ,

Isodual iso-Ricci isotensor R̂µν → R̂d
µν = R̂µν ,

Isodual iso-Ricci isoscalar R̂ → R̂d = R̂,

Isodual iso-Freud isoscalar Θ̂ → Θ̂d = −Θ̂,

Isodual Iso-Einstein isotensor Ĝµν → Ĝd
µν = −Ĝµν ,

Isodual electromagnetic potentials Aµ → Ad
µ = −Aµ,

Isodual electromagnetic field Fµν → F d
µν = −Fµν ,

Isodual elm energy-mom. isotensor Tµν → T d
µν = −Tµν .

(3.2.181)
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More detailed isogeometric studies are left to interested readers. Specific ap-
plications to gravitational treatments of matter and antimatter are presented
in Section 3.5.

3.2.10 Isosymplectic Geometry and its Isodual
As it is well known, the symplectic geometry had an important role in the

construction of quantum mechanics because it permitted the mathematically
rigorous verification, known as symplectic quantization, that original quanti-
zation procedures, known also as naive quantization, were correct.

No broadening of quantum mechanics can be considered mature unless it
admits fully equivalent procedures in the map from classical to operator forms
known as isoquantization also called hadronization (rather than quantization).

For this purpose. Santilli [31] presented in 1988 the first known isotopies of
the symplectic geometry, subsequently studied in various works, with a general
presentation available in Vols. I, II of this series (see in particular Chapter 5
of Vol. I [6]). The new geometry is today known as Santilli’s isosymplectic
geometry.

We cannot possibly review here the isosymplectic geometry in detail and
have to suggest interested readers to study Refs. [6,7]. Nevertheless, an indi-
cation of the basic lines is important for the self-sufficiency of this monograph.

Let us ignore the global (also called abstract) formulation of the symplec-
tic geometry and consider for clarity and simplicity only its realization in a
local chart (or coordinates).16 A topological manifold M(R) on the reals R
admits the local realization as an Euclidean space E(r, δR) with local con-
travariant coordinates r = (ri), i = i, 2, . . . , N . The cotangent bundle T ∗M
then becomes the ordinary phase space with local coordinates (r, p) = (ri, pi),
where pi represents the tangent vectors (physically the linear momentum).
The canonical one-form then admits the local realization

θ = pi × dri. (3.2.182)

The fundamental (canonical) symplectic form is then given by the exterior
derivative of the preceding one form

ω = dθ = pi ∧ dri, (3.2.183)

and one can easily prove that it is closed, namely, that dω ≡ 0.
Consider now the isotopological isomanifold (introduced earlier) M̂(R̂) on

the isoreals R̂ with basic isounit Î. Its realization on local coordinates is

16Again, the literature on the conventional symplectic geometry is so vast to discourage discrimina-
tory quotations.
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given by the Euclid-Santilli isospace Ê(r̂, ∆̂, R̂) with local contravariant iso-
coordinates r̂ = (ri) × Î. Then, the isocotangent isobundle T̂ ∗M̂ admits as
local realization the isophase isospace with local coordinates (r̂i, p̂i), where p̂
is again a tangent isovector. The novelty is given by the fact that the unit of
p̂ is the inverse of that of r̂ and we shall write

r̂ = r × Î , p̂ = p × T̂ , Î = 1/T̂ . (3.2.184)

This property was identified for the first time by Santilli [31] (for a mathemat-
ical treatment see also Ref. [10]) because not identifiable in the conventional
symplectic geometry due to the use of the trivial unit for ehich I−1 ≡ I = +1.

Consequently, we have the isodifferentials

d̂r̂ = T̂ × d(r × I), d̂p̂ = Î × d(p × T̂ ). (3.2.185)

The isocanonical one-isoform is then given by

θ̂ = p̂×̂d̂r̂ = (p × T̂ ) × Î × d̂(r̂) = p × T̂ × d(r × Î). (3.2.186)

The fundamental isocanonical two-isoform is then given by

ω̂ = d̂θ̂ = p̂∧̂d̂r̂ = dpi ∧ dri ≡ ω (3.2.187)

from which the preservation of closure under isotopy, d̂ω̂ ≡ 0̂ = 0 trivially
follows.

LEMMA 3.2.14 [31,10]: The fundamental symplectic and isosymplectic two-
forms coincide.

The identity of the fundamental isocanonical and canonical two-forms ex-
plains why isosymplectic geometry escaped detection by mathematicians for
centuries.

It is evident that, in view of the positive-definiteness of the isounit, the
symplectic and isosymplectic geometries coincide at the global (abstract) reali-
zation-free level to such an extent that there is not even the need of changing
formulae in the literature of the symplectic geometry because the isosymplectic
geometry can be expressed with the pre-existing formalism and merely subject
it to a broader realization.

Despite this simplicity, the physical implications are by far non-trivial. In
fact, unlike the conventional two-form, and thanks to the background TSSFN
isotopology, the fundamental isocanonical two-form is universal for all pos-
sible (sufficiently smooth and regular but otherwise arbitrary) nonlocal and
non-Hamiltonian systems. To illustrate this feature, let us consider a vector
field of the cotangent bundle that must be strictly local-differential to avoid
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catastrophic inconsistencies with the underlying local-differential Euclidean
topology, T ∗M

X(r, p) = Ai(r, p) × ∂

∂ri
+ Bi(r, p) × ∂

∂pi
, (3.2.188)

or in unified notations

b = (bµ) = (ri, pj), µ = 1, 2, . . . , 2N (3.2.189)

X(b) = Xµ(b) × ∂

∂bµ
, (3.2.190)

is said to be a Hamiltonian vector field when there exists a function H(r, p) =
H(b) on T ∗M , called the Hamiltonian, verifying the identity

Ai × dri + Bi × dpi = −dH(r, p) (3.2.191)

or in unified notation
X	ω = dH, (3.2.192)

that is
ωµν × Xµ × dbν = −dH, (3.2.193)

where the fundamental symplectic form has the components

ω = dpi ∧ dri =
1
2
× ωµν × dbµ ∧ dbν , (3.2.194)

(ωµν) =
(

ON×N −IN×N

IN×N ON×N

)
. (3.2.195)

Eq. (3.2.192) can hold if and only if

ωµν × dbν

dt
=

∂H

∂bµ
, (3.2.196)

from which one recovers the familiar truncated Hamilton’s equations

dri

dt
=

∂H

∂pi
,

dpi

dt
= −∂H

∂ri
. (3.2.197)

The main physical limitations is that the condition for a vector field to be
Hamiltonian constitutes a major restrictions because vector fields in the physi-
cal reality are generally non-Hamiltonian, besides existing from the limitations
of the topology underlying the symplectic geometry.

As we shall see in Section 3.3, the above restrictions is removed for San-
tilli isosymplectic geometry that acquire the character of direct universality,
that is, the capability of representing all sufficiently smooth and regular but
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but otherwise arbitrary vector fields (universality) in the local chart of the
experimenter (direct universality).

In fact, expression (3.2.192) is lifted into the form

ω̂µν×̂
d̂b̂ν

d̂t̂
=

∂̂Ĥ

∂̂b̂µ
, (3.2.198)

that, under the assumption for simplicity that t̂ = t, and by removing common
factors, reduces to

dri

dt
=

∂̂H

∂̂pi

= T̂ i
j (r, p) × ∂H

∂pj
; (3.2.199)

dpi

dt
= − ∂̂H

∂̂ri
= −Îj

i × ∂H

∂rj
. (3.2.200)

As we shall see better in Section 3.3, direct universality then follows from the
number of free functions T̂ j

i as well as the arbitrariness of their functional
dependence.

We shall also show that the achievement of a direct isogeometric repre-
sentation of nonlocal and non-Hamiltonian vector fields representing interior
dynamical problems permits their consistent map into an operator form, by
therefore reaching hadronic mechanics in a mathematically rigorous, unique
and unambiguous way.17

The construction of the isodual isosymplectic geometry [6] is an instruc-
tive exercise for readers interested in serious studies of antimatter in interior
dynamical conditions.

3.2.11 Isolinearity, Isolocality, Isocanonicity and
Their Isodualities

In Section 3.1 we pointed out that the primary physical characteristics of
particles and antiparticles in interior conditions (such as a neutron in the
core of a neutron star) are nonlinear, nonlocality and noncanonicity due to
the mutual penetration-overlapping of their wavepackets with those of the
surrounding medium.

In the preceding subsections we have identified isotopic means for mapping
linear, local and canonical systems into their most general possible nonlinear,
nonlocal and noncanonical form. In this section we show how the isotopies
permit the reconstruction of linearity, locality and canonicity on isospaces
over isofields, called isolinearity, isolocality and isocanonicity for the case of
particles, with their isodual counterpart for antiparticles.

17Note the crucial role of the isodifferential calculus for the isosymplectic geometry and its
implications.
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The understanding of this seemingly impossible task requires the knowledge
that conventional methods have only one formulation. By contrast, all isotopic
methods have a dual formulation, the first in isospace over isofields, and the
second when projected in ordinary spaces over ordinary fields. Deviations
from conventional properties can only occur in the latter formulation because
in the former all original axiomatic properties are preserved by construction.

Let S(r, R) be a conventional real vector space with local coordinates r over
the reals R = R(n, +,×), and let

r′ = A(w) × r, r′t = rt × At(w), w ∈ R. (3.2.201)

be a conventional right and left linear, local and canonical transformation on
S, where t denotes transpose.

The isotopic lifting S(r, R) → Ŝ(r̂, R̂) requires a corresponding necessary
isotopy of the transformation theory. In fact, it is instructive for the interested
reader to verify that the application of conventional linear transformations to
the isospace Ŝ(r̂, R̂) causes the loss of linearity, transitivity and other basic
properties.

For these and other reasons, Santilli submitted in the original proposals
[4,5] of 1978 (see monographs [6,7] for comprehensive treatments and appli-
cations) the isotopy of the transformation theory, called isotransformation
theory, which is characterized by isotransforms (where we make use of the
notion of isofunction of Section 3.2.4)

r̂′ = Â(ŵ)×̂r̂ = Â(ŵ) × T̂ × r̂ = [A(T̂ × w) × Î] × T̂ × (r × Î) =

= A[T̂ (r, . . . ) × w] × r̂, (3.2.202a)

r̂′ t̂ = r̂t̂×̂Ât̂ŵ = r̂t̂ × At[T̂ (r) × w]. (3.2.202b)

The most dominant aspect in the transition from the conventional to the
isotopic transforms is that, while the former are linear, local and canonical,
the latter are nonlinear in the coordinates as well as other quantities and their
derivatives of arbitrary order, nonlocal-integral in all needed quantities, and
noncanonical when projected in the original spaces S(r, R). This is due to
the unrestricted nature of the functional dependence of the isotopic element
T̂ = T̂ (r, . . . ).

But the conventional and isotopic transforms coincide at the abstract level
where we have no distinction between the modular action A(w) × r and
Â(ŵ)×̂r̂. Therefore, Isotransforms(3.2.202) are are isolinear when formulated
on isospace Ŝ over the isofield R̂, because they verify the conditions

Â×̂(n̂×̂r̂ + m̂×̂p̂) = n̂×̂Â×̂r̂ + m̂×̂Â×̂p̂, r̂, p̂ ∈ Ŝ, n̂, m̂ ∈ R̂. (3.2.203)

Note that conventional transforms are characterized by a right modular
associative action A × r. Isotransforms are then characterized by the right
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isomodular isoassociative action Â×̂r̂. Therefore, we do have the preservation
of the original axiomatic structure and isotransforms are indeed an isotopy of
conventional transforms.

The situation for locality and canonicity follows the same lines [4,5,6,7].
Conventional methods are local in the sense that they are defined at a finite
set of isolated points. The isotopic methods are isolocal in the sense that they
verify the condition of locality in isospaces over isofields. However, their pro-
jection on conventional space is nonlocal-integral, because that is the general
characteristic of the isotopic element T̂ , as illustrated, e.g., in Eq. (3.1.202).

Similarly, conventional methods are canonical in the sense that they cvan
be characterized via a first-order canonical action in phase space (or cotangent
bundle). The isotopic methods are isocanonical in the sense that, as we shall
see in Section 3.3, they are derivable from an isoaction that is first-order and
canonical on isospaces over isofields, although, when projected on ordinary
spaces over ordinary fields, such an isoaction is of arbitrary order.

LEMMA 3.2.15 [6,7]: All possible nonlinear, nonlocal and noncanonical
transforms on a vector space S(r, R)

r′ = B(w, r, . . . ) × r, r ∈ S, w ∈ R, (3.2.204)

can always be rewritten in an identical isolinear, isolocal and isocanonical
form, that is, there always exists at least one isotopy of the base field, R → R̂,
and a corresponding isotopy of the space S(r, R) → Ŝ(r̂, R̂), such as

B(w, r, . . . ) ≡ A(T̂ × w), (3.2.205)

under which

r′ = B(w, r, . . . ) × r ≡ A(T̂ × w) × r ≡ Â(ŵ)×̂r, (3.2.206)

from which the isolinear form (3.2.202) follows.

COROLLARY 3.2.15A [6,7]: Under sufficient continuity and regularity
conditions, all possible ordinary differential equations that are nonlinear in
ordinary spaces over ordinary fields can always be turned into an identical
form that is isolinear on isospaces over isofields,18

ṙ − E(ṙ, w, . . . ) → ˆ̇r − A[T̂ (ṙ, w, . . . ) × ṙ − B[T̂ (ṙ, w, . . . ] ≡

18The author has proposed for over a decade that mathematicians use the property of this Corollary
4.3.15A to identify simpler methods for the solution of nonlinear differential equations, but the
request has not been met as yet, to our best knowledge.
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≡ ˆ̇r − Â(ŵ)×̂ˆ̇r − B̂(w) = 0. (3.2.207)

The above properties are at the foundation of the direct universality of
isotopic methods, that is, their applicability to all possible (sufficiently smooth
and regular) nonlinear, nonlocal and noncanonical systems (universality) in
the frame of the experimenter (direct universality).

In order to apply isotopic methods to a nonlinear, nonlocal and noncanonical
system, one has merely to identity one of its possible isolinear, isolocal and
isocanonical identical reformulations in the same system of coordinates. The
applicability of the methods studied in this monograph then follows.

The isodual isotransforms are given by the image of isotransforms (3.2.202)
under isoduality, and, as such, are defined on the isodual isospace Ŝd(r̂d, R̂d)
over the isodual isofield R̂d with isodual isounit Îd = 1/T̂ d = −Î†. [6,7] with
evident properties

Âd×̂d(n̂d×̂dr̂d + m̂d×̂dp̂d) =

= n̂d×̂dÂd×̂dr̂d + m̂d×̂dÂd×̂dp̂d, r̂d, p̂d ∈ Ŝd, n̂d, m̂d ∈ R̂d. (3.2.208)

The definition of isodual isolinearity, isolocality and isocanonicity then follows.
From now on, we shall use isotransforms for the study of interior dynamical

systems of particles and their isodual for interior systems of antiparticles.

3.2.12 Isotopies and isodualities of Lies theory
3.2.12A. Statement of the Problem. As it is well known, Lie’s theory
has permitted outstanding achievements in various disciplines throughout the
20-th century. Nevertheless, in its current conception and realization, Lie’s
theory is linear, local-differential and canonical-Hamiltonian.19

As such, Lie’s theory is exactly valid for exterior dynamical systems, but
possesses clear limitations for interior dynamical systems since the latter are
nonlinear, nonlocal and noncanonical. This occurrence mandates a suitable
revision of Lie’s theory such to be exactly valid for interior dynamical systems
without approximations.

Independently from that, Lie’s theory in its current formulation is solely
applicable to matter, evidently because there exists no antiautomorphic ver-
sion of the conventional Lie’s theory as necessary for the correct treatment of
antimatter beginning at the classical level, as shown in Chapters 1 and 2.

Another central problem addressed in these studies is the construction of
the universal symmetry (and not “covariance”) of gravitation for matter and,
independently, for antimatter, that is, a symmetry for all possible exterior

19The literature on Lie’s theory is also vast to discourage discriminatory listings. In any case, its
knowledge is a necessary pre-requisite for the understanding of this section.
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and interior gravitational line elements of matter and, under antiautomorphic
image, of antimatter.

Yet another need in physics is the identification of the exact symmetry that
can effectively replace broken Lie symmetries, which exact symmetry cannot
possibly be a conventional Lie symmetry due to the need of preserving the
original dimensions so as to avoid the prediction on unphysical effects and/or
hypothetical new particles.

It is evidently that Lie’s theory in its current formulation is unable to solve
the above identified problems. In a memoir of 1978, Santilli [4] proposed a step-
by-step generalization of the conventional Lie theory specifically conceived for
nonlinear, nonlocal-integral and nonpotential-noncanonical systems.

The generalized theory was subsequently studied by Santilli in a variety of
papers (see monographs [1,2,6,7,14,15] and references quoted therein). The
theory was also studied by a number of mathematicians and theoreticians,
and it is today called the Lie-Santilli isotheory (see, e.g., monographs [32–37]
and references quoted therein, as well as specialized papers [38–43]).

A main characteristic of the Lie-Santilli isotheory, that distinguishes it from
other possible generalizations, is its isotopic character, that is, the preserva-
tion of the original Lie axioms when formulated on isospaces over isofields,
despite its nonlinear, nonlocal and noncanonical structure when projected in
ordinary spaces. This basic feature is evidently permitted by the reconstruc-
tion of linearity, locality and canonicity on isospaces over isofields studied in
the preceding section.

To begin, let us recall that Lie’s theory is centrally dependent on the basic
N-dimensional unit I = Diag.(1, 1, . . . , 1) of the enveloping algebra. The main
idea of the Lie-Santilli isotheory [4] is the reformulation of the entire conven-
tional theory with respect to the most general possible isounit Î(x, ẋ, ẍ, . . . ).

One can therefore see from the very outset the richness and novelty of
the isotopic theory since isounits with different topological features (such as
Hermiticity, non-Hermiticity, positive-definiteness, negative-definiteness, etc.)
characterize different generalized theories.

In this section we outline the rudiments of the Lie-Santilli isotheory properly
speaking, that with positive-definite isounits and its isodual with negative-
definite isounits. A knowledge of Lie’s theory is assumed as a pre-requisite.
A true technical knowledge of the Lie-Santilli isotheory can only be acquired
from the study of mathematical works such as monographs [2,6,14,36,37].

In inspecting the literature, the reader should be aware that Santilli [4]
constructed the isotopies of Lie’s theory as a particular case of the broader
Lie-admissible theory studied in Chapter 4 occurring for non-Hermitean gen-
eralized units, and known as Lie-Santilli genotheory. As a matter of fact, a
number of aspects of the isotheory can be better identified within the context
of the broader genotheory.
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The extension to non-Hermitean isounits (that was the main object of the
original proposal [4]) requires the exiting of Lie’s theory in favor of the covering
Lie-admissible theory, and will be studied in Chapter 4.

The isotopies of Lie’s theory were proposed by Santilli from first axiomatic
principles without the use of any map or transform. It is today known that the
isotheory cannot be entirely derived via the use of noncanonical-nonunitary
transforms since some of the basic structures (such as the isodifferential cal-
culus) are not entirely derivable via noncanonical-nonunitary transforms.

3.2.12B. Universal Enveloping Isoassociative Algebras. Let ξ be an
associative algebra over a field F = F (a,+,×) of characteristic zero with
generic elements A, B, C, . . . , trivial associative product A × B and unit I.
The infinitely possible isotopes ξ̂ of ξ were first introduced in Ref. [4] under
the name of isoassociative algebras. In the original proposal ξ̂ coincides with ξ
as vector spaces but is equipped with Santilli’s isoproduct so as to admit the
isounit as the correct left and right unit

Î(x, ẋ, ẍ, . . . ) = 1/T̂ > 0, (3.2.209a)

Â×̂B̂ = Â × T̂ × B̂, Â×̂(B̂×̂Ĉ) = (Â×̂B̂)×̂Ĉ, (3.2.209b)

Î×̂Â = Â×̂Î ≡ Â, ∀Â ∈ ξ̂, (3.2.209c)

where Â, B̂, . . . denote the original elements A, B, . . . formulated on isospace
over isofields.

Let ξ = ξ(L) be the universal enveloping associative algebra of an N -dim-
ensional Lie algebra L with ordered basis Xk, k = 1, 2, . . . , N , and attached
antisymmetric algebra isomorphic to the Lie algebras, [ξ(L)]− ≈ L over F ,
and let the infinite-dimensional basis I, Xk, Xi × Xj , i ≤ j, . . . of ξ(L) be
characterized by the Poincaré-Birkhoff-Witt theorem.

A fundamental property submitted in the original proposal [4] (see also [2],
pp. 154–163) is the following

THEOREM 3.2.11 (Poincaré-Birkhoff-Witt-Santilli isotheorem): Isocosets
of the isounit and the standard, isomonomials

Î , Xk, X̂i×̂X̂j , i ≤ j, X̂i×̂X̂j×̂X̂k, i ≤ j ≤ k, . . . , (3.2.210)

form a basis of universal enveloping isoassociative algebra ξ̂(L) of a Lie algebra
L (also called isoenvelope for short).

The first application of the above infinite-dimensional basis ie a rigorous
characterization of the isoexponentiation, Eq. (3.2.72), i.e.,

êî×̂ŵ×̂X̂ = êi×w×X̂ =
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= Î + î×̂ŵ×̂X̂/̂1̂! + (̂i×̂ŵ×̂X̂)×̂(̂i×̂ŵ×̂X̂)/̂2̂! + . . . =

= Î × (ei×w×T̂×X̂) = (ei×w×X̂×T̂ ) × Î , î = i × Î , ŵ = w × Î ∈ F̂ . (3.2.211)

The nontriviality of the Lie-Santilli isotheory is illustrated by the emergence
of the nonlinear, nonlocal and noncanonical isotopic element T̂ directly in the
exponent, thus ensuring the desired generalization.

The implications of Theorem 3.2.11 also emerge at the level of isofunctional
analysis because all structures defined via the conventional exponentiation
must be suitably lifted into a form compatible with Theorem 3.2.11, as illus-
trated by the iso-Fourier transforms, Eq. (3.2.88).

It is today known that the main lines of isoenvelopes can indeed be derived
via the use of noncanonical-nonunitary transforms, such as

U × U † �= I, (3.2.212a)

I → Î = U × I × U †, (3.2.212b)

Xi × Xj → U × (Xi × Xj) × U † = X̂i×̂X̂j , (3.2.212c)

Xi × Xj × Xk → U × (Xi × Xj × Xk) × U † = X̂i×̂X̂j×̂X̂k, etc. (3.2.212d)

Nevertheless, the uncontrolled use of the above transforms may lead to
misrepresentations. In fact, a primary objective of the Lie-Santilli isotheory is
that of preserving the original generators and parameters and change instead
the associative and Lie products in an axiom-preserving way to accommodate
the treatment of nonlinear, nonlocal and noncanonical interactions.

The preservation of the generators is, in particular, necessary for physical
consistency because they represent conserved total quantities (such as the
total energy, total angular momentum, etc.). These total quantities remain
unchanged in the transition from closed Hamiltonian and non-Hamiltonian
systems see Section 3.1.2). Equivalently, the generators of Lie’s theory cannot
be altered by non-Hamiltonian effects.

This physical requirement can only be achieved by preserving conventional
generators Xk and lifting instead their product Xi × Xj → Xi×̂Xj = Xi ×
T̂ × Xj , which is the original formulation of the Lie-Santilli isotheory [4] and
remain the formulation needed for applications to this day. It is essentially
given by the projection of the isotopic formulation on conventional spaces over
conventional fields.

3.12C. Lie-Santilli Isoalgebras. As it is well known, Lie algebras are the
antisymmetric algebras L ≈ [ξ(L)]− attached to the universal enveloping
algebras ξ(L). This main characteristic is preserved although enlarged under
isotopies (see [4,2] for details). We therefore have the following
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DEFINITION 3.2.15 [4]: A finite-dimensional isospace L̂ with generic el-
ements Â, B̂, . . . , over the isofield F̂ with isounit Î = 1/T̂ > 0 is called a
“Lie-Santilli isoalgebra” over F̂ when there is a composition [Â,̂B̂] in L̂, called
“isocommutator”, that is isolinear as an isovector space and such that all the
following axioms are satisfied

[Â,̂B̂] = −[B̂,̂Â], (3.2.213a)

[Â,̂[B̂,̂Ĉ]] + [B̂,̂[Ĉ,̂Â]] + [Ĉ,̂[Â,̂B̂]] ≡ 0, (3.2.213b)

[Â×̂B̂,̂Ĉ] = Â×̂[B̂,̂Ĉ] + [Â,̂Ĉ]×̂B̂, ∀Â, B̂, Ĉ ∈ L̂. (3.2.213c)

The isoalgebras are said to be: isoreal, isocomplex or isoquaternionic de-
pending on the assumed isofield and isoabelian when [Â,̂B̂] ≡ ∀Â, B̂ ∈ L̂. A
subset L̂o of L̂ is said to be an isosubalgebra of L̂ when [L̂ô,L̂o] ⊆ L̂o. L̂o is
called an isoideal of L̂ when [L̂ô,L̂] ⊆ L̂o. A maximal isoideal verifying the
property [L̂ô,L̂o] = 0 is called the isocenter of L̂.

For the isotopies of additional conventional notions, theorems and properties
of Lie algebras, one may see monograph [2,6,36,37].

We merely recall the isotopic generalizations of the celebrated Lie’s First,
Second and Third Theorems introduced in the original proposal [4], but which
we do not review here for brevity. For instance, the Lie-Santilli Second Isothe-
orem reads

[X̂î,X̂j ] = X̂i×̂X̂j − X̂j×̂X̂i = (3.2.214a)

= X̂i × T̂ (x, ẋ, ẍ, . . . ) × X̂j − X̂j × T̂ (x, ẋ, ẍ, . . . ) × X̂i = Ĉk
ij(x, ẋ, ẍ, . . . )×̂X̂k,

(3.2.214b)
where the C’s, called the structure isofunctions, generally have an explicit
dependence on the underlying isovariable (see the examples later on), and
verify certain restrictions from the Isotopic Third Theorem.

It is today known that Lie-Santilli isoalgebras can be reached via a nonca-
nonical-nonunitary transform of conventional Lie algebras. In fact, we have

[Xi, Xj ] = Ck
ij × Xk →

U × [Xi, Xj ] × U † = [X̂î,X̂j ] =

U × (Ck
ij × Xk) × U † = Ĉk

ij(x, ẋ, ẍ, . . . )×̂X̂k. (3.2.215)

However, again, this type of derivation of the isotheory may be misleading
in physical applications due to the need to preserve the original generators
unchanged, in accordance with the original formulation [4] of 1978. In this
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case we shall use the following projection of the isoalgebras on the original
space over the original field

[Xî, Xj ] = Xi × T̂ × Xj − Xj × T̂ × Xi = Ck
ij(x, ẋ, . . . ) × Xk. (3.2.216)

It has been proved (see, e.g., [2,4,6] for details) that Lie-Santilli isoalgebras
L̂ are isomorphic to the original algebra L. In other words, the isotopies with
Î > 0 cannot characterize any new algebra because all possible Lie algebras are
known from Cartan classification. Therefore, Lie-Santilli isoalgebras merely
provide new nonlinear, nonlocal and noncanonical realizations of existing alge-
bras. It should be stresses that the above isomorphism is lost for more general
liftings as shown in the next chapter.

3.2.12D. Lie-Santilli Isogroups. Under certain integrability conditions
hereon assumed, Lie algebras L can be “exponentiated” to their corresponding
Lie transformation groups G and, vice-versa, Lie transformation groups G
admit their corresponding Lie algebra L when computed in the neighborhood
of the identity I.

These basic properties are preserved under isotopies although broadened to
the most general possible nonlinear, nonlocal and noncanonical transforma-
tions groups.

DEFINITION 3.2.16 [4]: A right isomodular Lie-Santilli isotransformation
group Ĝ on an isospace Ŝ(x̂, F̂ ) over an isofield F̂ with common isounit Î =
1/T̂ > 0 is a group mapping each element x̂ ∈ Ŝ into a new element x̂′ ∈ Ŝ
via the isotransformations

x̂′ = ĝ(ŵ)×̂x̂, x̂, x̂′ ∈ Ŝ, ŵ ∈ F̂ , (3.2.217)

such that:
1) The map ĝ×̂Ŝ into Ŝ is isodifferentiable ∀ĝ ∈ Ĝ;
2) Î is the left and right unit

Î×̂ĝ = ĝ×̂Î ≡ ĝ, ∀ĝ ∈ Ĝ; (3.2.218)

3) the isomodular action is isoassociative, i.e.,

ĝ1×̂(ĝ2×̂x̂) = (ĝ1×̂ĝ2)×̂x̂, ∀ĝ1, ĝ2 ∈ Ĝ; (3.2.219)

4) in correspondence with everyt element (̂ŵ) ∈ Ĝ there is the inverse element
ĝ−Î = ĝ(−ŵ) such that

ĝ(0̂) = ĝ(ŵ)×̂ĝ(−ŵ) = Î; (3.2.220)
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5) following composition laws are verified

ĝ(ŵ)×̂ĝ(ŵ′) = ĝ(ŵ′)×̂ĝ(ŵ) = ĝ(ŵ + ŵ′),∀ĝ ∈ Ĝ, ŵ ∈ F̂ . (3.2.221)

The I left isotransformation group is defined accordingly.

The notions of connected or simply connected transformation groups carry
over to the isogroups in their entirety.

The most direct realization of the (connected) isotransformation groups is
that via isoexponentiation,

ĝ(w) =
∏
k

êî×̂ŵkX̂k =
(∏

k

ei×wk×Xk×T̂ (x,ẋ,ẍ,... )
)
× Î , (3.2.222)

where the X’s and w’s are the infinitesimal generators and parameters, re-
spectively, of the original algebra L, with corresponding connected isotrans-
formations

x̂′ = ĝ(ŵ)×̂x̂ =
(∏

k

êî×̂ŵkX̂k

)
× Î × T̂ × x × Î =

=
(∏

k

ei×wk×Xk×T̂ (x,ẋ,ẍ,... )
)
× x × Î . (3.2.223)

Equations (3.2.223) hold in some open neighborhood N of the isoorigin of
L̂ and, in this way, characterize some open neighborhood of the isounit of
Ĝ. Consequently, under the assumed continuity and connectivity properties,
Lie-Santilli isoalgebras can be obtained as infinitesimal versions of finite Lie-
Santilli isogroups, as illustrated by the following finite isotransform

Â(ŵ) = (êî×̂ŵ×̂X̂)×̂Â(0̂)×̂(ê−î×̂ŵ×̂X̂) =

= (ei×w×X̂×T̂ ) × Â(0̂) × (e−i×w×T̂×X̂) (3.2.224)

with infinitesimal version in the neighborood of Î

Â(d̂ŵ) = (Î + î×̂d̂ŵ×̂X̂ + . . . )×̂Â(0)×̂(Î − î×̂d̂ŵ×̂X̂ + . . . ) =

= Â(0̂) + î×̂d̂ŵ×̂X̂×̂Â(0̂) − î×̂d̂ŵ×̂Â(0̂)×̂X̂, (3.2.225)

that can be written

î×̂ d̂Â(ŵ)

d̂ŵ
= Â×̂X̂ − X̂×̂Â = [Â,̂X̂]. (3.2.226)

Note the crucial appearance of the isotopic element T̂ (x, ẋ, ẍ, . . . ) in the
exponent of the isogroup. This ensures a structural generalization of Lies
theory of the desired nonlinear, nonlocal and noncanonical form.
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Still another important property is that conventional group composition
laws admit a consistent isotopic lifting, resulting in the following Baker-Camp-
bell-Hausdorff-Santilli Isotheorem [4]

(êX̂1)×̂(êX2) = êX̂3 , (3.2.227a)

X̂3 = X̂1 + X̂2 + [X̂1̂,X̂2]/̂2̂ + [(X̂1 − X̂2)̂,[X̂1̂,X̂2]]/̂1̂2 + . . . . (3.2.227b)

Let Ĝ1 and Ĝ2 be two isogroups with respective isounits Î1 and Î2. The
direct isoproduct Ĝ1×̂Ĝ2 is the isogroup of all ordered pairs

(ĝ1, ĝ2), ĝ1 ∈ Ĝ1, ĝ2 ∈ Ĝ2, (3.2.228)

with isomultiplication

(ĝ1, ĝ2)×̂(ĝ′1, ĝ
′
2) = (ĝ1×̂ĝ′1, ĝ2×̂ĝ′2), (3.2.229)

total isounit (Î1, Î2) and inverse (ĝ−Î1
1 , ĝ−Î2

2 ).
The following particular case is important for the isotopies of inhomoge-

neous groups. Let Ĝ be an isogroup and Ĝâ the isogroup of all its inner
isoautomorphisms. Let Ĝo

â be a subgroup of Ĝâ, and let Λ(ĝ) be the image
of ĝ ∈ Ĝ under Ĝâ. The semidirect isoproduct Ĝ×̂Ĝo

â is the isogroup of all
ordered pairs

(ĝ, Λ̂)×̂(ĝo, Λ̂o) = (ĝ, Λ̂(ĝo), (Λ̂, Λ̂o), (3.2.230)

with total isounit given by Îtot = Î × Îo.
The the studies of the isotopies of the remaining aspects of the structure

theory of Lie groups is then consequential.
It is hoped that the reader can see from the above elements that the entire

conventional Lie theory does indeed admit a consistent and nontrivial lifting
into the covering Lie-Santilli formulation.

3.2.12E. Isorepresentations of Lie-Santilli Isoalgebras. Despite consid-
erable research on the Lie-Santilli isotheory over the past 26 years, the study of
the isorepresentations of the Lie-Santilli isoalgebras remains vastly unknown
at this writing (summer 2004), with the sole exception of the fundamental (or
regular) isorepresentations that were also identified by Santilli in the original
proposal [4].

In this monograph we shall primarily use in the applications of hadronic
mechanics the fundamental isorepresentations or other isorepresentations re-
ducible to the latter.

Let L be an N -dimensional Lie algebra with N -dimensional unit I = Diag.-
(1, 1, . . . , 1). Let R be the fundamental, N -dimensional matrix representation
of L. Let L̂ be the isotope of L characterized by the N -dimensional isounit
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Î = U × U † > 0. It is then evident that the it fundamental isorepresentation
of L̂ is given by

R̂ = U × R × U †, U × U † = Î �= I, Î > 0. (3.2.231)

Interested colleagues are encouraged to study the isorepresentation the-
ory because, as we shall see in the next sections, the fundamental notion of
hadronic mechanics, that of isoparticles, is characterized by an irreducible
isorepresentation of the Poincaré-Santilli isosymmetry.

3.2.12F. Isodual Lie-Santilli Isotheory. As indicated Chapters 1 and
2, the contemporary formulation of Lie’s theory is one of the most serious
obstacles for a consistent classical representation of antimatter, because it lacks
an appropriate conjugate formulation that, after quantization, is compatible
with charge conjugation.20

It is easy to verify that the isotheory presented above admits a consistent
antiautomorphic image under isoduality, thus thus permitting the treatment
of antimatter under nonlinearity, nonlocality and noncanonicity as occurring
in interior conditions, such as for the structure of an antimatter star.

In fact, we have the isodual universal enveloping isoassociative isoalgebra ξ̂d

characterized by the isodual Poincaré-Birkhoff-Witt-Santilli isotheorem with
infinite dimensional basis

Îd, Xd
k , X̂d

i ×̂dX̂d
j , i ≤ j, X̂d

i ×̂dX̂d
j ×̂dX̂d

k , i ≤ j ≤ k, . . . . (3.2.232)

The isodual Lie-Santilli isoalgebra L̂d ≈ (ξ̂d)− attached to ξ̂d is character-
ized by the isodual Lie-Santilli Second Isotheorem

[X̂d
i ,̂X̂d

j ] = X̂d
i ×̂dX̂d

j − X̂d
j ×̂dX̂d

i = Ĉd
ij

k
×̂dX̂d

k . (3.2.233)

Under the needed continuity and connectivity property, the isodual expo-
nentiation of L̂d characterizes the connected isodual Lie-Santilli transformation
isogroup

x̂′d = (ĝd(ŵd) = ∏̂kê
dîd×̂dŵd

kX̂d
k )×̂dx̂d. (3.2.234)

Interested readers can then easily derive any additional needed isodual prop-
erty.

20The reader is urged to verify that the classical treatment of antimatter via the so-called dual Lie
algebras does not achieve antiparticles under quantization, trivially, because of the uniqueness of the
quantization channel for both particles and antiparticles.
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3.2.13 Unification of All Simple Lie Algebras into
Lie-Santilli Isoalgebras

The original proposal [4] of 1978 included the conjecture that all simple
Lie algebras of dimension N can be unified into a single Lie-Santilli isoalgebra
of the same dimension, and gave an explicit example. The conjecture was
subsequently proved by the late mathematicians Gr. Tsagas [42] in 1996 for
all simple Lie algebras of type A, B, C and D. The premature departure of
Prof. Tsagas while working at the problem prevented him to complete the
proof of the conjecture for the case of all exceptional Lie algebras. As a result,
the proof of the indicated conjecture remain incomplete at this writing.

For the unification here considered it is important to eliminate the restric-
tion that the isounits are necessarily positive definite, while preserving all
other characteristics, such as nowhere singularity and Hermiticity. As a re-
sult, in its simple possible form, the isounit can be diagonalized into the form
whose elements can be either positive or negative,

Î = Diag.(±n2
1,±n2

2, . . . ,±n2
N ) = 1/T̂ , nk ∈ R, nk �= 0, k = 1, 2, . . . , N.

(3.2.235)
The example provided in the original proposal [4], subsequently studied in

detail in Refs. [8], consisted in the classification of all possible simple Lie
algebra of dimension 3. In this case, Cartan’s classification produces two non-
isomorphic Lie algebras, the compact rotational algebra in three dimension
SO(3) and the noncompact algebra SO(2.1).

The distinction between compact and noncompact algebras are lost under
the class of isotopies here considered. In fact, the classification of all possible,
simple, three-dimensional Lie-Santilli isoalgebras L̂3 for the case of diagonal
isounits is characterized by the isounit itself and can be written

Î = Diag.(+1,+1,+1), L̂3 ≈ SO(3), (3.2.236a)

Î = Diag.(+1,+1,−1), L̂3 ≈ SO(2.1), (3.2.236b)

Î = Diag.(+1,−1,+1), L̂3 ≈ SO(2.1), (3.2.236c)

Î = Diag.(−1,+1,+1), L̂3 ≈ SOI(2.1), (3.2.236d)

Î = Diag.(−1,−1,−1), L̂3 ≈ SO(3)d, (3.2.236e)

Î = Diag.(−1,−1,+1), L̂3 ≈ SO(2.1)d, (3.2.236f)

Î = diag.(−1,+1,−1), l̂3 ≈ SO(2.1), (3.2.236g)

Î = Diag.(+1,−1,−1), L̂3 ≈ SO(2.1)d, (3.2.236h)

Î = Diag.(+n2
1,+n2

2,+n2
3), L̂3 ≈ SO(3), (3.2.236i)
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Î = Diag.(+n2
1,+n2

2,−n2
3), L̂3 ≈ SO(2.1), (3.2.236j)

Î = Diag.(+n2
1,−n2

2,+n2
3), L̂3 ≈ SO(2.1), (3.2.236k)

Î = Diag.(−n2
1,+n2

2,+n2
3), L̂3 ≈ SOI(2.1), (3.2.236l)

Î = Diag.(−n2
1,−n2

2,−n2
3), L̂3 ≈ SO(3)d, (3.2.236m)

Î = Diag.(−n2
1,−b2

2,+n2
3), L̂3 ≈ SO(2.1)d, (3.2.236n)

Î = diag.(−n2
1,+n2

2,−n2
3), L̂3 ≈ SO(2.1), (3.2.236o)

Î = Diag.(+n2
1,−n2

2,−n2
3), L̂3 ≈ SO(2.1)d, (3.2.236p)

In conclusion, when studying simple algebras from the viewpoint of the
covering Lie-Santilli isoalgebras, there exist only one single isoalgebra in three
dimensions, L̂3 without any distinction between compact and noncompact
algebras.

The realization of the simple isoalgebra L̂3 with diagonal isounits consists
of 21 different Lie-Santilli isoalgebras in three dimension that can be reduced
to 4 topologically different Lie algebras, namely SO(3), SO(2.1), SO(3)d and
SO(2.1)d.

All distinctions between these 21 different realizations are lost at the level
of abstract Lie-Santilli isoalgebra L̂3.

It should be stressed that, by no means, the 21 realizations (3.2.236) ex-
haust all possible forms of Lie-Santilli simple isoalgebras in three dimensions
because in realizations (3.2.236) we have excluded nondiagonal realizations of
the isounit, as well as imposed additional restrictions on the isounit, such as
single valuedness and Hermiticity.

Essentially the same results hold for the unification of the Lie Algebras of
type A, B, C, and D studied by Tsagas [42].

It is hoped that interested mathematicians can complete the proof of San-
tilli’s conjecture for the remaining exceptional algebras. In considering the
problem, mathematicians are suggested to keep in mind that Hermitean and
diagonal realizations of the isounit (3.2.135) are expected to be insufficient,
thus implying the possible use of nowhere singular, Hermitean, nondiago-
nal isounits, or nowhere singular, Hermitean, nondiagonal and multivalued
isounits, or nowhere singular, non-Hermitean, nondiagonal and multivalued
isounits.

3.2.14 The Fundamental Theorem for Isosymmetries
and Their Isoduals

The fundamental symmetries of the 20-th century physics deal with point-
like abstractions of particles in vacuum under linear, local and potential inter-
actions, and are the Galilei symmetry G(3.1) for nonrelativistic treatment or
the Poincaré symmetry for relativistic formulations.
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A central objective of hadronic mechanics is the broadening of these fun-
damental spacetime symmetry to represent extended, nonspherical and de-
formable particles under linear and nonlinear, local and nonlocal and potential
as well as nonpotential interactions.

In fact, as we shall see, all novel industrial applications of hadronic me-
chanics are crucially dependent on the admission of the extended character of
particles or of their wavepackets in conditions of deep mutual penetration. In
turn, the latter conditions imply new effects permitting basically new ener-
gies and fuels that are completely absent for conventional spacetime and other
symmetries.

Alternatively and equivalent a central problem of hadronic mechanics is
the the construction in an explicit form of the symmetries of all possible non-
singular, but otherwise arbitrary deformations of conventional spacetime and
internal invariants.

All these problems and others are resolved by the following important:

THEOREM 3.2.12 [6]: Let G be an N-dimensional Lie symmetry group of
a K-dimensional metric or pseudo-metric space S(x, m, F ) over a field F ,

G : x′ = Λ(w) × x, y′ = Λ(w) × y, x, y ∈ Ŝ, (3.2.237a)

(x′ − y′)† × Λ† × m × Λ × (x − y) ≡ (x − y)† × m × (x − y), (3.2.237b)

Λ†(w) × m × Λ(w) ≡ m. (3.2.237c)

Then, all infinitely possible isotopies Ĝ of G acting on the isospace Ŝ(x̂, M̂ , F̂ ),
M̂ = m̂× Î = (T̂ k

i ×mkj)× Î characterized by the same generators and param-
eters of G and new isounits Î = 1/T̂ > 0 leave invariant the isocomposition on
the the projection Ŝ(x, m̂, F ) of Ŝ(x̂, M̂ , F̂ ) on the original space S(x, m, F )

Ĝ : x′ = Λ̂(w) × x, y′ = Λ̂(w) × y, x, y ∈ Ŝ, (3.2.238a)

(x′ − y′)† × Λ̂† × m̂ × Λ̂ × (x − y) ≡ (x − y)† × m̂ × (x − y), (3.2.238b)

Λ̂†(ŵ) × m̂ × Λ̂(ŵ) ≡ m̂. (3.2.238c)

Similarly,all infinitely possible isodual isotopies Ĝd of Ĝ actiing on the isodual
isospace Ŝd(x̂d, M̂d, F̂ d), M̂d = (T̂ d×md)×Îd characterized by the isodual gen-
erators X̂d

k parameters ŵd and isodual isounit Îd = 1/T̂ d < 0 leave invariant
the isodual isocomposition on the projection Ŝd(xd, m̂d, F d)

Ĝd : x′d = Λ̂d ×d xd, y′d = Λ̂d ×d yd, xd, yd ∈ Ŝd, (3.2.239a)

(x′−y′)†
d×dΛ̂†d×dm̂d×dΛ̂d×d(x−y)d ≡ (x−y)†

d×dm̂d×d(x−y)d, (3.2.239b)
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Λ̂†d ×d m̂d ×d Λ̂d ≡ m̂d. (3.2.239c)

Proof. Assume that N = K and the representation Λ is the fundamen-
tal one. Recall that metrics, isometrics and isounits are diagonal. Then on
Ŝ(x, m̂, F ) we have the identities

Î = U × U † �= I, T̂ = (U × U †)−1, (3.2.240a)

U × (Λ × m × Λ) × U † =

= (U × Λ × U †) × (U †−1 × m × U−1) × (U × Λ × U †) =

= Λ̂ × (T̂ × m) × Λ̂ = Λ̂ × m̂ × Λ̂ = m̂. (3.2.240b)

The proof of the remaining cases are equally trivial. q.e.d.
Note that the isotopic symmetries and their isoduals can be uniquely and

explicitly constructed with the methods summarized in this section via the sole
use of the original symmetry and the isounit characterizing the deformation
of the original metric m.

Under our assumptions, the isosymmetries can be constructed in the needed,
explicit, nonlinear, nonlocal and noncanonical forms. In fact, the existence of
the original symmetry transformations plus the condition Î > 0 ensure the
convergence of the infinite isoseries of the isoexponentiation, resulting in the
needed explicit form, as we shall see in various examples in the next sections.

3.3 CLASSICAL LIE-ISOTOPIC MECHANICS FOR
MATTER AND ITS ISODUAL FOR
ANTIMATTER

3.3.1 Introduction
One of the reasons for the majestic consistency of quantum mechanics is the

existence of axiomatically consistent and invariant classical foundations, given
by classical Lagrangian and Hamiltonian mechanics, namely, the discipline
based on the truncated analytic equations

d

dt

∂L(t, r, v)
∂vk

a

− ∂L(t, r, v)
∂rk

a

= 0, (3.3.1a)

drk
a

dt
=

∂H(t, r, p)
∂pak

,
dpak

dt
= −∂H(t, r, p)

∂rk
a

, (3.3.1b)

k = 1, 2, 3; a = 1, 2, 3, . . . , N,

with a unique and unambiguous map into operator forms.
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Following the original proposal [5] of 1978 to build hadronic mechanics,
this author did not consider the new discipline sufficiently mature for exper-
imental verifications and industrial applications until the new discipline had
equally consistent and invariant classical foundations with an equally unique
and unambiguous map into operator formulations.

Intriguingly, the operator foundations of hadronic mechanics were suffi-
ciently identified in the original proposal [5], as we shall see in the next sec-
tion. However, the identification of the classical counterpart turned out to be
a rather complex task that required decades of research.

The objective, fully identified in 1978, was the construction of a cover-
ing of classical Lagrangian and Hamiltonian mechanics, namely, a covering
of Eqs. (3.3.1), admitting a unique and unambiguous map into the already
known Lie-isotopic equations of hadronic mechanics.

The mandatory starting point was the consideration of the true Lagrange
and Hamilton equations, those with external terms

d

dt

∂L(t, r, v)
∂vk

a

− ∂L(t, r, v)
∂rk

a

= Fak(t, r, v), (3.3.2a)

drk
a

dt
=

∂H(t, r, p)
∂pak

,
dpak

dt
= −∂H(t, r, p)

∂rk
a

+ Fak(t, r, p), (3.3.2b)

since they were conceived, specifically, for the interior dynamical systems
treated by hadronic mechanics.

In fact, the legacy of Lagrange and Hamilton is that classical systems cannot
be entirely represented with one single function today called a Lagrangian or
a Hamiltonian used for the representation of forces derivable from a potential,
but require additional quantities for the representation of contact nonpotential
forced represented precisely by the external terms.

As such, the true Lagrange and Hamilton equations constitute excellent
candidates for the classical origin of hadronic mechanics.

3.3.2 Insufficiencies of Analytic Equations with
External Terms

It was indicated by Santilli [4] also in 1978 (see the review in Chapter 1
for more details) that the true analytic equations cannot be used for the con-
struction of a consistent covering of conventional analytic equations because
the new algebraic brackets of the time evolution of a generic quantity A(r, p)
in phase space

dA

dt
= (A, H, F ) = [A, H] +

∂A

∂rk
× Fk =

=
∂A

∂rk
× ∂H

∂pk
− ∂H

∂rk
× ∂A

∂pk
+

∂A

∂rk
× Fk, (3.3.3)
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violate the right distributive and scalar laws, Eqs. (3.2.5) and (3.2.6). Con-
sequently, the true analytic equations in their original formulation lose “all”
possible algebras, let alone all possible Lie algebras. No axiomatically consis-
tent covering can then be build under these premises.21

The above insufficiency essentially established the need of rewriting the true
analytic equations into a form admitting a consistent algebra in the brackets
of the time evolution laws and, in addition, achieves the same invariance pos-
sessed by the truncated analytic equations.

Even though its main lines were fully identified in 1978, the achievement
of the new covering mechanics resulted to require a rather long and laborious
scientific journey.

This section is intended to outline the final formulation of the classical
mechanics underlying hadronic mechanics in order to distinguish it from the
numerous attempts that were published with the passing of time.

As a brief guide to the literature, the reader should be aware that the true
analytic equations (3.3.2) are generally set for open nonconservative systems.
These systems require the broader Lie-admissible branch of hadronic mechan-
ics that will be studied in the next chapter.

Therefore, the reader should be aware that several advances in Lie-isotopies
have been obtained and can be originally identified as particular cases of the
broader Lie-admissible theories.

This chapter is dedicated to the study of classical and operator closed-
isolated systems verifying conventional total conservation laws while having
linear and nonlinear, local and nonlocal as well as potential and nonpotential
internal forces.

The verification of conventional total conservation law requires classical
brackets that, firstly, verify the right and left distributive and scalar laws
(as a condition to characterize an algebra), and, secondly, the brackets are
necessarily antisymmetric.

The brackets of conventional Hamiltonian ,mechanics are Lie. Therefore, a
necessary condition to build a true covering of Hamiltonian mechanics is the
search of brackets that are of the broader Lie-isotopic type. As a matter of
fact, this feature, fully identified in 1978 [4,5], was the very motivation for the
construction of the isotopies of the Lie theory reviewed in Section 3.2.12.

In summary, the construction of a covering of the conventional Hamiltonian
mechanics as the classical foundations of the Lie-isotopic branch of hadronic
mechanics must be restricted to a reformulation of the true analytic equations
(3.3.2) in such a way that the underlying brackets are Lie-isotopic, and the
resulting mechanics is invariant.

21For additional problematic aspects of the true analytic equations, one may consult Ref. [4] or the
review in Chapter 1.
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3.3.3 Insufficiencies of Birkhoffian Mechanics
Santilli dedicated the second volume of Foundations of Theoretical Mechan-

ics published by Springer-Verlag [2] in 1982 to the construction of a covering of
classical Hamiltonian mechanics along the above indicated requirement. The
resulting new mechanics was released under the name of Birkhoffian mechanics
to honor G. D. Birkhoff who first discovered the underlying analytic equations
in 1927.22

Conventional Hamiltonian mechanics is based on the canonical action prin-
ciple

δAo = δ

∫
(pk × drk − H × dt) = 0, (3.3.4)

and, via the use of the unified notation

b = (bµ) = (ri, pj), (3.3.5a)

Ro = (Ro
µ) = (pk, 0), µ = 1, 2, . . . , 6, (3.3.5b)

can be written
δAo = δ

∫
(Ro

µ × dbµ − H × dt) ≡

≡ δ

∫
(pk × drk − H × dt) = 0. (3.3.6)

from which the conventional Hamilton’s equations (3.3.1b) acquire the unified
form

ωµν × dbν

dt
=

∂H

∂bµ
, (3.3.7)

where

ωµν =
∂Ro

ν

∂bµ
−

∂Ro
µ

∂bν
(3.3.8)

is the fundamental (canonical) symplectic tensor (3.2.187).
The fundamental (conventional Poisson) brackets of the time evolution then

acquire the unified form

dA

dt
= [A, H] =

∂A

∂bµ
× ωµν × ∂H

∂bν
, (3.3.9)

where
ωµν = [(ωαβ)−1]µν (3.3.10)

is the fundamental (canonical) Lie tensor.

22Interested readers should consult, for brevity, the historical notes of Ref. [2].
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Santilli [2] based the construction of a covering isotopic (that is, axiom-
preserving) mechanics on the most general possible Pfaffian action principle

δA = δ

∫
(Rµ × dbµ − B × dt) = 0, (3.3.11)

where the Rµ(b) functions are now arbitrary functions in phase space, e.g., of
the type

R(b) = (Rµ) = (Ei(r, p), Dj(r, p)), (3.3.12)

verifying certain regularity conditions [2].
It is easy to see that principle (3.2.10) characterizes the following analytic

equations23

Ωµν × dbν

dt
=

∂B

∂bµ
, (3.3.13a)

Ωµν =
∂Rν

∂bµ
− ∂Rµ

∂bν
(3.3.13b)

is the most general possible symplectic tensor in local coordinates.
Eqs. (3.3.12) were called Birkhoff’s equations because, following a considerable
research, they resulted to have been first identified by D. G. Birkhoff in 1927.
The function B was called the Birkhoffian in order to distinguish it from the
conventional Hamiltonian, since the latter represent the total energy, while
the former does not.

The fundamental brackets of the time evolution then acquire the unified
form

dA

dt
=

∂A

∂bµ
× Ωµν × ∂B

∂bν
, (3.2.14a)

Ωµν = [(Ωαβ)−1]µν . (3.3.14b)

The covering nature of Eqs. (3.3.11)–(3.2.14) over the conventional Eqs.
(3.3.4)–(3.3.10) is evident. In particular, brackets (3.3.14) are antisymmetric
and verify the Lie axioms, although in the generalized Lie-Santilli isotopic
form.

Moreover, Birkhoffian mechanics was proved in Ref. [2] to be “directly uni-
versal”, that is, capable of representing “all” possible (sufficiently smooth and
regular) Newtonian systems directly in the “frame of the observer” without
any need for the transformation theory.

Therefore, at the time of releasing monograph [2] in 1982, the Birkhoffian
mechanics appeared to have all the necessary pre-requisites to be the classical
foundation of hadronic mechanics.

23The equations are called “analytic” in the sense of being derivable from a variational principle.
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Unfortunately, subsequent studies established that Birkhoffian mechanics
cannot not be used for consistent physical applications because it is afflicted
by the catastrophic inconsistencies studied in Section 1.4.1, with particular
reference to the lack of invariance, namely, the inability to predict the same
numbers for the same physical conditions at different times owing to the non-
canonical character of the time evolution.

Moreover, canonical action (3.3.4) is independent from the momenta, Ao =
Ao(r), while this is not the case for the Pfaffian action (3.3.11) for which we
have A = A(r, p). Consequently, any map into an operator form implies “wave-
functions” dependent on both coordinates and momenta, ψ(r, p). Therefore,
the operator image of Birkhoffian mechanics is beyond our current knowledge,
and its study is deferred to future generations.

The above problems requested the resumption of the search for the consis-
tent classical counterpart of hadronic mechanics from its beginning.

Numerous additional generalized classical mechanics were identified but
they still missed the achievement of the crucial invariance (for brevity, see
monographs [15,16] of 1991 and the first edition of monograph [6,7] of 1993).

By looking in retrospect, the origin of all the above difficulties resulted to be
where one would expect them the least, in the use of the ordinary differential
calculus.

Following the discovery in 1995 (see the second edition of monographs [6,7]
and Ref. [10]) of the isodifferential calculus, the identification of the final, ax-
iomatically consistent and invariant form of the classical foundations of had-
ronic mechanics emerged quite rapidly.

3.3.4 Newton-Santilli Isomechanics for Matter and its
Isodual for Antimatter

The fundamental character of Newtonian Mechanics for all scientific in-
quiries is due to the preservation at all subsequent levels of treatment (such
as Hamiltonian mechanics, Galileo’s relativity, special relativity, quantum me-
chanics, quantum chemistry, quantum field theory, etc.) of its main structural
features, such as:

1) The underlying local-differential Euclidean topology;
2) The ordinary differential calculus; and
3) The consequential point-like approximation of particles.
Nevertheless, Newton’s equations have well known notable limitations to

maintain such a fundamental character for the entirely of scientific knowledge
without due generalization for so many centuries.

As indicated in Chapter 1, the point-like approximation is indeed valid for
very large mutual distances among particles compared to their size, as occur-
ring for planetary and atomic systems (exterior dynamical systems). However,
the same approximation is excessive for systems of particles at short mutual
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distances, as occurring for the structure of planets, hadrons, nuclei and stars
(interior dynamical systems).

Also, dimensionless particles cannot experience any contact or resistive
interactions. Consequently, dissipative or, more generally, nonconservative
forces used for centuries in Newtonian mechanics are a mere approximation
of contact nonpotential nonlocal-integral interactions among extended con-
stituents, the approximation being generally achieved via power series expan-
sion in the velocities.

It should be finally recalled on historical grounds that Newton had to con-
struct the differential calculus as a pre-requisite for the formulation of his
celebrated equations.

No genuine structural broadening of the disciplines of the 20-th century is
possible without a consistent structural generalization of their foundations,
Newton’s equations in Newtonian mechanics.

Santilli’s isomathematics has been constructed to permit the first axiomat-
ically consistent structural generalization of Newton’s equations in Newtonian
mechanics since Newton’s time, for the representation of extended, nonspher-
ical and deformable particles under linear and nonlinear, local and nonlocal
and potential as well as nonpotential interactions as occurring in the physical
reality of interior dynamical systems.

By following Newton’s teaching, the author has dedicated primary efforts
to the isotopic lifting of the conventional differential calculus, topology and
geometries [6,10] as a pre-requisite for the indicated structural generalization
of Newton’s equations.

To outline the needed isotopies, let us recall that Newtonian mechanics
is formulated on a 7-dimensional representation space characterized by the
following Kronecker products of Euclidean spaces

Stot = E(t, Rt) × E(r, δ, Rr) × E(v, δ, Rv), (3.3.15)

of the one dimensional space E(t, Rt) representing time t, the tree dimensional
Euclidean space E(r, δ, Rr) of the coordinates r = (rk

a) (where k = 1, 2, 3 are
the Euclidean axes and a = 1, 2, . . . , N represents the number of particles),
and the velocity space E(v, δ, Rv), v = dr/dt.

It is generally assumed that all variables t, r, and v are defined on the same
field of real numbers R. However, the unit of time is the scalar I = +1, while
the unit of the Euclidean space is the matrix, and the same happens for the
velocities, Ir = Iv = Diag.(1, 1, 1).

Therefore, on rigorous grounds, the representation space of Newtonian me-
chanics must be defined on the Kronecker product of the corresponding fields

Rtot = Rt × Rr × Rv (3.3.16)
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with total unit

ITot = 1t × Diag.(1, 1, 1)r × Diag.(1, 1, 1)v. (3.3.17)

The above total unit can be factorized into the production of seven individ-
ual units for time and the two sets of individual Euclidean axes a, y, a with
corresponding factorization of the fields

Itot = 1t × 1rx × 1ry × 1rz × 1vx × 1vy × 1vz, (3.3.18a)

Rtot = Rt × Rrx × Rry × Rrz × Rvx × Rvy × Rvz, (3.3.18b)

that constitute the foundations of the conventional Euclidean topology here
assumed as known.

Via the use of Eqs. (3.1.5), Newton’s equations for closed-non-Hamiltonian
systems can then be written

ma × aka = ma ×
dvka

dt
= Fka(t, r, v) = FSA

ka + FNSA
ka , (3.3.19a)∑

a

FNSA
a = 0, (3.3.19b)

∑
a

ra

⊙
FNSA

a = 0, (3.3.19c)

∑
a

ra

∧
FNSA

a = 0, (3.3.19d)

where SA (NSA) stands for variational selfadjointness (variational nonselfad-
jointness), namely, the verification (violation) of the integrability conditions
for the existence of a potential [1], and conditions (3.3.xx), (3.3.xx) and
(3.3.xx) assure the verification of conventional total conservation laws.

The isotopies of Newtonian mechanics, today known Newton-Santilli isome-
chanics, were first submitted in the second edition of monograph [5] and in
the mathematical treatment [10].

They require the use of: the isotime t̂ = t × Ît with isounit Ît = 1/T̂t > 0
and related isofield R̂t; the isocoordinates r̂ = (r̂k

a) = r × Îr, with isounit
Îr = 1/T̂>0r and related isofield R̂r; and the isovelocities v̂ = (vka) = v × Îv

with isounit Îv = 1/T̂v > 0 and related isofield R̂v.
The Newton-Santilli isomechanics is then formulated on the 7-dimensional

isospace
Ŝtot = Ê(t̂, R̂t̂) × Ê(r̂, δ̂r, R̂r̂) × Ê(v̂, δ̂v, R̂v̂), (3.3.20)

with isometrics

δ̂r = T̂r × δ = (T̂ k
ir × δkj), δ̂v = T̂v × δ = (T̂ k

iv × δkj), (3.3.21)
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over the Kronecker product of isofields

R̂tot = R̂t × R̂r × R̂v, (3.3.22)

with total isounit
Îtot = Ît × Îr × Îv =

= n2
t × Diag.(n2

rx, n2
ry, n

2
rz) × Diag.(n2

vx, n2
vy, n

2
vz). (3.3.23)

Consequently, the isounit can also be factorized into the product of the
following seven distinct isounits, with related product of seven distinct isofields

Îtot = n2
t × n2

rx × n2
ry × n2

rz × n2
vx × n2

vy × n2
vz, (3.3.24a)

R̂tot = R̂t × R̂rx × R̂ry × R̂rz × R̂vx × R̂vy × R̂vz, (3.3.24b)

and consequential applicability of the fundamental Tsagas-Sourlas-Santilli-
Falcón-Núñez isotopology (or TSSFN Isotopology) that allows, for the first
time to the author’s best knowledge, an consistent representation of extended,
nonspherical and deformable shapes of particles in newtonian mechanics, here
represented via the semiaxes n2

α = n2
α(t, r, v, . . . ), α = t, r, v.

Note that the isospeed is the given by

v̂ =
d̂r̂

d̂t̂
= Ît ×

d(r × Îr)
dt

= v × Ît × Îr + r × Ît ×
dÎr

dt
= v × Îv, (3.3.25)

thus illustrating that the isounit of the isospeed cannot be the same as that
for the isocoordinates, having in particular the value

Îv = Ît × Îr ×
(

1 +
r

v
× 1

Îr

× dÎr

dt

)
. (3.3.26)

The Newton-Santilli isoequation [6,10] can be written

m̂a×̂
d̂v̂ka

d̂t̂
= − ∂̂V̂ (r̂)

∂̂r̂k
a

, (3.3.27)

namely, the equations are conceived in such a way to formally coincide with
the conventional equations for selfadjoint forces when formulated on isospace
over isofields, while all nonpotential forces are represented by the isounits or,
equivalently, by the isodifferential calculus.

Such a conception is the only one known permitting the representation of
extended particles with contact interactions that is invariant, thus avoiding the
catastrophic inconsistencies of Section 1.4.1 and, in addition, achieves closure,
namely, the verification of all conventional total conservation laws.



ISOTOPIC BRANCH OF HADRONIC MECHANICS 237

An inspection of Eqs. (3.3.27) is sufficient to see that the Newton-Santilli
isomechanics reconstructs linearity, locality and canonicity on isospaces over
isofields, as studied in Section 3.2.11. Note that this would not be the case if
nonselfadjoint forces appear in the right hand side of Eqs. (3.27) as in Eqs.
(3.3.2).

Note the truly crucial role of the isodifferential calculus for the above struc-
tural generalization of Newtonian mechanics (as well as of the subsequent
mechanics), that justifies a p[posteriory its construction.

The verification of conventional total conservation laws is established by a
visual inspection of Eqs. (3.3.27) since their symmetry is the Galileo-Santilli
isosymmetry [14,15] that is isomorphic to the conventional Galilean symmetry,
only formulated on isospace over isofields. By recalling that conservation laws
are represented by the generators of the underlying symmetry, conventional
total conservation laws then follow from the indicated invariance.

When projected in the conventional representation space Stot, Eqs. (3.3.27)
can be explicitly written

m̂×̂ d̂v̂

d̂t̂
= m × Ît ×

d(v × Îv)
dt

=

= m × dv

dt
× Ît × Îv + m × v × Ît ×

dÎv

dt
= − ∂̂V̂ (r̂)

∂̂r̂
= −Îr ×

∂V

∂r
, (3.3.28)

that is

m × dv

dt
= −T̂t × T̂v × Îr ×

∂V

∂r
− m × v × T̂v ×

dÎv

dt
. (3.3.29)

The necessary and sufficient conditions for the representation of all possible
SA and NSA forces are given by

Îr = T̂t × T̂r, (3.3.30a)

m × v × T̂v ×
dÎv

dt
= FNSA, (3.3.30b)

and they always admit a solution, since they constitute a system of 6n algebraic
(rather than differential) equations in the 6N + 1 unknowns given by Ît, and
the diagonal 3N -dimensional matrices Îr and Îv.

Note that for T̂t = 1 we recover from a dynamical viewpoint the condition
Îr = 1/Îv obtained in Section 3.2.4 and 3.2.10 on geometric grounds.

As a simple illustration among unlimited possibilities, we have the following
equations of motion of an extended particle with the ellipsoidal shape expe-
riencing a resistive force FNSA = −γ × v because moving within a physical
medium

m × dv

dt
=

∫
dσ Γ(σ, r, p, . . . ) ≈ −γ × v, (3.3.31a)
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Îv = Diag.(n2
1, n

2
2, n

2
3) × eγ×t/m, (3.3.31b)

where the nonlocal-integral character with respect to a kernel Γ is emphasized.
Interested readers can then construct the representation of any desired non-
Hamiltonian Newtonian system (see also memoir [10] for other examples).

Note the natural appearance in the NSA forces of the velocity dependence,
as typical of resistive forces. Note also that the representation of the extended
character of particles occurs only in isospace because, when Eqs. (3.3.xx) are
projected in the conventional Newtonian space, factorized isounits cancel out
and the point characterization of particles is recovered.

Note finally the direct universality of the Newton-Santilli isoequations,
namely, their capability of representing all infinitely possible Newton’s equa-
tions in the frame of the observer.

As now familiar earlier, Eqs. (3.3.27) can only describe a system of parti-
cles. The isodual Newton-Santilli isoequations for the treatment of a system
of antiparticles are given by [6,10]

m̂d
a×̂

d d̂dv̂d
ka

d̂dt̂d
= − ∂̂dV̂ d(r̂d)

∂̂dr̂kd
a

. (3.3.32)

The explicit construction of the remaining isodualities of the above isome-
chanics are instructive for the reader seriously interested in a classical study
of antimatter under interior dynamical conditions.

3.3.5 Hamilton-Santilli Isomechanics for Matter and
its Isodual for Antimatter

3.3.5A. Isoaction Principle and its Isodual. The isotopies of classical
Hamiltonian mechanics were first introduced by Santilli in various works (see
monographs [6,7] and references quoted therein), and are today known as the
Hamilton-Santilli isomechanics.

To identify its representation space, recall that the conventional Hamilto-
nian mechanics is represented in a 7-dimensional space of time, coordinates
and momenta (rather than velocity), the latter characterizing phase space (or
cotangent bundle of the symplectic geometry).

Correspondingly, the new isomechanics is formulated in the 7-dimensional
isospace of isotime t̂, isocoordinates r̂ and isomomenta p̂

Ŝtot = Ê(t̂, R̂t̂) × Ê(r̂, δ̂r, R̂r̂) × Ê(p̂, δ̂p, R̂p̂), (3.3.33)

with isometrics

δ̂r̂ = T̂r̂ × δ = (T̂ k
ir × δkj), δ̂p̂ = T̂p̂ × δ = (T̂ k

ip × δkj), (3.3.34)

over the Kronecker product of isofields and related isounits

R̂tot = R̂t × R̂r × R̂p, (3.3.35a)
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Îtot = Ît̂ × Îr̂ × Îp̂ =

= n2
t × Diag.(n2

rx, n2
ry, n

2
rz) × Diag.(n2

px, n2
py, n

2
pz). (3.3.35b)

The following new feature now appears. The isophasespace, or, more tech-
nically, the isocotangent bundle of the isosymplectic geometry in local isochart
(r̂, p̂) requires that the isounits of the variables r̂ and p̂ are inverse of each
others (Section 3.2.3 and 3.2.10)

Îr̂ = 1/T̂r̂ = Î−1
p̂ = T̂p̂ > 0. (3.3.36)

Consequently, by ignoring hereon for notational simplicity the indeces for
the N particles, the total isounit of the isophase space can be written

Îtot = Ît̂ × Îr̂ × T̂r̂ = Ît̂ × Î6, (3.3.37a)

Î6 = (Îν
µ) = Îr̂ × T̂r̂. (3.3.37b)

The fundamental isoaction principle for the classical treatment of matter in
interior conditions can be written in the explicit form in the r̂ and p̂ isovariables

δ̂Âo = δ̂

t2∫
t1

(p̂k×̂d̂r̂k − Ĥ×̂d̂t̂) =

= δ̂

t2∫
t1

[pk × T̂
ki(t,r,p,... )
r̂ × d̂r̂i − Ĥ × T̂t̂ × dt̂] = 0, (3.3.38)

where
Ĥ = p̂2̂/̂2̂×̂m̂ − V̂ (r̂), (3.3.39)

is the isohamiltonian or simple the Hamiltonian because its projection on
conventional spaces represents the orginary total energy except an inessential
multiplicative factor.

By using the unified notation

b̂ = (b̂µ) = (r̂i, p̂j) = (ri, pj) × Î6 = b × Î6, (3.3.40)

and the isotopic image of the canonical Ro functions, Eqs. (3.3.xx),

R̂o = (R̂o
µ) = (r̂, 0̂), (3.3.41)

the fundamental isoaction principle can be written in unified notation

δ̂Âo = δ̂

t2∫
t1

(p̂k×̂d̂r̂k − Ĥ×̂d̂t̂) ≡
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≡ δ̂

t2∫
t1

(R̂o
µ×̂d̂b̂µ − Ĥ×̂d̂t̂) =

= δ̂

t2∫
t1

(Ro
µ × T̂µ

6ν × db̂ν − H × T̂t̂ × dt̂) = 0. (3.3.42)

A visual inspection of principle (3.3.38) establishes the isocanonicity of
Hamilton-Santilli isomechanics (Section 3.2.11), namely, the reconstruction
of canonicity on isospaces over isofield that is crucial for the consistency of
hadronic mechanics.

In fact, the conventional action principle (3.3.4) and isoprinciple (3.3.38)
coincide at the abstract, realization-free level by conception and construction.

The direct universality of classical isomechanics can be seen from the ar-
bitrariness of the integrand of isoaction functional (3.3.38) once projected on
conventional spaces over conventional fields.

An important property of the isoaction is that its functional dependence
on isospaces over isofields is restricted to that on isocoordinates only, i.e.,
Â = Â(r̂). However, when projected on conventional spaces, the functional
dependence is arbitrary, i.e., Â(r̂) = Â(r× Î) = Â(t, r, p, . . . ). This feature will
soon have a crucial role for the operator image of the classical isomechanics.

It should finally be noted that isoprinciple (3.3.38) essentially eliminates
the entire field of Lagrangian and action principles of orders higher than the
first, e.,g., L = L(t, r, ṙ, r̈, . . . ) because of these higher order formulations can
be easily reduced to the isotopic first-order form (3.3.38).

Recall that the action principle has the important application via the use
of the optimal control theory of optimizing dynamical systems, However, the
latter can have only been Hamiltonian until now due to the lack of a universal
action functional for non-Hamiltonian systems (that constitute, by far, the
system most significant for optimization. Recall also that the optimal control
theory can only be applied for local-differential systems due to the underlying
Euclidean topologic, thus secluding from the optimization process the most
important systems, those of extended, and, therefore, of nonlocal type.

Note that isoaction principle (3.3.38) occurs for all possible non-Hamiltonian
as well as nonlocal-integral; systems, thanks also to the underlying TSSFN
isotopology (Section 3.2.7). We, therefore, have the following important:

THEOREM 3.3.1 [6,10]: Isoaction principle (3.3.38) permits the (first
known) optimization of all possible nonpotential/non-Hamiltonian and
nonlocal-integral systems.
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The isodual isoaction principle [10] for the classical treatment of antimatter
in interior conditions is given by

δ̂dÂd = δ̂d

t2∫ d

t1

(p̂d
k×̂dd̂r̂kd − Ĥd×̂dd̂dt̂d) =

= δ̂d

t2∫ d

t1

(R̂od
µ ×̂dd̂db̂µ − Ĥd×̂d̂dt̂d) = 0. (3.3.43)

Additional isodual treatments are left to the interested reader.

3.3.5B. Hamilton-Santilli Isoequations and their Isoduals. The discov-
ery of the isodifferential calculus in 1995 permitted Santilli [6,10] the identifi-
cation of the following classical dynamical equations for the treatment of mat-
ter at the foundations of hadronic mechanics, today known as the Hamilton-
Santilli isoequations. They are easily derived via the isovariational principle
and can be written from isoprinciple (3.3.38) in disjoint notation

d̂r̂k

d̂t̂
=

∂̂Ĥ

∂̂p̂k

,
∂̂p̂k

d̂t̂
= − ∂̂Ĥ

∂̂r̂k
. (3.3.44)

The same equations can be written in unified notation from principle (3.3.40)

ω̂µν×̂
d̂b̂µ

d̂t̂
=

∂̂Ĥ

∂̂b̂µ
, (3.3.45)

where
ω̂µν = ωµν × Î6 (3.3.46)

is the isocanonical isosymplectic tenso that coincides with the conventional
canonical symplectic tensor ωµν except for the factorization of the isounit
(Section 3.2.10).

To verify the latter property from an analytic viewpoint, it is instructive
for the reader to verify the following identify under isounits (3.3.37)

ω̂µν =
∂̂R̂o

ν

∂̂b̂µ
−

∂̂R̂o
µ

∂̂b̂ν
= ωµν × Î6. (3.3.47)

A simple comparison of the above isoanalytic equations with the isotopic
and conventional Newton’s equations established the following:

THEOREM 3.3.2: Hamilton-Santilli isoequations (3.3.5) are “directly uni-
versal” in Newtonian mechanics, that is, capable of representing all possible,
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conventional or isotopic, hamiltonian and non-Hamiltonian Newtonian sys-
tems directly in the fixed coordinates of the experimenter.

It is now important to show that Eqs. (3.3.45) provide an identical refor-
mulation of the true analytic equations (3.3.2). For this purpose, we assume
the simple case in which isotime coincide with the conventional time, that is,
t̂ = t, Ît = +1 and we write isoequations (3.3.45) in the explicit form

(ω) ×
(

drk/dt
dpk/dt

)
=

(
03×3 −I3×3

I3×3 03×3

)
×

(
drk/dt
dpk/dt

)
=(

−dpk/dt
drk/dt

)
=

(
∂̂Ĥ/∂̂rk

∂̂Ĥ/∂̂pk

)
=

(
Îi
k × ∂Ĥ/∂ri

T̂ k
i × ∂Ĥ/∂pi

)
.

(3.3.48)

It is easy to see that Eqs. (3.3.xx) coincide with the true analytic equations
(3.3.2) under the trivial algebraic identification

Îr̂ = Diag.[I − F/(∂H/∂r)], (3.3.49)

As one can see, the main mechanism of Eqs. (3.3.45) is that of transforming
the external terms F = FNSA into an explicit realization of the isounit Î3.
As a consequence, reformulation (3.3.45) constitutes direct evidence on the
capability to represent non-Hamiltonian forces and effects with a generalization
of the unit of the theory.

Note in particular that the external terms are embedded in the isoderivatives.
However, when written down explicitly, Eqs. (3.3.2) and (3.3.45) coincide.
Note that Î3 as in rule (3.49) is fully symmetric, thus acceptable as the isounit
of isomathematics. Note also that all nonlocal and nonhamiltonian effects are
embedded in Î.

The reader should note the extreme simplicity in the construction of a rep-
resentation of given non-Hamiltonian equations of motion, due to the algebraic
character of identifications (3.3.49).

Recall that Hamilton’s equations with external terms are not derivable from
a variational principle. In turn, such an occurrence has precluded the iden-
tification of the operator counterpart of Eqs. (3.3.2) throughout the 20-th
century.

We now learn that the identical reformulation (3.3.45) of Eqs. (3.3.2) be-
comes fully derivable from a variational principle. In turn, this will soon permit
the identification of the unique and unambiguous operator counterpart.

It should be noted that the Hamilton-Santilli isoequations are generally
irreversible due to the general irreversibility of the external forces,

F (t, . . . ) �= F (−t, . . . ), or (3.3.50a)
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Î(t, . . . ) = Diag.[I − F (t, . . . )/(∂H/∂t)] �= Î(−t, . . . ). (3.3.50b)

In particular, we have irreversibility under the conservation of the total energy
(see next chapter for full treatment). This feature is important to achieve
compatibility with thermodynamics, e.g., to have credible analytic methods
for the representation of the internal increase of the entropy for closed-isolated
systems such as Jupiter.

The study of these thermodynamical aspects is left to the interested reader.
In this chapter we shall solely consider reversible closed-isolated systems that
occur for external forces not explicitly dependent on time and verify other
restrictions.

An important aspect is that the Hamilton-Santilli isoequations coincide with
the Hamilton equations without external terms at the abstract level. In fact, all
differences between I and Î, × and ×̂, ∂ and ∂̂, etc., disappear at the abstract
level. This proves the achievement of a central objective of isomechanics, the
property that the analytic equations with external terms can indeed be identi-
cally rewritten in a form equivalent to the analytic equations without external
terms, provided, however, that the reformulation occurs via the broader iso-
mathematics.

The it isodual Hamilton-Santilli isoequations for the classical treatment
of antimatter, also identified soon after the discovery of the isodifferential
calculus, are given by

ω̂d
µν×̂d d̂db̂dµ

d̂dt̂d
=

∂̂dĤd

∂̂db̂dµ
, (3.3.51)

where
ω̂d

µν = ωd
µν × Î6 (3.3.52)

is the it isodual isocanonical isosymplectic tensor. The derivation of other
isodual properties is instructed for the interested reader.

3.3.5C. Classical Lie-Santilli Brackets and their Isoduals. It is impor-
tant to verify that Eqs. (3.3.44) or (3.3.45) resolve the problematic aspects of
external terms indicated in Section 3.3.2 [4]. In fact, the isobrackets of the
time evolution of matter are given by

dÂ

d̂t̂
= [Â,̂Ĥ] =

∂̂Â

∂̂r̂k
×̂ ∂̂Ĥ

∂̂p̂k

− ∂̂Ĥ

∂̂r̂k
×̂ ∂̂Â

∂̂p̂k

, (3.3.53)

and they verify the left and right distributive and scalar laws, thus character-
izing a consistent algebra. Moreover, that algebra results to be Lie-isotopic,
for which reasons the above brackets are known as the Lie-Santilli isobrackets.

When explicitly written in our spacetime, brackets (3.3.53) recover the
brackets (3.3.3) of the true analytic equations (3.3.2)
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dH

dt
=

∂H

∂rk
× ∂H

∂pk
− ∂H

∂pk
× ∂H

∂rk
+

∂H

∂pk
× F k =

∂H

∂pk
× F k ≡ 0, (3.3.54)

where the last identity holds in view of Eqs. (3.3.49). Therefore, the Hamilton-
Jacobi isoequations do indeed constitute a reformulation of the true analytic
equations with a consistent Lie-isotopic algebraic brackets, as needed (Section
3.3.3).

Note that, in which of their anti-isomorphic character, isobrackets (3.3.53)
represent the conservation of the Hamiltonian,

dĤ

dt
= [Ĥ,̂Ĥ] =

∂̂Ĥ

∂̂rk
×̂ ∂̂Ĥ

∂̂p̂k

− ∂̂Ĥ

∂̂rk
×̂ ∂̂Ĥ

∂̂p̂k

≡ 0, (3.3.55)

This illustrates the reason for assuming closed-isolated Newtonian systems
(3.3.19) at the foundations of this chapter.

Basic isobrackets (3.3.53) can be written in unified notation

[Â,̂B̂] =
∂̂Â

∂̂b̂µ
×̂ω̂µν×̂ ∂̂B̂

∂̂b̂ν
. (3.3.56)

where ω̂µν is the Lie-Santilli isotensor. By using the notation ∂̂µ = ∂̂/∂̂b̂µ, the
isobrackets can be written

[Â,̂B̂] = ∂̂µÂ × T̂µ
ρ × ωρν ∂̂ν ∂̂νB̂, (3.3.57)

and, when projected in our spacetime, the isobrackets can be written

[A,̂B] = ∂µA × ωµρ × Îν
ρ × ∂νB, (3.3.58)

where ωµν is the canonical Lie tensor.
The isodual Lie-Santilli isobrackets for the characterization of antimatter

can be written
[Âd ,̂B̂d] = ∂̂d

µÂd×̂dω̂dρν ∂̂d
ν ∂̂d

ν B̂, (3.3.59)

where ω̂dµν is the isodual Lie-Santilli isotensor. Other algebraic properties
can be easily derived by the interested reader.

3.3.5D. Hamilton-Jacobi-Santilli Isoequations and their isoduals. An-
other important consequence of isoaction principle (3.3.38) is the characteri-
zation of the following Hamilton-Jacobi-Santilli isoequations for matter [6,10]

∂̂Âo

∂̂t̂
+ Ĥ = 0, (3.3.60a)
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∂̂Âo

∂̂r̂k
− p̂k = 0, (3.3.60b)

∂̂Âo

∂̂p̂k

≡ 0, (3.3.60c)

which will soon have basic relevance for isoquantization.
Note the independence of the isoaction Âo from the isomomenta that will

soon be crucial for consistent isoquantization.
The isodual equations for antimatter are then given by

∂̂dÂod

∂̂dt̂d
+ Ĥd = 0, (3.3.61a)

∂̂dÂod

∂̂dr̂kd
− p̂d

k = 0, (3.3.61b)

∂̂dÂod

∂̂dp̂d
k

≡ 0, (3.3.61c)

The latter equations will soon result to be essential for the achievement of
a consistent operator image of the classical treatment of antimatter in interior
conditions.

3.3.5E. Connection Between Isotopic and Birkhoffian Mechanics.
Since the Hamilton-Santilli isoequations are directly universal, they can also
represent Birkhoff’s equations (3.3.13) in the fixed b-coordinates. In fact, by
assuming for simplicity that the isotime is the ordinary time, we can write the
identities

dbµ

dt
= Ωµµ(b) × ∂H(b)

∂bν
≡

≡ ωµν × ∂̂H(b)

∂̂bν
= ωµρ × Îν

6ρ ×
∂H

∂bν
. (3.3.62)

Consequently, we reach the following decomposition of the Birkhoffian ten-
sor

Ωµν(b) = ωµρ × Îν
6ρ(b). (3.3.63)

Consequently, Birkhoff’s equations can indeed be identically rewritten in
the isotopic form, as expected. In the process, the reformulation provides
additional insight in the isounit.

The reformulation also carries intriguing geometric implications since it con-
firms the direct universality in symplectic geometry of the canonical two-form,
since a general symplectic two-form can always be identically rewritten in the
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isocanonical form via decomposition of type (3.3.xx) and then the embedding
of the isounit in the isodifferential of the exterior calculus.

As an incidental note, the reader should be aware that the construction of an
analytic representation via Birkhoff’s equations is rather complex, inasmuch
as it requires the solution of nonlinear partial differential equations or integral
equations [2].

By comparison, the construction of the same analytic equations via Hamilton-
Santilli isoequations (3.3.44) or (3.3.45) is truly elementary, and merely re-
quires the identification of the isounit according to algebraic rule (3.3.49) for
arbitrarily given external forces Fk(t, r, p).

3.3.6 Simple Construction of Classical Isomechanics
The above classical isomechanics can be constructed via a simple method

which does not need any advanced mathematics, yet it is sufficient and effective
for practical applications.

In fact, the Hamilton-Santilli isomechanics can be constructed via the sys-
tematic application of the following noncanonical transform to all quantities
and operations of the conventional Hamiltonian mechanics

U =

(
Î

1/2
3 0
0 T̂

1/2
3

)
, (3.3.64a)

U × U t = Î6 �= I, (3.3.64b)

Î3 = I − F

∂H/∂p
= I − F

p/m
. (3.3.64c)

The success of the construction depends on the application of the above
noncanonical transform to the totality of Hamiltonian mechanics, with no ex-
ceptions. We have in this way the lifting of: the 6-dimensional unit of the
conventional phase space into the isounit

I6 → Î6 = U × I6 × U t; (3.3.65)

numbers into the isonumbers,

n → n̂ = U × n × U t = n × (U × U t) = n × Î6; (3.3.66)

associative product A×B among generic quantities A, B into the isoassociative
product with the correct expression and property for the isotopic element,

A × B → A×̂B = U × (A × B) × U t = A′ × T̂ × B′, (3.3.67a)

A′ = U × A × U t, B′ = U × B × U t, T̂ = (U × U t)−1 = T t; (3.3.67b)
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Euclidean into isoeuclidean spaces (where we use only the space component
of the transform)

x2 = xt × δ × x → x̂2̂ = U × x2 × U t =
= (xt × U t) × (U t−1 × δ × U−1) × (U × x) × (U × U t) =

= [x′t × (T̂ × δ) × x′] × Î;
(3.3.68)

and, finally, we have the following isotopic lifting of Hamilton’s into Hamilton-
Santilli isoequations (here derived for simplicity for the case in which the
transform does not depend explicitly on the local coordinates),

db/dt − ω × ∂H/∂b = 0 →

→ U × db/dt × U t − U × ω × ∂/∂b × U t =

= db/dt × (U × U t) − (U × ω × U t) × (U t −1 × U−1)×
×(U × ∂H/∂b × U t) × (U × U t) =

= db/dt × Î − ω × (∂̂H/∂̂b̂) × Î = 0, (3.3.69)

where we have used the important property the reader is rugend to verify

U × ω × U t ≡ ω. (3.3.70)

As one can see, the seemingly complex isomathematics and isomechanics
are reduced to a truly elementary construction. e its universality.

3.3.7 Invariance of Classical Isomechanics
A final requirement is necessary for a physical consistency, and that is,

the invariance of isomechanics under its own time evolution, as it occurs for
conventional Hamiltonian mechanics.

Recall that a transformation b → b′(b) us called a canonical transformations
when all the following identities hold

∂bµ

∂b′α
× ωµν × ∂bν

∂b′β
= ωαβ . (3.3.71)

The invariance of Hamiltonian mechanics follows from the property that its
time evolution constitutes a canonical transformation, as well known.

The proof of the invariant of isomechanics is elementary. In fact, an iso-
transformation b̂ → b̂′(b̂) constituted an isocanonical isotransform when all
the following identities old

∂̂b̂µ

∂̂b̂′α
×̂ω̂µν×̂

∂̂b̂ν

∂̂b̂′β
= ω̂αβ = ωαβ × Î6. (3.3.72)
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But the above expression can be written

(Îµρ

6 × ∂b̂ρ

∂b̂α
× ωµν × Îξν

6 × ∂b̂ξ

∂b̂′β
) × Î6 = ωµν × Î6, (3.3.73)

and they coincide with conditions (3.3.xx) in view of the identities

Î
µρ

6 × ωµν × Î
νξ

6 = ωρξ. (3.3.74)

Consequently, we have the following important

THEOREM 3.3.3 [6,10]: Following factorization of the isounit, isocanonical
transformations are canonical.

The desired invariance of the Hamilton-Santilli isomechanics then follows.
It is an instructive exercise for the reader interested in learning isomechanics

to verify that all catastrophic mathematical and physical inconsistencies of
noncanonical theories pointed out in Chapter 1 (see Section 1.4.1 in particular)
are indeed resolved by isomechanics as presented in this section.

3.4 OPERATOR LIE-ISOTOPIC MECHANICS FOR
MATTER AND ITS ISODUAL FOR
ANTIMATTER

3.4.1 Introduction
We are finally equipped to present the foundations of the Lie-isotopic branch

of nonrelativistic hadronic mechanics for matter and its isodual for antimatter,
more simply referred to as operator isomechanics, and its isodual for antimat-
ter referred to as isodual operator isomechanics. The new mechanics will then
be used in subsequent sections for various developments, experimental verifi-
cations and industrial applications.

The extension of the results of this section to relativistic operator isome-
chanics is elementary and will be done in the following sections whenever
needed for specific applications. the case of it operator genomechanics with a
Lie-admissible, rather than the Lie-isotopic structure, will be studied in the
next chapter.

A knowledge of Section 3.2 is necessary for a technical understanding of op-
erator isomechanics. For the mathematically non-inclined readers, we present
in Section 3.4.8 as very elementary construction of operator isomechanics via
nonunitary transforms.

Unless otherwise specified, all quantities and operations represented with
conventional symbols A, H, ×, etc., denote quantities and operations on con-
ventional Hilbert spaces over conventional fields. All quantities and symbols of
the type Â, Ĥ, ×̂, etc., are instead defined on isohilbert spaces over isofields.
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Note the use of the terms “operator” isomechanics, rather than “quantum”
isomechanics, because, as indicated in Chapter 1, the notion of quantum is
fully established within the arena of its conception, the transition of electrons
between different stable orbits of atomic structure (exterior problem), while
the assumption of the same quantum structure for the same electrons when
in the core of a star (interior problems) is a scientific religion at this writing
deprived of solid experimental evidence.

3.4.2 Naive Isoquantization and its Isodual
An effective way to derive the basic dynamical equations of operator isome-

chanics is that via the isotopies of the conventional map of the classical
Hamilton-Jacobi equations into their operator counterpart, known as naive
quantization.. More rigorous methods, such as the isotopies of symplectic
quantization, essentially yields the same operator equations and will not be
treated in this section for brevity (see monograph [7] for a presentation).

Recall that the naive quantization can be expressed via the following map
of the canonical action functional

Ao =

t2∫
t1

(pk × drk − H × dt) → −i × h̄ × ln |ψ〉, (3.4.1)

under which the conventional Hamilton-Jacobi equations are mapped into the
Schrödinger equations,

−∂tA
o = H → i × h̄ × ∂t|ψ〉 = H × |ψ >, (3.4.2a)

pk = ∂kA
o → pk × |ψ >= −i × h̄ × ∂k|ψ >, (3.4.2b)

where |ψ > is the wavefunction, or, more technically, a state in a Hilbert space
H.

Isocanonical action (3.3.38) is evidently different than the conventional
canonical action, e.g., because it is of higher order derivatives. As such, the
above naive quantization does not apply.

In its place we have the following naive isoquantization first introduced
by Animalu and Santilli [44] of 1990, and here extended to the use of the
isodifferential calculus

Âo =

t2∫
t1

(p̂k×̂d̂x̂k − Ĥ×̂d̂t̂) → −i × Î × ln |ψ̂ >, (3.4.3)

where î = i × Î, |ψ̂ > is the ospwavefunction, or, more precisely, a state of
the iso-Hilbert space Ĥ outlined in the next section, and we should note that
î×̂Î × ln |ψ̂〉 = i × isoln|ψ̂ >.
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The use of Hamilton-Jacobi-Santilli isoequations (3.3.60) yields the follow-
ing operator equations (here written for the simpler case in which T̂ has no
dependence on r, but admits a dependence on velocities and higher derivatives)

−∂̂tÂ
o = Ĥ → i × ∂̂t|ψ̂ >= Ĥ × T̂ × |ψ̂ >= Ĥ×̂|ψ̂ >, (3.4.4a)

p̂k = ∂̂kÂ
o → p̂k × T̂ × |ψ̂ >= p̂k×̂|ψ̂ >= −î×̂∂̂k|ψ̂ >, (3.4.4b)

that constitutes the fundamental equations of operator isomechanics, as we
shall see in the next section.

As it is well known, Planck’s constant h̄ is the basic unit of quantum me-
chanics. By comparing Eqs. (3.4.xx) and (3.4.xx) it is easy to see that Î is
the basic unit of operator isomechanics. Recall also that the isounits are de-
fined at short distances as in Eqs. (3.1.xxx). We therefore have the following
important

POSTULATE 3.4.1 [5]: In the transition from quantum mechanics to op-
erator isomechanics Planck’s unit h̄ is replaced by the integrodifferential unit
Î under the condition of recovering the former at sufficiently large mutual
distances,

lim
r→∞

Î = h̄ = 1. (3.4.5)

Consequently, in the conditions of deep mutual penetration of the wavepackets
and/or charge distributions of particles of particles as studied by operator
isomechanics there is the superposition of quantized and continuous exchanges
of energy.

3.4.3 Isohilbert Spaces and Their Isoduals
As it is well known, the Hilbert space H used in quantum mechanics is

expressed in terms of states |ψ〉, |φ〉, . . . , with normalization

〈ψ| × |ψ〉 = 1, (3.4.6)

and inner product

〈φ| × |ψ〉 =
∫

dr3φ†(r) × ψ(r), (3.4.7)

defined over the field of complex numbers C = C(c,+,×).
The lifting C(c,+,×) → Ĉ(ĉ, +̂, ×̂), requires a compatible lifting of H into

the isohilbert space Ĥ with isostates |ψ̂〉, |φ̂〉, . . . , isoinner product and isonor-
malization

〈ψ̂|×̂|ψ̂〉 × Î =

 ∧∫
d̂r̂3 ψ̂†(r̂) × T̂ × ψ̂(r̂)

 × Î ∈ Ĉ, (3.4.8a)
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〈ψ̂|×̂|ψ̂〉 = 1, (3.4.8b)

first introduced by Myung and Santilli in 1982 [45] (see also monographs [6,7]
for a comprehensive study).

It is easy to see that the isoinner product is still inner (because T̂ > 0).
Thus, Ĥ is still Hilbert and the lifting H → Ĥ is an isotopy. Also, it is possible
to prove that iso-Hermiticity coincides with conventional Hermiticity,

< ψ̂|×̂(Ĥ×̂|ψ̂ >) ≡ (< ψ̂|×̂Ĥ †̂)×̂|ψ̂ >, (3.4.9a)

Ĥ †̂ ≡ Ĥ† = Ĥ. (3.4.9b)

As a result, all quantities that are observable for quantum mechanics remain
so for hadronic mechanics.

For consistency, the conventional eigenvalue equation H × |ψ〉 = E × |ψ〉
must also be lifted into the isoeigenvalue form [7]

Ĥ×̂|ψ̂〉 = Ĥ × T̂ × |ψ̂〉 = Ê×̂|ψ̂〉 =

= (E × Î) × T̂ × |ψ̂〉 = E × |ψ̂〉, (3.4.10)

where, as one can see, the final results are ordinary numbers.
Note the necessity of the isotopic action Ĥ×̂|ψ̂〉, rather than Ĥ × |ψ̂〉. In

fact, only the former admits Î as the correct unit,

Î×̂|ψ̂〉 = T̂−1 × T̂ × |ψ̂〉 ≡ |ψ̂〉. (3.4.11)

It is possible to prove that the isoeigenvalues of isohermitean operators are
isoreal, i.e., they have the structure Ê = E × Î , E ∈ R(n, +,×). As a result
all real eigenvalues of quantum mechanics remain real for hadronic mechanics.

We also recall the notion of isounitary operators as the isooperators Û on
Ĥ over Ĉ satisfying the isolaws

Û×̂Û †̂ = Û †̂×̂Û = Î , (3.4.12)

where we have used the identity Û †̂ ≡ Û †.
We finally indicate the notion of isoexpectation value of an isooperators Ĥ

on Ĥ over Ĉ

〈Ĥ〉 =
〈ψ̂|×̂Ĥ×̂|ψ̂〉
〈ψ̂|×̂|ψ̂〉

. (3.4.131)

It is easy to see that the isoexpectation values of isohermitean operators coin-
cide with the isoeigenvalues, as in the conventional case.

Note also that the isoexpectation value of the isounit is the isounit,

〈Î〉 = Î , (3.4.14)
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provided, of course, that one uses the isoquotient (otherwise 〈Î〉 = I).
The isotopies of quantum mechanics studied in the next sections are based

on the following novel invariance property of the conventional Hilbert space
[xxx], here expressed in term of a non-null scalar n independent from the
integration variables,

〈φ̂| × |ψ̂〉 × I ≡
≡ 〈φ̂| × n−2 × |ψ̂〉 × (n2 × I) = 〈φ|×̂|ψ〉 × Î . (3.4.15)

Note that new invariances (3.4.15) remained undetected throughout the
20-th century because they required the prior discovery of new numbers, those
with arbitrary units.

3.4.4 Structure of Operator Isomechanics and its
Isodual

The structure of operator isomechanics is essentially given by the following
main steps [47]:

1) The description of closed-isolated systems is done via two quantities, the
Hamiltonian representing all action-at-a-distance potential interactions, plus
the isounit representing all nonlinear, nonlocal and non-Hamiltonian effects,

H(t, r, p) = p2/2m + V (r), (3.4.16a)

Î = Î(t, r, p, ψ,∇ψ, . . . ), (3.4.16b)

The explicit form of the Hamiltonian is that conventionally used in quantum
mechanics although written on isospaces over isofields,

Ĥ = p̂×̂p̂/̂2̂×̂m̂ + V̂ (r̂). (3.4.17)

A generic expression of the isounit for the representation of two spinning par-
ticles with point-like change (such as the electrons) in conditions of deep pene-
tration of their wavepackets (as occurring in chemical valence bonds and many
other cases) is given by

Î = exp
[
Γ(ψ, ψ†) ×

∫
dv ψ†

↓(r)ψ↑(r)
]

, (3.4.18)

where the nonlinearity is expressed by Γ(ψ, ψ†) and the nonlocality is expressed
by the volume integral of the deep wave-overlappings

∫
dv ψ†

↓(r)ψ↑(r). All
isounits will be restricted by the conditions of being positive-definite (thus
everywhere invertible) as well as of recovering the trivial unit of quantum
mechanics for sufficiently big mutual distances r,

lim
r→∞

∫
dv ψ†

↓(r)ψ↑(r) = 0. (3.4.19)
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2) The lifting of the multiplicative unit I > 0 → Î = 1/T̂ > 0 requires the
reconstruction of the entire formalism of quantum mechanics into such a form
to admit Î as the correct left and right unit at all levels of study, including
numbers and angles, conventional and special functions, differential and in-
tegral calculus, metric and Hilbert spaces, algebras and groups, etc., without
any exception known to the authors. This reconstruction is “isotopic” in the
sense of being axiom-preserving. Particularly important is the preservation of
all conventional quantum laws as shown below.

3) The mathematical structure of nonrelativistic hadronic mechanics is char-
acterized by [6]:

3a) The isofield Ĉ = Ĉ(ĉ,+, ×̂) with isounit Î = 1/T̂ > 0, isocomplex
numbers and related isoproduct

ĉ = c × Î = (n1 + i × n2) × Î , ĉ×̂d̂ = (c × d) × Î ,

ĉ, d̂ ∈ Ĉ, c, d ∈ C,
(3.4.20)

the isofield R̂(n̂, +, ×̂) of isoreal numbers n̂ = n× Î , n ∈ R, being a particular
case;

3b) The iso-Hilbert space Ĥ with isostates |ψ̂〉, |φ̂〉, . . . , isoinner product
and isonormalization

〈φ̂|×̂|ψ̂〉 × Î ∈ Ŝ, 〈ψ̂|×̂|ψ̂〉 = 1, (3.4.21)

and related theory of isounitary operators;
3c) The Euclid-Santilli isospace Ê(r̂, δ̂, R̂) with isocoordinates, isometric

and isoinvariant respectively given by

r̂ = {rk} × Î , (3.4.22a)

δ̂ = T̂ (t, r, p, ψ,∇ψ, . . . ) × δ, (3.4.22b)

δ = Diag.(1, 1, 1), (3.4.22c)

r̂2̂ = (ri × δ̂ij × rj) × Î ∈ R̂; (3.4.22d)

3d) The isodifferential calculus and the isofunctional analysis (see Sec-
tion 3.2);

3e) The Lie-Santilli isotheory with enveloping isoassociative algebra ξ̂ of
operators Â, B̂, . . . , with isounit Î, isoassociative product Â×̂B̂ = Â× T̂ × B̂,
Lie-Santilli isoalgebra with brackets and isoexponentiation

[Â,̂B̂] = Â×̂B̂ − B̂×̂Â, (3.4.23a)

Û = êX = (eX×T̂ ) × Î = Î × (eT̂×X), X = X†, (3.4.13b)
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and related isosymmetries characterizing groups of isounitary transforms on
Ĥ over Ĉ,

Û×̂Û † = Û †×̂Û = Î . (3.4.24)

As we shall see in Sections 3.4.8 and 3.4.9, the above entire mathematical
structure can be achieved in a truly elementary way via nonunitary trans-
forms of quantum formalisms. Their isotopic reformulations then proves the
invariance of hadronic mechanics, namely, its capability of predicting the same
numbers for the same conditions at different times.

Under the above outlined structure we have the following main features:
I) Hadronic mechanics is a covering of quantum mechanics, because the

latter theory is admitted uniquely and unambiguously at the limit when the
isounit recovers the conventional unit, Î → I;

II) Said covering is further characterized by the fact that hadronic me-
chanics coincides with quantum mechanics everywhere except for (as we shall
see, generally small) non-Hamiltonian corrections at short mutual distances of
particles caused by deep mutual overlapping of the wavepackets and/or charge
distributions of particles;

III) Said covering is finally characterized by the fact that the indicated
non-Hamiltonian corrections are restricted to verify all abstract axioms of
quantum mechanics, with consequential preservation of is basic laws for closed
non-Hamiltonian systems as a whole, as we shall see shortly.

Note that composite hadronic systems, such as hadrons, nuclei, isomolecules,
etc., are represented via the tensorial product of the above structures. This
can be best done via the identification first of the total isounit, total isofields,
total isohilbert spaces, etc.,

Îtot = Î1 × Î2 × . . . , Ĉtot = Ĉ1 × Ĉ2 × . . . , Ĥtot = Ĥ1 × Ĥ2 × . . . . (3.4.25)

Note also that some of the units, fields and Hilbert spaces in the above
tensorial products can be conventional, namely, the composite structure may
imply local-potential long range interactions (e.g., those of Coulomb type),
which require the necessary treatment via conventional quantum mechanics,
and nonlocal-nonpotential short range interactions (e.g., those in deep wave-
overlappings), which require the use of operator isomechanics.

3.4.5 Dynamical Equations of Operator Isomechanics
and Their Isoduals

The formulations of the preceding sections permit the identification of the
following fundamental dynamical equations of the Lie-isotopic branch of had-
ronic mechanics, known under the name of iso-Heisenberg equations, that were
identified in the original proposal of 1978 to build hadronic mechanics [5], are
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can be presented in their finite and infinitesimal forms,

Â(t̂) = Û×̂Â(0̂)×̂Û †̂ = {êî×̂Ĥ×̂t̂}×̂Â(0̂)×̂{ê−î×̂t̂×̂Ĥ}, (3.4.26a)

î×̂d̂Â/̂d̂t̂ = [Â,̂Ĥ] = A×̂Ĥ − Ĥ×̂Â = Â × T̂ × Ĥ − Ĥ × T̂ × Â, (3.4.26b)
with the corresponding fundamental hadronic isocommutation rules

[b̂µ ,̂b̂ν ] = î×̂ω̂µν = i × ωµν × Î6, b̂ = (r̂k, p̂k), (3.4.27)

with corresponding i-Soschrödinger equations for the energy identified by
Myung and Santilli [45] and Mignani [48] in 1982 over conventional fields
and first formulated in an invariant way by Santilli in monograph [7] of 1995

î×̂∂̂t̂|ψ̂〉 = Ĥ×̂|ψ̂〉 = Ĥ × T̂ × |ψ̂〉 = Ê×̂|ψ̂〉 = E × |ψ̂〉, (3.4.28a)

|ψ̂(t̂)〉 = Û×̂|ψ̂(0̂)〉 = {êiĤ×̂t̂}×̂|ψ̂(0̂)〉, (3.4.28b)
and isolinear momentum first identified by Santilli in Ref. [7] of 1995 thanks
to the discovery of the isodifferential calculus

p̂k×̂|ψ̂〉 = p̂k × T̂ × |ψ̂〉 − î×̂∂̂k|ψ̂〉 = −i × Îi
k × ∂i|ψ̂〉, (3.4.29)

It is evident that the iso-Heisenberg equations in their infinitesimal and ex-
ponentiated forms are a realization of the Lie-Santilli isotheory of Section 3.2,
which is therefore the algebraic and group theoretical structure of the isotopic
branch of hadronic mechanics.

Note that Eqs. (3.4.26) and (3.4.28) automatically bring into focus the gen-
eral need for a time isounit and related characterization of the time isodiffer-
ential and isoderivative

Ît(t, r, ψ, . . . ) = T̂t > 0, (3.4.30a)

d̂t̂ = Ît × dt̂, ∂̂t̂ = Ît × ∂t. (3.4.30b)
Note also that ωµν in Eqs. (3.4.xxx) is the conventional Lie tensor, namely,
the same tensor appearing in the conventional canonical commutation rules,
thus confirming the axiom-preserving character of isomechanics.

The limited descriptive capabilities of quantum models should be kept in
mind, purely Hamiltonian and, as such, they can only represent systems which
are linear, local and potential. By comparison, we can write Eq. (3.4.xxx) in
its explicit form

î×̂∂̂t̂ψ̂ = i × Ît × ∂t̂|ψ̂〉 = Ĥ×̂|ψ̂〉 = Ĥ × T̂ × |ψ̂〉 =

= {p̂k × p̂k/2̂×̂m̂ + Ûk(t̂, r̂)×̂v̂k+

+Û0(t̂, r̂)} × T̂ (t̂, r̂, p̂, ψ̂,∇ψ, . . . ) × |ψ̂(t̂, r̂)〉 =

= Ê×̂|ψ̂(t, x̂)〉 = E × |ψ̂(t̂, x̂)〉,

(3.4.31)
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thus proving the following

THEOREM 3.4.1 [7]: Hadronic mechanics id “directly universal” for all in-
finitely possible, sufficiently smooth and regular, closed non-Hamiltonian sys-
tems, namely, it can represent in the fixed coordinates of the experimenter all
infinitely possible closed-isolated systems with linear and nonlinear, local and
nonlocal, and potential as well as nonpotential internal forces verifying the
conservation of the total energy.

A consistent formulation of the isolinear momentum (3.4.29) escaped iden-
tification for two decades, thus delaying the completion of the construction
of hadronic mechanics, as well as its practical applications. The consistent
and invariant form (3.4.29) with consequential isocanonical commutation rules
were first identified by Santilli in the second edition of Vol. II of this series,
Ref. [7] of 1995 and memoir [10], following the discovery of the isodifferential
calculus.

3.4.6 Preservation of Quantum Physical Laws
As one can see, the fundamental assumption of isoquantization is the lifting

of the basic unit of quantum mechanics, Planck’s constant h̄, into a matrix Î
with nonlinear, integro-differential elements which also depend on the wave-
function and its derivatives

h̄ = I > 0 → Î = Î(t, r, p, ψ, ψ̂, . . . ) = Î† > 0. (3.4.32)

It should be indicated that the above generalization is only internal in closed
non-Hamiltonian because, when measured from the outside, the isoexpectation
values and isoeigenvalues of the isounit recover Planck’s constant identically
[46],

〈Î〉 =
〈ψ̂|×̂Î×̂|ψ̂〉
〈ψ̂|×̂|ψ̂〉

= 1 = h̄, (3.4.33a)

Î×̂|ψ̂〉 = T̂−1 × T̂ × |ψ̂〉 = 1 × |ψ̂〉 = |ψ̂〉. (3.4.33b)

Moreover, the isounit is the fundamental invariant of isomechanics, thus pre-
serving all axioms of the conventional unit I = h̄, e.g.,

Î n̂ = Î×̂Î×̂ . . . ×̂Î ≡ Î , (3.4.34a)

Î
1
2 ≡ Î , (3.4.34b)

î×̂d̂Î /̂d̂t = [Î ,̂Ĥ] = Î×̂Ĥ − Ĥ×̂Î ≡ 0. (3.4.34c)
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Despite their generalized structure, Eqs. (3.4.26) and (3.4.28) preserve con-
ventional quantum mechanical laws under nonlinear, nonlocal and nonpotential
interactions [7].

To begin an outline, the preservation of Heisenberg’s uncertainties can be
easily derived from isocommutation rules (3.4.27):

∆xk × ∆pk ≥ 1
2
× 〈[x̂k ,̂p̂k]〉 =

1
2
. (3.4.35)

To see the preservation of Pauli’s exclusion principle, recall that the regular
(two-dimensional) representation of SU(2) is characterized by the conventional
Pauli matrices σk with familiar commutation rules and eigenvalues on H over
C,

[σi, σj ] = σi × σj − σj × σi = 2 × iεijk × σk, (3.4.36a)

σ2 × |ψ〉 = σk × σk × |ψ〉 = 3 × |ψ〉, (3.4.36b)

σ3 × |ψ〉 = ±1 × |ψ〉. (3.4.36c)

The isotopic branch of hadronic mechanics requires the construction of
nonunitary images of Pauli’s matrices first constructed in Ref. [49] that,
for diagonal nonunitary transforms and isounits, can be written (see also Sec-
tion 3.3.6)

σ̂k = U × σk × U †, U × U † = Î �= I, (3.4.37a)

U =
(

i×n1 0
0 i×n2

)
, U † =

(
−i×n1 0

0 −i×n2

)
,

Î =
(

m2
1 0

0 n2
2

)
, T̂ =

(
n−2

1 0
0 n−2

2

)
,

(3.4.37b)

where the n’s are well behaved nowhere null functions, resulting in the regular
Pauli-Santilli isomatrices [49]

σ̂1 =
(

0 n2
1

n2
2 0

)
, σ̂2 =

(
0 −i×n2

1

i×n2
2 0

)
, σ̂3 =

(
n2

1 0
0 n2

2

)
. (3.4.38)

Another realization is given by nondiagonal unitary transforms [loc. cit.],

U =
(

0 n1

n2 0

)
, U † =

(
0 n2

m1 0

)
,

Î =
(

n2
1 0

0 n2
2

)
, T̂ =

(
n−2

1 0
0 n−2

2

)
,

(3.4.39)

with corresponding regular Pauli-Santilli isomatrices,

σ̂1 =
(

0 n1×n2

n1×n2 0

)
, σ̂2 =

(
0 −i×n1×n2

i×m1×n2 0

)
,
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σ̂3 =
(

n2
1 0

0 n2
2

)
, (3.4.40)

or by more general realizations with Hermitean nondiagonal isounits Î [15].
All Pauli-Santilli isomatrices of the above regular class verify the following

isocommutation rules and isoeigenvalue equations on Ĥ over Ĉ

[σ̂î,σ̂j ] = σ̂i × T̂ × σ̂j − σ̂j × T̂ × σ̂i = 2 × i × εijk × σ̂k, (3.4.41a)

σ̂2̂×̂|ψ̂〉 = (σ̂1×̂σ̂1 + σ̂2×̂σ̂2 + σ̂3×̂σ̂3)×̂|ψ̂〉 = 3 × |ψ̂〉, (3.4.41b)

σ̂3×̂|ψ̂〉 = ±1 × |ψ̂〉, (3.4.41c)

thus preserving conventional spin 1/2, and establishing the preservation in
isochemistry of the Fermi-Dirac statistics and Pauli’s exclusion principle.

It should be indicated for completeness that the representation of the iso-
topic SÛ(2) also admit irregular isorepresentations, that no longer preserve
conventional values of spin [49]. The latter structures are under study for
the characterization of spin under the most extreme conditions, such as for
protons and electrons in the core of collapsing stars and, as such, they have
no known relevance for isomechanics.

The preservation of the superposition principle under nonlinear interactions
occurs because of the reconstruction of linearity on isospace over isofields, thus
regaining the applicability of the theory to composite systems.

Recall in this latter respect that conventionally nonlinear models,

H(t, x, p, ψ, . . . ) × |ψ〉 = E × |ψ〉, (3.4.42)

violate the superposition principle and have other shortcomings (see Sec-
tion 1.5). As such, they cannot be applied to the study of composite systems
such as molecules. All these models can be identically reformulated in terms of
the isotopic techniques via the embedding of all nonlinear terms in the isotopic
element,

H(t, x, p, ψ, . . . ) × |ψ〉 ≡ H0(t, x, p) × T̂ (ψ, . . . ) × |ψ〉 = E × |ψ〉, (3.4.43)

by regaining the full validity of the superposition principle in isospaces over
isofields with consequential applicability to composite systems.

The preservation of causality follows from the one-dimensional isounitary
group structure of the time evolution (3.4.28) (which is isomorphic to the con-
ventional one); the preservation of probability laws follows from the preser-
vation of the axioms of the unit and its invariant decomposition as indicated
earlier; the preservation of other quantum laws then follows.

The same results can be also seen from the fact that operator isomechanics
coincides at the abstract level with quantum mechanics by conception and
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construction. As a result, hadronic and quantum versions are different real-
izations of the same abstract axioms and physical laws.

Note that the preservation of conventional quantum laws under nonlinear,
nonlocal and nonpotential interactions is crucially dependent on the capability
of isomathematics to reconstruct linearity, locality and canonicity-unitarity on
isospaces over isofields.

The preservation of conventional physical laws by the isotopic branch of had-
ronic mechanics was first identified by Santilli in report [47]. It should be indi-
cated that the same quantum laws are not generally preserved by the broader
genomechanics, evidently because the latter must represent by assumption
non-conservation laws and other departures from conventional quantum set-
tings.

With the understanding that the theory does not receive the classical de-
terminism, it is evident that isomechanics provides a variety of “completions”
of quantum mechanics according to the celebrated E-P-R argument [50], such
as:

1) Isomechanics “completes” quantum mechanics via the addition of non-
potential-nonhamiltonian interactions represented by nonunitary transforms.

2) Isomechanics “completes” quantum mechanics via the broadest possible
(non-oriented) realization of the associative product into the isoassociative
form.

3) Isomechanics “completes” quantum mechanics in its classical image.
In fact, as proved by well known procedures based on Bell’s inequalities,

quantum mechanics does not admit direct classical images on a number of
counts. On the contrary, as studied in details in Refs. [51], the nonunitary im-
ages of Bell’s inequalities permit indeed direct and meaningful classical limits
which do not exist for the conventional formulations.

Similarly, it is evident that isomechanics constitutes a specific and concrete
realization of “hidden variables” [52] λ which are explicitly realized by the
isotopic element, λ = T̂ , and actually turned into an operator hidden variables.
The “hidden” character of the realization is expressed by the fact that hidden
variables are embedded in the unit and product of the theory.

In fact, we can write the iso-Schrödinger equation Ĥ×̂|ψ̂〉 = Ĥ × λ× |ψ̂〉 =
E ×|ψ̂〉, λ = T̂ . As a result, the “variable” λ (now generalized into the opera-
tor T̂ ) is “hidden” in the modular associative product of the Hamiltonian Ĥ

and the state |ψ̂〉.
Alternatively, we can say that hadronic mechanics provides an explicit

and concrete realization of hydden variables because all distinctions between
Ĥ×̂|ψ̂ > and H × |ψ > cease to exist at the abstract realization-free level.

For studies on the above and related issues, we refer the interested reader
to Refs. [51] and quoted literature.
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3.4.7 Isoperturbation Theory and its Isodual
We are now sufficiently equipped to illustrate the computational advantages

in the use of isotopies.

THEOREM 3.4.2 [7]: Under sufficient continuity conditions, all perturba-
tive and other series that are conventionally divergent (weakly convergent) can
be turned into convergent (strongly convergent) forms via the use of isotopies
with sufficiently small isotopic element (sufficiently large isounit),

|T̂ | � 1, |Î| � 1. (3.4.44)

The emerging perturbation theory was first studied by Jannussis and Mignani
[53], and then studied in more detail in monograph [7] under the name of
isoperturbation theory.

Consider a Hermitean operator on H over C of the type

H(k) = H0 + k × V, H0 × |ψ〉 = E0 × |ψ〉, (3.4.45a)

H(k) × |ψ(k)〉 = E(k) × |ψ(k)〉, k � 1. (3.4.45b)

Assume that H0 has a nondegenerate discrete spectrum. Then, conventional
perturbative series are divergent, as well known. In fact, the eigenvalue E(k)
of H(k) up to second order is given by

E(k) = E0 + k × E1 + k2 × E2 =

= E0 + k × 〈ψ| × V × |ψ〉 + k2 ×
∑
p�=n

|〈ψp| × V × |ψn〉|2
E0n − E0p

.
(3.4.46)

But under isotopies we have

H(k) = H0 + k × V, H0 × T̂ × |ψ̃〉 = Ẽ0 × |ψ̃〉, Ẽ0 �= E0, (3.4.47a)

H(k) × T̂ × |ψ̂(k)〉 = Ẽ(k) × |ψ̂(k)〉, Ẽ �= E, k > 1. (3.4.47b)

A simple lifting of the conventional perturbation expansion then yields

Ẽ(k) = Ẽ0 + k × Ẽ1 + k2 × Ẽ2 + Ô(k2) =

= Ẽ0 + k × 〈ψ̃| × T̂ × V × T̂ × |ψ̃〉+ (3.4.48a)

+k2 ×
∑
p�=n

|〈ψ̂p| × T̂ × V × T̂ × |ψ̂n〉|2̂
Ẽ0n − Ẽ0p

, (3.4.48b)

whose convergence can be evidently reached via a suitable selection of the
isotopic element, e.g., such that |T̂ | � k.



ISOTOPIC BRANCH OF HADRONIC MECHANICS 261

As an example, for a positive-definite constant T̂ � k−1, expression (3.4.46)
becomes

Ẽ(k) = Ẽ0 + k × T̂ 2 × 〈ψ̂| × V × |ψ∗〉 + k2 × T 5×

×
∑
p�=n

|〈ψp| × V × |ψn〉|2
Ẽ0n − Ẽ0p

.
(3.4.49)

This shows that the original divergent coefficients 1, k, k2, . . . are now turned
into the manifestly convergent coefficients 1, k × T 2, k2 × T 5, . . . , with k > 1
and T̂ � 1/k, thus ensuring isoconvergence for a suitable selection of T̂ for
each given k and V .

A more effective reconstruction of convergence can be seen in the algebraic
approach. At this introductory stage, we consider a divergent canonical series,

A(k) = A(0) + k × [A, H]/1!+
+k2 × [[A, H], H]/2! + . . . → ∞, k > 1,

(3.4.50)

where [A, H] = A×H −H ×A is the familiar Lie product, and the operators
A and H are Hermitean and sufficiently bounded. Then, under the isotopic
lifting the preceding series becomes [7]

Â(k) = Â(0) + k × [A,̂H]/1! + k2 × [[A,̂H ]̂,H]/2! + · · · ≤ |N | < ∞, (3.4.51a)

[A,̂H] = A × T̂ × H − H × T̂ × A, (3.4.51b)

which holds, e.g., for the case T = ε × k−1, where ε is a sufficiently small
positive-definite constant.

In summary, the studies on the construction of hadronic mechanics have
indicated that the apparent origin of divergences (or slow convergence) in
quantum mechanics and chemistry is their lack of representation of nonlinear,
nonlocal, and nonpotential effects because when the latter are represented via
the isounit, full convergence (much faster convergence) can be obtained.

As we shall see, all known applications of hadronic mechanics verify the cru-
cial condition |Î| >> 1, |T̂ | << 1, by permitting convergence of perturbative
series. For instance, in the case of chemical bonds, hadronic chemistry allows
computations at least one thousand times faster than those of quantum chem-
istry, with evident advantages, e.g., a drastic reduction of computer time (see
Chapter 9). Essentially the same results are expected for hadronic mechanics
and hadronic superconductivity.

The reader should meditate a moment on the evident possibility that hadro-
nic mechanics offers realistic possibilities of constructing a convergent pertur-
bative theory for strong interactions. As a matter of fact, the divergencies that
have afflicted strong interactions through the 20-th century originates precisely



262

from the excessive approximation of hadrons as point, with the consequential
sole potential interactions and related divergencies.

In fact, whenever hadrons are represented as they actually are in reality,
extended and hyperdense particles, with consequential potential as well as
nonpotential interactions, all divergencies are removed by the isounit.

3.4.8 Simple Construction of Operator Isomechanics
Despite their mathematical equivalence, it should be indicated that quantum

and hadronic mechanics are physically inequivalent, or, alternatively, hadronic
mechanics is outside the classes of equivalence of quantum mechanics because
the former is a nonunitary image of the latter.

As we shall see in the next chapters, the above property provides means
for the explicit construction of the new model of isomechanics bonds from
the conventional model. The main requirement is that of identifying the non-
hamiltonian effects one desires to represent, which as such, are necessarily
nonunitary. The resulting nonunitary transform is then assumed as the fun-
damental space isounit of the new isaomechanics [46]

U × U † = Î �= I, (3.4.52)

under which transform we have the liftings of: the quantum unit into the
isounit,

I → Î = U × I × U †; (3.4.53)

numbers into isonumbers,

a → â = U × a × U † = a × (U × U †) = a × Î; a = n, c, (3.4.54)

associative products A×B into the isoassociative form with the correct isotopic
element,

A × B → Â×̂B̂ = Â × T̂ × B̂, (3.4.55a)

Â = U × A × U †, B̂ = U × B × U †, T̂ = (U × U †)−1 = T †; (3.4.55b)

Schrödinger’s equation into the isoschrödinger’s equations

H × |ψ〉 = E × |ψ〉 → U(H × |ψ〉) =

= (U × H × U †) × (U × U †)−1 × (U × |ψ〉) =

= Ĥ × T̂ × |ψ̂〉 = Ĥ×̂|ψ̂〉;

(3.4.56)

Heisenberg’s equations into their isoheisenberg generalization

i × dA/dt − A × H − H × A = 0 →
→ U × (i × dA/dt) × U † − U(A × H − H × A) × U † =

= î×̂dÂ/dt − Â×̂Ĥ − Ĥ×̂Â = 0;

(3.4.57)



ISOTOPIC BRANCH OF HADRONIC MECHANICS 263

the Hilbert product into its isoinner form

〈ψ|×|ψ〉 → U×〈ψ|×|ψ〉×U † =

= (〈ψ|×U †)×(U×U)−1×(U×|ψ〉)×(U×U)−1 = 〈ψ̂|×̂|ψ̂〉×Î;
(3.4.58)

canonical power series expansions into their isotopic form

A(k) = A(0) + k×[A, H] + k2×[[A, H, ], H] + . . . → U×A(k) × U † =

= U ×
[
A(0) + k × [A, H] + k2 × [[A, H], H] + . . .

]
× U † =

= Â(k̂) = Â(0) + k̂×̂[Â,̂ Ĥ] + k̂2̂×̂[[Â,̂ Ĥ ]̂, Ĥ] + . . . ,

k > 1, |T̂ | � 1;
(3.4.59)

Schrödinger’s perturbation expansion into its isotopic covering (where the
usual summation over states p �= n is assumed)

E(k) = E(0) + k × 〈ψ| × V × |ψ〉 + k2 |〈ψ|×V ×|ψ〉|2
E0n − E0p

+ . . . →

→ U×E(k)×U † = U×
[
E(0) + k×〈ψ|×V ×|ψ〉 + . . .

]
×U † =

= Ê(k̂) = Ê(0) + k̂×̂〈ψ̂| × T̂ × V̂ × T̂ × |ψ̂〉 + . . . ,

k > 1, |T̂ | � 1;

(3.4.60)

etc. All remaining aspects of operator isochemistry can then be derived ac-
cordingly, including the isoexsponent, isologarithm, isodeterminant, isotrace,
isospecial functions and transforms, etc.

Note that the above construction via a nonunitary transform is the correct
operator image of the derivability of the classical isohamiltonian mechanics
from the conventional form via noncanonical transforms (Section 3.2.12).

The construction of hadronic mechanics via nonunitary transforms of quan-
tum mechanics was first identified by Santilli in the original proposal [5e], and
then worked out in subsequent contributions (see [12] for the latest presenta-
tion).

3.4.9 Invariance of Operator Isomechanics
It is important to see that, in a way fully parallel to the classical case (Sec-

tion 3.3.7), operator isomechanics is indeed invariant under the most general
possible nonlinear, nonlocal and nonhamiltonian-nonunitary transforms, pro-
vided that, again, the invariance is treated via the isomathematics. In fact,
any given nonunitary transform U × U † �= I can always be decomposed into
the form [12]

U = Û × T̂ 1/2,
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under which nonunitary transforms on H over C are identically reformulated
as isounitary transforms on the isohilbert space Ĥ over the isofield ,̂

U × U † ≡ Û×̂Û † = Û †×̂Û = Î . (3.4.61)

The form-invariance of operator isomechanics under isounitary transforms
then follows,

Î → Î ′ = Û×̂Î×̂Û † ≡ Î , Â×̂B̂ → Û×̂(Â×̂B̂)×̂Û † = Â′×̂B̂′, etc., (3.4.62a)

Ĥ×̂|ψ̂〉 = Ê×̂|ψ̂〉 → Û × Ĥ×̂|ψ̂〉 =

= (Û × Ĥ × Û †)×̂(Û×̂|ψ̂〉) = Ĥ ′×̂|ψ̂′〉 =

= Û×̂Ê×̂|ψ̂〉 = Ê×̂Û×̂|ψ̂〉 = Ê×̂|ψ̂′〉,

(3.4.62b)

where one should note the preservation of the numerical values of the isounit,
isoproducts and isoeigenvalues, as necessary for consistent applications.

Note that the invariance in quantum mechanics holds only for transforma-
tions U × U † = I with fixed I. Similarly, the invariance of isomechanics holds
only for all nonunitary transforms such Û×̂Û †̂ = Î with fixed Î, and not for
a transform Ŵ ×̂Ŵ †̂ = Î ′ �= Î because the change of the isounit Î implies the
transition to a different physical system.

The form-invariance of hadronic mechanics under isounitary transforms was
first studied by Santilli in memoir [46].

3.5 ISORELATIVITIES AND THEIR ISODUAL
3.5.1 Space, the Final Frontier

As it is well known, we would not be able to hear each other voices without
our atmosphere, because sound is a longitudinal wave requiring a compressible
medium for its existence and propagation.

Similarly, we would not be able to see each other faces without the aether
conceived as a universal medium with characteristics similar to very high rigid-
ity, because light is a transversal wave that, as such, requires a rigid medium
for its existence and propagation.

The reduction of light to photons in an attempt to avoid a universal medium
has the sole value of political posturing in support of Einsteinian doctrines,
since radio waves with one meter in wavelength do indeed propagate through
empty interplanetary spaces, while their reduction to photons has no scientific
credibility due to the excessive size of the wavelength.

The first paper written by the author back in 1956 [54] when a high school
student was intended to stress the need for the universal medium with features
similar to high rigidity due to the transversal character of light, and to indicate
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that the so-called aethereal wind under discussion in the 1950s “cannot” exist
(out of the vast literature on the aether, see Ref. [55] for an early account,
and Refs. [56,57] for more recent treatments).

As it is well known, the electron is a pure oscillation with the well known
frequency of 1.236 × 1020 Hz, thus requiring a universal medium for its very
existence, since no ordinary mass or other material entity oscillates. We merely
have a dimensionless point of the universal medium that oscillates at the given
frequency.

Consequently, when the electron moves, it “cannot” experience any aethe-
real wind as claimed in earlier references [55] because we merely move its
characteristic oscillation from one point of the aether to another.

The main argument of paper [54] is that exactly the same occurrence holds
for all other elementary and composite particles. Consequently, the aether as
a universal medium is necessary not only for the existence and propagation of
electromagnetic waves, but also for the very existence of all elementary and
composite particles and, therefore, of matter as perceived by our senses.

The main conclusion of paper [54] is that, contrary to our sensory percep-
tion, matter is entirely empty and space is entirely full, because mass can be
entirely reduced to oscillations of the aether, and the inertia (from which we
compute the mass) is in actuality a tendency of the aether to oppose variation
of speed motion of said oscillations.

When initiating his academic life in the late 1960s, the author soon discov-
ered that any mention of the aether as a universal medium would imply instant
disqualification by the organized academic interests on Einsteinian doctrines
in control of the world wide physics community, and, consequently, the author
had to dedicate himself to other studies.

Nevertheless, physical veritas is not established by academic power, but by
evidence. The need of a universal medium for the existence and propagation
of electromagnetic waves, particles and all matter perceived by our senses is
beyond any possible, credible or otherwise plausible doubt.

It then follows that, no matter how beloved and supported a theory is at a
given time, no relativity will resist the test of time without the achievement
of full compatibility with the aether as a universal medium and, of course, the
unavoidable privileged reference frame at rest with respect to said universal
medium.

At any rate, space is the true ultima frontier of the physics of the third
millennium, in the sense that no other physical problem can compared to
studies on the universal medium in view of potential discoveries simply beyond
our imagination.

As an indication, if the aether has such a high rigidity to propagate a
transversal wave at the speed of 2.997 × 1010 cm/sec, it is expected to propa-
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gate longitudinal waves at such a speed to render interstellar communications
virtually instantaneous.24

The fact that Maxwell’s equations do not admit longitudinal solutions is, on
scientific grounds outside academic politics, a confirmation of their limitations
due to their known incompatibility with the privileged reference frame of a
universal medium.

Alternatively, the dismissal of possible longitudinal waves in space because
not predicted by Maxwell’s equations is academic politics because in Chapter
11 we shall study new clean fuels in industrial sale whose production is based
precisely on longitudinal forces, in this case within a material medium, not
predicted by Maxwell’s equations.

As we shall see in Chapter 13, the aether as a universal medium can well
permit, at a time in the far future, the isogeometric locomotion, that is, a loco-
motion based on the alteration of the local geometry without any Newtonian
action and reaction, which locomotion is predicted to permit arbitrary speeds
without any conflict with Einsteinian doctrines.

Similarly, recent studies have indicated that the aether as a universal medium
is composed of a superposition of positive and negative energies with a very
high density of the order of 1025 erg/cm3, whose coexistence has been rendered
possible by the isodual theory because positive and negative energies exist in
different spacetimes.

Consequently, the aether has recently emerged as being, by far, the biggest
reservoir of energy available to mankind. The suppression of its study just to
support any beloved theory would clearly be anti-scientific and anti-social.

In reality, when systematic studies are initiated on the aether as a universal
medium, hadronic mechanics will emerge as the first known mechanics for
interplay between matter and aether.

More specifically, studies presented in subsequent chapters show that the
isotopic realization of hidden variables can characterize the interplay between
matter and space with far reaching possibilities simply beyond our imagination
at this time.

In view of all the above, our studies on relativities will be based on the fun-
damental assumption of the privileged reference frame of the universal medium
necessary for the existence and propagation of electromagnetic waves, particles

24It is generally believed that there exist no intelligent life within a radius of 70 light years from
Earth (the period of time since the initiation of our radio waves activity) because SETI has failed to
detect any intelligent radio signal. in reality, it is possible that a civilization with millions of years of
scientific evolution (as expected from the life of near-by star systems) looks at our communications
with electromagnetic waves in the same way we look at the ancient communications via smoke
signals in view of the fact that, despite its large value, the speed of light is dramatically insufficient
for interstellar communication. Longitudinal waves propagating though the aether are then the only
conceivable alternative on ground of our limited knowledge since they will propagate at a speed
predicted to be a large multiple of that for the transversal electromagnetic waves.
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and matter. All admitted relativities will be restricted to those compatible in
one way or another with this fundamental assumption.

3.5.2 Lorentzian versus Galilean Relativities
Special relativity is generally presented in contemporary academia as pro-

viding a descriptions of all infinitely possible conditions existing in the uni-
verse.

The scientific reality is somewhat different than this academic posture. In
fact, in Section 1.1 we have shown that special relativity cannot provide a con-
sistent classical description of point antiparticles moving in vacuum because
leading to inconsistent quantum images consisting of particles (rather than
charge conjugated antiparticles) with the wrong sign of the charge, besides
having no distinction for bodies with null total charge.

In Section 1.3 we have established that special relativity cannot be ex-
actly valid for extended particles and antiparticles moving within physical
media, because of an axiomatic inability to represent extended and nonspher-
ical shapes, an incompatibility with the deformation theory, the lack of exis-
tence of a consistent reduction of classical nonconservative forces to potential
abstractions at the particle level, and other reasons.

In Section 1.3 we have also established that special relativity cannot describe
irreversible processes for both matter and antimatter due to unavoidable in-
consistencies caused by its notoriously reversible axioms and other reasons.

In Section 1.3 we have also established that the complexity of biological
systems is immensely beyond the rather limited descriptive capacity of special
relativity.

When restricting the possible validity to the arena of its original conception
(propagation of point particles and electromagnetic waves in vacuum), special
relativity results to be incompatible with the privileged frame of the universal
medium.

Consequently, contrary to popular beliefs, special relativity has no
uncontested arena at all in which it can be claimed on strict scientific
grounds to be exactly valid.

Nevertheless, special relativity is known to work well in particle accelerators
up to very high speeds. Consequently, we shall indeed study special relativity
in this section but only on grounds of its pragmatic validity.

We shall then seek conditions under which special relativity can be made
compatible with a privileged reference frame. A logical line of study is the
assumption that the two-way speed of light used in all historical and more
recent experiments is indeed an invariant leading to Lorentz transforms and
special relativity, while the one way speed of light is strictly Galilean, thus
leading to Galileo’s relativity [31,32].
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In different terms, the alternative as to whether the ultimate relativity is of
Lorentzian or Galilean type is far from being resolved. It is an easy prediction
that such an alternative will not be resolved in this volume. Consequently,
at the current state of our knowledge we are left with no other alternative
other than the study of both relativities and leave the final selection to future
generations.

In the following we shall first study the isotopies of special relativity in order
to broader the conditions of its pragmatic applicability as much as possible,
including the achievement of an invariant representation of arbitrary speeds of
light, its extension to noninertial frames, the geometric unification of special
and general relativities with consequential isotopic formulation of gravitation
(used for the grand unification of Chapter 14), and related topics.

Subsequently, we shall first review a relativistic extension of Galileo’s rela-
tivity, and then formulate its isotopies so as to broaden the arena of applica-
bility also to locally varying speed of light within physical media, noninertial
frames and other advances.

We shall finally address the problem of a conceivable mutual compatibility
of these seemingly discordant relativities.

3.5.3 Iso-Minkowskian Spaces and Their Isoduals
As studied in Section 1.2, the “universal constancy of the speed of light”

is a philosophical abstraction because experimental evidence establishes that
the speed of light is a local variable depending on the medium in which it
propagates, with well known expression

c = c◦/n, (3.5.1)

where the familiar index of refraction n is a function of a variety of character-
istics of the medium, including time t, coordinates r, density µ, temperature
τ , frequency ω, etc., n = n(t, r, µ, τ, ω, . . . ).

In particular, the speed of light is generally smaller than that in vacuum
when propagating within media of low density, such as atmospheres or liquids,

c � c◦, n � 1, (3.5.2)

while the speed of light is generally bigger than that in vacuum when propa-
gating within special guides, or within media of very high density, such as the
interior of stars and quasars,

c � c◦, n � 1 (3.5.3)

Academic claims of recovering the speed of light in water via photons scat-
tering among the water molecules are afflicted by numerous inconsistencies
inconsistencies studied in Section 1.2, and the same hoolds for otehr aspects.
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Assuming that via some unknown manipulation special relativity is shown
to represent consistently the propagation of light within physical media, such
a representation would activate the catastrophic inconsistencies of Theorem
1.5.1.

This is due to the fact that the transition from the speed of light in vacuum
to that within physical media requires a noncanonical or nonunitary transform.

This point can be best illustrated by using the metric originally proposed
by Minkowski, which can be written

η = Diag.(1, 1, 1,−c2
◦). (3.5.4)

Then, the transition from c◦ to c = c◦/n in the metric can only be achieved
via a noncanonical or nonunitary transform

η = Diag.(1, 1, 1,−c2
◦) → η̂ =

= Diag.(1, 1, 1,−c◦/n2) = U × η × U †, (3.5.5a)

U × U † = Diag.(1, 1, 1, 1/n2) �= I. (3.5.5b)

An invariant resolution of the limitations of special relativity for closed
and reversible systems of extended and deformable particules under Hamil-
tonian and non-Hamiltonian interactions has been provided by the lifting of
special relativity into a new formulation today known as Santilli isorelativity,
or isorelativity for short, where: the prefix “iso” stands to indicate that rela-
tivity principles apply on isospacetime over isofields; and the characterization
of “special” or “general” is inapplicable because, as shown below, isorelativity
achieves a geometric unification of special and general relativities.

Irreversible systems of extended and deformable particles with Hamiltonian
and non-Hamiltonian interactions are studied in the next chapter. They are
also characterized by isorelativity chen closed via the use of a time-dependent
hermitean isounit, and require the broader genorelativity when open.

Isorelativity was first proposed by R. M. Santilli in Ref. [58] of 1983 via the
first invariant formulation of iso-Minkowskian spaces and related iso-Lorentz
symmetry.

The studies were then continued in: Ref. [59] of 1985 with the first isotopies
of the rotational symmetry; Ref. [49] of 1993 with the first isotopies of the
SU(2)-spin symmetry; Ref. [60] of 1993 with the first isotopies of the Poincaré
symmetry; Ref. [51] of 1998 with the first isotopies of the SU(2)-isospin sym-
metries, Bell’s inequalities and local realism; and Refs. [61,62] on the first
isotopies of the spinorial covering of the Poincaré symmetry.

The studies were then completed with memoir [26] of 1998 presenting a com-
prehensive formulation of the iso-Minkowskian geometry and its capability to
unify the Minkowskian and Riemannian geometries, including its formulation
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via the mathematics of the Riemannian geometry (such iso-Christoffel’s sym-
bols, isocovariant derivatives, etc.).

Numerous independent studies on isorelativity are available in the litera-
ture, one can inspect in this respect Refs. [32–43] and papers quoted therein;
Aringazin’s proof [63] of the direct universality of the Lorentz-Poincaré-Santilli
isosymmetry for all infinitely possible spacetimes with signature (+, +, +, −);
Mignani’s exact representation [64] of the large difference in cosmological red-
shifts between quasars and galaxies when physically connected; the exact rep-
resentation of the anomalous behavior of the meanlives of unstable particles
with speed by Cardone et al. [65–66]; the exact representation of the experi-
mental data on the Bose-Einstein correlation by Santilli [67] and Cardone and
Mignani [68]; the invariant and exact validity of the iso-Minkowskian geome-
try within the hyperdense medium in the interior of hadrons by Arestov et al.
[69]; the first known exact representation of molecular features by Santilli and
Shillady [70,71]; and numerous other contributions.

Evidently we cannot review isorelativity in the necessary details to avoid
a prohibitive length. Nevertheless, to achieve minimal self-sufficiency of this
presentation, it is important to outline at least its main structural lines (see
monograph [55] for detailed studies).

The central notion of isorelativity is the lifting of the basic unit of the
Minkowski space and of the Poincaré symmetry, I = Diag.(1, 1, 1, 1), into
a 4 × 4-dimensional, nowhere singular and positive-definite matrix Î = Î4×4

with an unrestricted functional dependence on local spacetime coordinates x,
speeds v, accelerations a, frequencies ω, wavefunctions ψ, their derivative ∂ψ,
and/or any other needed variable,

I = Diag.(1, 1, 1) → Î(x, v, a, ω, ψ, ∂ψ, . . . ) =

= 1/T̂ (x, v, ω, ψ, ∂ψ, . . . ) > 0. (3.5.6)

Isorelativity can then be constructed via the method of Section 3.4.6, namely,
by assuming that the basic noncanonical or nonunitary transform coincides
with the above isounit

U × U † = Î = Diag.(g11, g22, g33, g44),

gµµ = gµµ(x, v, ω, ψ, ∂ψ, . . . ) > 0, µ = 1, 2, 3, 4, (3.5.7)

and then subjecting the totality of quantities and their operation of special
relativity to the above transform.

This construction is, however, selected here only for simplicity in pragmatic
applications, since the rigorous approach is the construction of isorelativity
from its abstract axioms, a task we have to leave to interested readers for
brevity (see the original derivations [7]).
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This is due to the fact that the former approach evidently preserves the
original eigenvalue spectra and does not allow the identification of anomalous
eigenvalues emerging from the second approach, such as those of the SU(2)
and SU(3) isosymmetries [51].

Let M(x, η, R) be the Minkowski space with local coordinates x = (xµ),
metric η = Diag.(1, 1, 1,−1) and invariant

x2 = (xµ × ηµν × xν) × I ∈ R. (3.5.8)

The fundamental space of isorelativity is the Minkowski-Santilli isospace [58]
and related topology [10,22–25], M̂(x̂, η̂, R̂) characterized by the liftings

I = Diag.(1, 1, 1, 1) → U × I × U † = Î = 1/T̂ , (3.5.9a)

η = Diag.(1, 1, 1,−1) × I → (U †−1 × η × U−1) × Î = η̂ =

= T̂ × η = Diag.(g11, g22, g33,−g44) × Î , (3.5.9b)

with consequential isotopy of the basic invariant

x2 = (xµ × ηµν × xν) × I ∈ R →

→ U × x2 × U † = x̂2̂ = (x̂µ×̂m̂µν × xν) × I ∈ R, (3.5.10)

whose projection in conventional spacetime can be written

x̂2̂ = [xµ × η̂µν(x, v, a, ω, ψ, ∂ψ, . . . ) × xν ] × Î , (3.5.11)

The nontriviality of the above lifting is illustrated by the following:

THEOREM 3.5.1: The Minkowski-Santilli isospaces are directly universal,
in the sense of admitting as particular cases all possible spaces with the same
signature (+,+,+,−), such as the Minkowskian, Riemannian, Finslerian and
other spaces (universality), directly in terms of the isometric within fixed local
variables (direct universality).

Therefore, the correct formulation of the the Minkowski-Santilli isogeometry
requires the isotopy of all tools of the Riemannian geometry, such as the iso-
Christoffel symbols, isocovariant derivative, etc. (see for brevity Ref. [15]).

Despite that, one should keep in mind that, in view of the positive-definite-
ness of the isounit [34,79], the Minkowski-Santilli isogeometry coincides at the
abstract level with the conventional Minkowski geometry, thus having a null
isocurvature (because of the basic mechanism of deforming the metric η by
the amount T̂ (x, . . . ) while deforming the basic unit of the inverse amount
Î = 1/T̂ ).
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The geometric unification of the Minkowskian and Riemannian geometries
achieved by the Minkowski-Santilli isogeometry constitute the evident geo-
metric foundation for the unification of special and general relativities studied
below.

It should be also noted that, following the publication in 1983 of Ref. [58],
numerous papers on “deformed Minkowski spaces” have appeared in the phys-
ical and mathematical literature (generally without a quotation of their orig-
ination in Ref. [58]).

These “deformations” are ignored in these studies because they are formu-
lated via conventional mathematics and, consequently, they all suffer of the
catastrophic inconsistencies of Theorem 1.4.1.

By comparison, isospaces are formulated via isomathematics and, therefore,
they resolve the inconsistencies of Theorem 1.5.1, as shown in Section 3.5.9.
This illustrates again the necessity of lifting the basic unit and related field
jointly with all remaining conventional mathematical methods.

3.5.4 Poincaré-Santilli Isosymmetry and its Isodual
Let P (3.1) be the conventional Poincaré symmetry with the well known

ten generators Jµν , Pµ and related commutation rules hereon assumed to be
known.

The second basic tool of isorelativity is the Poincaré-Santilli isosymmetry
P̂ (3.1) studied in detail in monograph [55] that can be constructed via the
isotheory of Section 3.2, resulting in the isocommutation rules [58,60]

[Jµν ,̂Jαβ ] = i × (η̂να × Jβµ − η̂να × Jβν − η̂nuβ × Jαµ + η̂µβ × Jαν), (3.5.12a)

[Jµν ,̂Pα] = i × (η̂µα × Pν − η̂να × Pµ), (3.5.12b)

[Pµ ,̂P ν] = 0, (3.5.12c)

where we have followed the general rule of the Lie-Santilli isotheory according
to which isotopies leave observables unchanged (since Hermiticity coincides
with iso-Hermiticity) and merely change the operations among them.

The iso-Casimir invariants of P̂ (3.1) are given by

P 2̂ = Pµ×̂Pµ = Pµ × η̂µν × P ν = Pk × gkk × Pk − p4 × g44 × P4, (3.5.13a)

W 2̂ = Wµ×̂Wµ, Wµ = ε̂µαβρ×̂Jαβ×̂P ρ. (3.5.13b)

and they are at the foundation of classical and operator isorelativistic kine-
matics.

Since Î > 0, it is easy to prove that the Poincaré-Santilli isosymmetry is
isomorphic to the conventional symmetry. It then follows that the isotopies
increase dramatically the arena of applicability of the Poincaré symmetry, from
the sole Minkowskian spacetime to all infinitely possible spacetimes.
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Next, the reader should be aware that the Poincaré-Santilli isosymmetry
characterizes “isoparticles” (and not particles) via its irreducible isorepresen-
tations.

A mere inspection of the isounit shows that the Poincaré-Santilli isosymme-
try characterizes actual nonspherical and deformable shapes as well as internal
densities and the most general possible nonlinear, nonlocal and nonpotential
interactions.

Since any interaction implies a renormalization of physical characteristics,
it is evident that the transition from particles to isoparticles, that is, from
motion in vacuum to motion within physical media, causes an alteration (called
isorenormalization), in general, of all intrinsic characteristics, such as rest
energy, magnetic moment, charge, etc.

As we shall see later on, the said isorenormalization has permitted the
first exact numerical representation of nuclear magnetic moments, molecular
binding energies and other data whose exact representation resulted to be
impossible for nonrelativistic and relativistic quantum mechanics despite all
possible corrections conducted over 75 years of attempts.

The explicit form of the Poincaré-Santilli isotransforms leaving invariant
line element (3.5.11) can be easily constructed via the Lie-Santilli isotheory
and are given:

(1) The isorotations [11]

Ô(3) : x̂′ = �̂(θ̂)×̂x̂, θ̂ = θ × Îθ ∈ R̂θ, (3.5.14)

that, for isotransforms in the (1, 2)-isoplane, are given by

x1′ = x1×cos[θ×(g11×g22)1/2]−x2×g22×g−1
11 ×sin[θ×(g11×g22)1/2], (3.5.15a)

x2′ = x1×g11×g−1
22 ×sin[θ×(g11×g22)1/2]+x2×cos[θ×(g11×g22)1/2]. (3.5.15b)

For the general expression in three dimensions interested reader can inspect
Ref. [7] for brevity.

Note that, since Ô(3) is isomorphic to O(3), Ref. [59] proved, contrary to
a popular belief throughout the 20-th century, that

LEMMA 3.5.1: The rotational symmetry remains exact for all possible
signature-preserving (+,+,+) deformations of the sphere.

The rotational symmetry was believed to be “broken” for ellipsoidal and
other deformations of the sphere merely due to insufficient mathematics for
the case considered because, when the appropriate mathematics is used, the
rotational symmetry returns to be exact, and the same holds for virtually all
“broken” symmetries.
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The above reconstruction of the exact rotational symmetry can be geometri-
cally visualized by the fact that all possible signature-preserving deformations
of the sphere are perfect spheres in isospace called isosphere.

This is due to the fact that ellipsoidal deformations of the semiaxes of
the perfect sphere are compensated on isospaces over isofields by the inverse
deformation of the related unit

Radius 1k → 1/n2
k, (3.5.16a)

Unit 1k → n2
k. (3.5.16b)

We recover in this way the perfect sphere on isospaces over isofields

r̂2̂ = r̂2
1 + r̂2

2 + r̂2
3 (3.5.17)

with exact Ô(3) symmetry, while its projection on the conventional Euclidean
space is the ellipsoid

r2
1/n2

1 + r2
2/n2

2 + r2
3/n2

3, (3.5.18)

with broken O(3) symmetry.

(2) The Lorentz-Santilli isotransforms [26,29]

Ô(3.1) : x̂′ = Λ̂(v̂, . . . )×̂x̂, v̂ = v × Îv ∈ R̂v, (3.5.19)

that, for isotransforms in the (3,4)-isoplane, can be written

x1′ = x1, (3.5.20a)

x2′ = x2, (3.5.20b)

x3′ = x3 × cosh[v × (g33 × g44)1/2]−
−x4 × g44 × (g33 × g44)−1/2 × sinh[v × (g33 × g44)1/2] =

= γ̂ × (x3 − β × x4), (3.5.20c)

x4′ = −x3 × g33 × (g33 × g44)−1/2 × sinh[v(g33 × g44)1/2]+

+x4 × cosh[v × (g33 × g44)1/2] =

= γ̂ × (x4 − β̂ × x3), (3.5.20b)

where
β̂ =

vk × gkk × vk

co × g44 × co
, γ̂ =

1

(1 − β̂2)1/2
. (3.5.21)

For the general expression interested readers can inspect Ref. [7].
Contrary to another popular belief throughout the 20-th century, Ref. [58]

proved that
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LEMMA 3.5.2: The Lorentz symmetry remains exact for all possible signa-
ture preserving (+,+,+,−) deformations of the Minkowski space.

Again, the symmetry remains exact under the use of the appropriate math-
ematics.

The above reconstruction of the exact Lorentz symmetry can be geometri-
cally visualized by noting that the light cone

x2
2 + x2

3 − c2
o × t2 = 0, (3.5.22)

can only be formulated in vacuum, while within physical media we have the
light isocone

r2
2

n2
2

+
r2
3

n2
3

− c2
o × t2

n2(ω, . . . )
= 0. (3.5.23)

that, when formulated on isospaces over isofield, it is also a perfect cone, as
it is the case for the isosphere. This property then explains how the Lorentz
symmetry is reconstructed as exact according to Lemma 3.5.2 or, equivalently,
that Ô(3.1) is isomorphic to O(3.1).

(3) The isotranslations [29]

T̂ (4) : x̂′ = T̂ (â, . . . )̂] × x = x̂ + Â(â, x, . . . ), â = a × Îa ∈ R̂a, (3.5.24)

that can be written
xµ′

= xµ + Aµ(a, . . . ), (3.5.25a)

Aµ = aµ(gµµ + aα × [giµ ,̂Pα]/1! + . . . ), (3.5.25b)

and there is no summation on the µ indices.
We reach in this way the following important result:

LEMMA 3.5.3 [55]: Isorelativity permits an axiomatically correct extention
of relativity laws to noninertial frames.

In fact, noninertial frames are transformed into a forms that are inertial
on isospaces over isofields, called isoinertial, as established by the fact that
isotranslations (3.5.25) are manifestly nonlinear and, therefore, noninertial on
conventional spaces while they are isolinar on isospaces, according to a process
similar to the reconstruction of locality, lineary and canonicity.

The isoinertial character of the frames can also be seem from the isocom-
mutativity of the linear momenta, Eqs. (3.5.12c), while such a commutativity
is generally lost in the projection of Eqs. (3.5.12c) on ordinary spaces over
ordinary fields, thus confirming the lifting of conventional noninertial frames
into an isoinertial form.
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This property illustrates again the origin of the name “isorelativity” to indi-
cate that conventional relativity axioms are solely applicable in isospacetime.

(4) The novel isotopic transformations [60]

Î(1) : x̂′ = ŵ−1̂×̂ x̂ = w−1 × x̂, Î ′ = w−2 × Î , (3.5.26)

where w is a constant,

Î → Î ′ = ŵ−2×̂Î = w−2 × Î = 1/T̂ ′, (3.5.27a)

x̂2̂ = (xµ × η̂µν × xν) × Î ≡ x̂′2̂ =

= [xµ × (w2 × η̂µν) × xν ] × (w2 × Î). (3.5.27b)

Contrary to another popular belief throughout the 20-th century, we there-
fore have the following

THEOREM 3.5.2: The Poincaré-Santilli isosymmetry, hereon denoted with

P̂ (3.1) = Ô(3.1)×̂T̂ (4)×̂Î(1), (3.5.28)

and, therefore, the conventional Poincaré symmetry, are eleven dimensional.

The increase of dimensionality of the fundamental spacetime symmetry as,
predictably, far reaching implications, including a basically novel and axiomat-
ically consistent grand unification of electroweak and gravitational interactions
studied in Chapter 5.

The simplest possible realization of the above formalism for isorelativistic
kinematics can be outlined as follows. The first application of isorelativity
is that of providing an invariant description of locally varying speeds of light
propagating within physical media. For this purpose a realization of isorela-
tivity requires the known;edge of the density of the medium in which motion
occurs.

The simplest possible realization of the fourth component of the isometric
is then given by the function

g44 = n2
4(x, ω, . . . ), (3.5.29)

normalized to the value n4 = 1 for the vacuum (note that the density of the
medium in which motion occurs cannot be described by special relativity).
The above representation then follows with invariance under P̂ (3.1).

In this case the quantities nk, k = 1, 2, 3, represent the inhomogeneity
and anisotropy of the medium considered. For instance, if the medium is
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homogeneous and isotropic (such as water), all metric elements coincide, in
which case

Î = Diag.(g11, g22, g33, g44) = n2
4 × Diag.(1, 1, 1, 1), (3.5.30a)

x̂2̂ =
x2

n2
4

× n2
4 × I ≡ x2, (3.5.30b)

thus confirming that isotopies are hidden in the Minkowskian axioms, and this
may be a reason why they were not been discovered until recently.

Next, isorelativity has been constricted for the invariant description of sys-
tems of extended, nonspherical and deformable particles under Hamiltonian
and non-Hamiltonian interactions.

Practical applications then require the knowledge of the actual shape of the
particles considered, here assumed for simplicity as being spheroidal ellipsoids
with semiaxes n2

1, n
2
2, n

2
3.

Note that the minimum number of constituents of a closed non-Hamilto-
nian system is two. In this case we have shapes represented with nαk, α =
1, 2, , . . . , n.

Specific applications finally require the identification of the nonlocal in-
teractions, e.g., whether occurring on an extended surface or volume. As an
illustration, two spinning particles denoted 1 and 2 in condition of deep mutual
penetration and overlapping of their wavepackets (as it is the case for valence
bonds), can be described by the following Hamiltonian and total isounit

H =
p1 × p1

2 × m1
+

p2 × p2

2 × m2
+ V (r), (3.5.31a)

ÎTot = Diag.(n2
11, n

2
12, n

2
13, n

2
14) × Diag.(n2

21, n
2
22, n

2
23, n

2
24)×

×eN×(ψ̂1/ψ1+ψ̂2/ψ2)×
∫

ψ̂1↑(r)†×ψ̂2↓(r)×dr3
, (3.5.31b)

where N is a positive constant.
The above realization of the isounit has permitted the first known invariant

and numerically exact representation of the binding energy and other features
of the hydrogen, water and other molecules [71,72] (see Chapter 9) for which
a historical 2% has been missing for about one century. The above isounit has
also been instrumental for a number of additional data on two-body systems
whose representation had been impossible with quantum mechanics, such as
the origin of the spin 1 of the ground state of the deuteron that, according to
quantum axioms, should be zero.

Note in isounit (3.5.31) the nonlinearity in the wave functions, the nonlocal-
integral character and the impossibility of representing any of the above fea-
tures with a Hamiltonian.

¿From the above examples interested readers can then represent any other
closed non-Hamiltonian systems.
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3.5.5 Isorelativity and its Isodual
The third important part of the new isorelativity is given by the following

isotopies of conventional relativistic axioms that, for the case of motion along
the third axis, can be written [29] as follows [60]:

ISOAXIOM I. The projection in our spacetime of the maximal causal in-
variant speed is given by:

VMax = c◦ ×
g
1/2
44

g
1/2
33

= c◦
n3

n4
= c × n3. (3.5.32)

This isoaxiom resolves the inconsistencies of special relativity recalled earlier
for particles and electromagnetic waves propagating within physical media
such as water.

In fact, water is homogeneous and isotropic, thus requiring that

g11 = g22 = g33 = g44 = 1/n2, (3.5.33)

where n is the index of refraction.
In this case the maximal causal speed for a massive particle is c◦ as exper-

imentally established, e.g., for electrons, while the local speed of electromag-
netic waves is c = c◦/n, as also experimentally established.

Note that such a resolution requires the abandonment of the speed of light as
the maximal causal speed for motion within physical media, and its replacement
with the maximal causal speed of particles.

It happens that in vacuum these two maximal causal speeds coincide. How-
ever, even in vacuum the correct maximal causal speed remains that of parti-
cles and not that of light, as generally believed.

At any rate, physical media are generally opaque to light but not to particles.
Therefore, the assumption of the speed of light as the maximal causal speed
within media in which light cannot propagate would be evidently vacuous.

It is an instructive exercise for interested readers to prove that

LEMMA 3.5.4: The maximal causal speed of particles on isominkowski
space over an isofield remains c◦.

In fact, on isospaces over isofields c2
◦ is deformed by the index of refraction

into the form c2
◦/n2

4, but the corresponding unit cm2/sec2 is deformed by the
inverse amount, n2

4 × cm2/sec2, thus preserving the numerical value c2
◦ due to

the structure of the isoinvariant studied earlier.
The understanding of isorelativity requires the knowledge that, when formu-

lated on the Minkowski-Santilli isospace over the isoreals, Isoaxiom I coincides
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with the conventional axiom that is, the maximal causal speed returns to be
c. The same happens for all remaining isoaxioms.

ISOAXIOM II. The projection in our spacetime of the isorelativistic addi-
tion of speeds within physical media is given by:

vTot =
v1 + v2

1 + v1×g33×v2

c◦×g44×c◦

=
v1 + v2

1 + v1×n2
4×v2

c◦×n2
3×c◦

(3.5.34)

We have again the correct result that the sum of two maximal causal speeds
in water,

Vmax = c◦ × (n3/n4), (3.5.35)

yields the maximal causal speed in water, as the reader is encouraged to verify.
Note that such a result is impossible for special relativity. Note also that the

“relativistic” sum of two speeds of lights in water, c = c◦/n, does not yield the
speed of light in water, thus confirming that the speed of light within physical
media, assuming that they are transparent to light, is not the fundamental
maximal causal speed.

ISOAXIOM III. The projection in our spacetime of the isorelativistic laws
of dilation of time t◦ and contraction of length �◦ and the variation of mass
m◦ with speed are given respectively by:

t = γ̂ × t◦, (3.5.36a)

� = γ̂−1 × �◦, (3.5.36b)

m = γ̂ × m◦. (3.5.36c)

Note that in water these values coincide with the relativistic ones as it should
be since particles such as the electrons have in water the maximal causal speed
c◦.

Note again the necessity of avoiding the interpretation of the local speed of
light as the maximal local causal speed. Note also that the mass diverges at
the maximal local causal speed, but not at the local speed of light.

ISOAXIOM IV. The projection in our spacetime of the iso-Doppler law is
given by the isolaw (here formulated for simplicity for 90◦ angle of aberration):

ω = γ̂ × ω◦. (3.5.37)

This isorelativistic axioms permits an exact, numerical and invariant repre-
sentation of the large differences in cosmological redshifts between quasars and
galaxies when physically connected.
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In this case light simply exits the huge quasar chromospheres already red-
shifted due to the decrease of the speed of light, while the speed of the quasars
can remain the same as that of the associated galaxy. Note again as this result
is impossible for special relativity.

Isoaxiom IV also permits a numerical interpretation of the internal blue-
and red-shift of quasars due to the dependence of the local speed of light on
its frequency.

Finally, Isoaxiom IV predicts that a component of the predominance to-
ward the red of sunlight at sunset is of iso-Doppler nature. This prediction is
based on the different travel within atmosphere of light at sunset as compared
to the zenith (evidently because of the travel within a comparatively denser
atmosphere).

By contrast, the popular representation of the apparent redshift of sunlight
at sunset is that via the scattering of light among the molecules composing our
atmosphere. Had this interpretation be correct, the sky at the zenith should
be red, while it is blue.

At any rate, the claim of representation of the apparent redshift via the scat-
tering of light is political because of the impossibility of reaching the needed
numerical value of the redshift, as serious scholars are suggested to verify.

ISOAXIOM V. The projection in our spacetime of the isorelativistic law of
equivalence of mass and energy is given by:

E = m × c2
◦ × g44 = m×

c2
◦

n2
4

. (3.5.38)

Among various applications, Isoaxiom V removes any need for the “missing
mass” in the universe. This is due to the fact that all isotopic fits of exper-
imental data agree on values g44 � 1 within the hyperdense media in the
interior of hadrons, nuclei and stars [7].

As a result, Isoaxiom V yields a value of the total energy of the universe
dramatically bigger than that believed until now under the assumption of the
universal validity of the speed of light in vacuum.

For other intriguing applications of Isoaxioms V, e.g., for the rest energy of
hadronic constituents, we refer the interested reader to monographs [55,61].

The isodual isorelativity for the characterization of antimatter can be easily
constructed via the isodual map of Chapter 2, and its explicit study is left to
the interested reader for brevity.

3.5.6 Isorelativistic Hadronic Mechanics and its
Isoduals

The isorelativistic extension of relativistic hadronic mechanics is readily
permitted by the Poincaré-Santilli isosymmetry. In fact, iso-invariant (3.5.13a)
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characterizes the following iso-Gordon equation on Ĥ over Ĉ [55]

p̂µ×̂|ψ̂ >= −î×̂∂̂µ|ψ̂ >= −i × Îν
µ × ∂ν |ψ̂ >, (3.5.39a)

(p̂µ×̂p̂µ + m̂2
◦×̂ĉ4)×̂|ψ̂ >= (η̂αβ × ∂α × ∂β + m2

◦ × c4) × |ψ̂ >= 0. (3.5.39b)

The linearization of the above second-order equations into the Dirac-Santilli
isoequation has been first studied in Refs. [60–62] and then by other authors
(although generally without the use of isomathematics, thus losing the invari-
ance).

By recalling the structure of Dirac’s equation as the Kronecker product
of a spin 1/2 massive particle and its antiparticle of Chapter 2, the Dirac-
Santilli isoequation is formulated on the total isoselfadjoint isospace and re-
lated isosymmetry

M̂ tot = [M̂orb(x̂, η̂, R̂) × Ŝspin(2)]×

×[M̂d orb(x̂d, η̂d, R̂d) × Ŝd spin(2)] = M̂d tot, (3.5.40a)

Ŝtot = P̂ (3.1) × P̂ d(3.1) = Ŝd tot, (3.5.40b)

and can be written [29]

[γ̂µ×̂(p̂µ − ê×̂Âµ) + î×̂m̂]×̂ |φ(x) >= 0, (3.5.41a)

γ̂µ = gµµ × γµ × Î (3.5.41b)

where the γ’s are the conventional Dirac matrices.
Note the appearance of the isometric elements directly in the structure of

the gamma matrices and their presence also when the equation is projected in
the conventional spacetime.

The following generators

Jµν = (Sk, Lk4), Pµ, (3.5.42a)

Sk = (ε̂kij ×̂ γ̂i ×̂ γ̂j)/2, Lk4 = γ̂k×̂γ̂4/2, Pµ = p̂µ, (3.5.42b)

characterize the isospinorial covering of the Poincaré-Santilli isosymmetry.
The notion of “isoparticle” can be best illustrated with the above realization

because it implies that, in the transition from motion in vacuum (as particles
have been solely detected and studied until now) to motion within physical
media, particles generally experience the alteration, called “mutation”, of all
intrinsic characteristics, as illustrated by the following isoeigenvalues,

Ŝ2̂×̂|ψ̂ >=
g11 × g22 + g22 × g33 + g33 × g11

4
× |ψ̂ >, (3.5.43a)
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Ŝ3×̂|ψ̂ >=
(g11 × g22)1/2

2
× |ψ̂ > . (3.5.43b)

The mutation of spin then characterizes a necessary mutation of the intrinsic
magnetic moment given by [29]

µ̃ =
(g33

g44

)1/2
× µ, (3.5.44)

where µ is the conventional magnetic moment for the same particle when in
vacuum. The mutation of the rest energy and of the remaining characteristics
has been identified before via the isoaxioms.

Note that the invariance under isorotations allows the rescaling of the radius
of an isosphere. Therefore, for the case of the perfect sphere we can always
have g11 = g22 = g33 = g44 in which case the magnetic moment is not mutated.
These results recover conventional classical knowledge according to which the
alteration of the shape of a charged and spinning body implies the necessary
alteration of its magnetic moment.

The construction of the isodual isorelativistic hadronic mechanics is left
to the interested reader by keeping in mind that the iso-Dirac equation is
isoselfdual as the conventional equation.

To properly understand the above results, one should keep in mind that the
mutation of the intrinsic characteristics of particles is solely referred to the
constituents of a hadronic bound state under conditions of mutual penetration
of their wave packets (such as one hadronic constituent) under the condition
of recovering conventional characteristics for the hadronic bound state as a
whole (the hadron considered), much along Newtonian subsidiary constrains
on non-Hamiltonian forces, Eqs. (3.1.6).

It should be also stressed that the above indicated mutations violate the
unitary condition when formulated on conventional Hilbert spaces, with con-
sequential catastrophic inconsistencies, Theorem 1.5.2.

As an illustration, the violation of causality and probability law has been
established for all eigenvalues of the angular momentum M different than the
quantum spectrum

M2 × |ψ >= �(� + 1) × |ψ >, � = 0, 1, 2, 3, . . . . (3.5.45)

As a matter of fact, these inconsistencies are the very reason why the mutations
of internal characteristics of particles for bound states at short distances could
not be admitted within the framework of quantum mechanics.

By comparison, hadronic mechanics has been constructed to recover unitar-
ity on iso-Hilbert spaces over isofields, thus permitting an invariant descrip-
tion of internal mutations of the characteristics of the constituents of hadronic
bound states, while recovering conventional features for states as a whole.
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Far from being mere mathematical curiosities, the above mutations permit
basically new structure models of hadrons, nuclei and stars, with consequen-
tial, new clean energies and fuels (see Chapters 11, 12).

These new advances are prohibited by quantum mechanics precisely because
of the preservation of the intrinsic characteristics of the constituents in the
transition from bound states at large mutual distance, for which no mutation
is possible, to the bound state of the same constituents in condition of mutual
penetration, in which case mutations have to be admitted in order to avoid
the replacement of a scientific process with unsubstantiated personal beliefs
one way or the other (see Chapter 12 for details).

3.5.7 Isogravitation and its Isodual
As indicated in Section 1.4, there is no doubt that the classical and operator

formulations of gravitation on a curved space have been the most controversial
theory of the 20-th century because of an ever increasing plethora of problem-
atic aspects remained vastly ignored. By contrast, as also reviewed in Section
1.4, special relativity in vacuum has a majestic axiomatic consistence is its
invariance under the Poincaré symmetry.

Recent studies have shown that the formulation of gravitation on a curved
space or, equivalently, the formulation of gravitation based on “covariance”, is
necessarily noncanonical at the classical level and nonunitary at the operator
level, thus suffering of all catastrophic inconsistencies of Theorems 1.4.1 and
1.4.2.

These catastrophic inconsistencies can only be resolved via a new conception
of gravity based on a universal invariance, rather than covariance.

Additional studies have identified profound axiomatic incompatibilities be-
tween gravitation on a curved space and electroweak interactions. These in-
compatibilities have resulted to be responsible for the lack of achievement of an
axiomatically consistent grand unification since Einstein’s times (see Chapter
14).

No knowledge of isotopies can be claimed without a knowledge that isorel-
ativity has been constructed to resolve at least some of the controversies on
gravitation. The fundamental requirement is the abandonment of the formu-
lation of gravity via curvature on a Riemannian space and its formulation
instead on an iso-Minkowskian space via the following steps characterizing
exterior isogravitation in vacuum, first presented in Refs. [73,74]:

I) Factorization of any given Riemannian metric representing exterior grav-
itation gext(x) into a nowhere singular and positive-definite 4× 4-matrix T̂ (x)
times the Minkowski metric η,

gext(x) = T̂ ext
grav(x) × η; (3.5.47)
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II) Assumption of the inverse of T̂grav as the fundamental unit of the theory,

Îext
grav(x) = 1/T̂ ext

grav(x); (3.5.48)

III) Submission of the totality of the Minkowski space and relative symme-
tries to the noncanonical/nonunitary transform

U(x) × I†(x) = Îext
grav. (3.5.49)

The above procedure yields the isominkowskian spaces and related geometry
M̂(x̂, η̂, R̂), resulting in a new conception of gravitation, exterior isogravity,
with the following main features [26]:

i) Isogravity is characterized by a universal symmetry (and not a covariance),
the Poincaré-Santilli isosymmetry P̂ (3.1) for the gravity of matter with isounit
Îext
grav(x), the isodual isosymmetry P̂ d(3.1) for the gravity of antimatter, and

the isoselfdual symmetry P̂ (3.1)×P̂ d(3.1) for the gravity of matter-antimatter
systems;

ii) All conventional field equations, such as the Einstein-Hilbert and other
field equations, can be formulated via the Minkowski-Santilli isogeometry since
the latter preserves all the tools of the conventional Riemannian geometry, such
as the Christoffel’s symbols, covariant derivative, etc. [15];

iii) Isogravitation is isocanonical at the classical level and isounitarity at
the operator level, thus resolving the catastrophic inconsistencies of Theorems
1.5.1 and 1.5.2;

iv) An axiomatically consistent operator version of gravity always existed
and merely creeped in un-noticed through the 20-th century because gravity
is imbedded where nobody looked for, in the unit of relativistic quantum me-
chanics, and it is given by isorelativistic hadronic mechanics outlined in the
next section.

v) The basic feature permitting the above advances is the abandonment of
curvature for the characterization of gravity (namely, curvature characterized
by metric gext(x) referred to the unit I) and its replacement with isoflatness,
namely, the verification of the axioms of flatness in isospacetime, while pre-
serving conventional curvature in its projection on conventional spacetime (or,
equivalently, curvature characterized by the g(x) = T̂ ext

grav(x)×η referred to the
isounit Îgrav(x) in which case curvature becomes null due to the inter-relation
Îext
grav(x) = 1/T̂ ext

grav(x)) [26].
A resolution of numerous controversies on classical formulations of gravity

then follow from the above main features, such as:
a) The resolution of the century old controversy on the lack of existence

of consistent total conservation laws for gravitation on a Riemannian space,
which controversy is resolved under the universal P̂ (3.1) symmetry by mere vi-
sual verification that the generators of the conventional and isotopic Poincaré
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symmetry are the same (since they represent conserved quantities in the ab-
sence and in the preserve of gravity);

b) The controversy on the fact that gravity on a Riemannian space admits
a well defined “Euclidean”, but not “Minkowskian” limit, which controversy
is trivially resolved by isogravity via the limit

Îext
grav(x) → I; (3.5.50)

c) The resolution of the controversy that Einstein’s gravitation predicts a
value of the bending of light that is twice the experimental value, one for
curvature and one for newtonian attraction, which controversy is evidently
resolved by the elimination of curvature as the origin of the bending, as nec-
essary in any case for the free fall of a body along a straight radial line in
which no curvature of any type is conceivably possible or credible; and other
controversies.

A resolution of the controversies on quantum gravity can be seen from the
property that relativistic hadronic mechanics of the preceding section is a
quantum formulation of gravity whenever T̂ = T̂grav.

Such a form of operator gravity is as axiomatically consistent as conven-
tional relativistic quantum mechanics because the two formulations coincide,
by construction, at the abstract, realization-free level.

As an illustration, whenever

T̂ ext
grav = Diag.(gext

11 , gext
22 , gext

33 , gext
44 ), gµµ > 0, (3.5.51)

the Dirac-Santilli isoequation (3.5.41) provides a direct representation of the
conventional electromagnetic interactions experienced by an electron, repre-
sented by the vector potential Aµ, plus gravitational interactions represented
by the isogamma matrices.

Once curvature is abandoned in favor of the broader isoflatness, the ax-
iomatic incompatibilities existing between gravity and electroweak interactions
are resolved because:

i) isogravity possesses, at the abstract level, the same Poincaré invariance
of electroweak interactions;

ii) isogravity can be formulated on the same flat isospace of electroweak
theories; and

iii) isogravity admits positive and negative energies in the same way as it
occurs for electroweak theories.

An axiomatically consistent iso-grand-unification then follows, as studied in
Chapter 14.

Note that the above grand-unification requires the prior geometric unifica-
tion of the special and general relativities, that is achieved precisely by isorel-
ativity and its underlying iso-Minkowskian geometry.
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In fact, special and general relativities are merely differentiated in isospecial
relativity by the explicit realization of the unit. In particular, black holes are
now characterized by the zeros of the isounit [7]

Îext
grav(x) = 0. (3.5.52)

The above formulation recovers all conventional results on gravitational
singularities, such as the singularities of the Schwarzschild’s metric, since they
are all described by the gravitational content T̂grav(x) of g(x) = T̂grav(x) × η,
since η is flat.

This illustrates again that all conventional results of gravitation, including
experimental verifications, can be reformulated in invariant form via isorela-
tivity.

Moreover, the problematic aspects of general relativity mentioned earlier
refer to the exterior gravitational problem. Perhaps greater problematic as-
pects exist in gravitation on a Riemannian space for interior gravitational
problems, e.g., because of the lack of characterization of basic features, such
as the density of the interior problem, the locally varying speed of light, etc.

These additional problematic aspects are also resolved by isorelativity due
to the unrestricted character of the functional dependence of the isometric
that, therefore, permits a direct geometrization of the density, local variation
of the speed of light, etc.

The above lines constitute only the initial aspects of isogravitation since its
most important branch is interior isogravitation as characterized by isounit
and isotopic elements of the illustrative type

Îint
grav = 1/T̂ int

grav > 0, (3.5.53a)

T̂ int
grav = Diag.(gint

11 /n2
1, g

int
22 /n2

2, g
int
33 /n2

3, g
int
44 /n2

4), (3.5.53b)
permitting a it geometric representation directly via the isometric of the ac-
tual shape of the body considered, in the above case an ellipsoid with semiaxes
n2

1, n
2
2, n

2
3, as well as the (average) interior density n2

4 with consequential rep-
resentation of the (average value of the) interior speed of light C = c/n4.

A most important point is that the invariance of interior isogravitation
under the Poincaré-Santilli isosymmetry persists in its totality since the latter
symmetry is completely independent from the explicit value of the isounit or
isotopic element, and solely depends on their positive-definite character.

Needless to say, isounit (3.4.53) is merely illustrative because a more accu-
rate interior isounit has a much more complex functional dependence with a
locally varying density, light speed and other characteristics as they occur in
reality.

Explicit forms of these more adequate models depends on the astrophysical
body considered, e.g., whether gaseous, solid or a mixture of both, and their
study is left to the interested reader.
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It should also be noted that gravitational singularities should be solely
referred to interior models evidently because exterior descriptions of type
(3.5.52) are a mere approximation or a geometric abstraction.

In fact, a gravitational singularities existing for exterior models are not nec-
essarily confirmed by the corresponding interior formulations. Consequently,
the current views on black holes could well result to be pseudo-scientific be-
liefs because the only scientific statement that can be proffered at this time
without raising issue of scientific ethics is that the gravitational features of
large and hyperdense aggregations of matter, whether characterizing a “black”
or “brown” hole, are basically unresolved at this time.

Needless to say, exterior isogravitation is a particular case of the interior
formulation. Consequently, from now on, unless otherwise specified isogravi-
tation will be referred to the interior form.

The cosmological implications are also intriguing and will be studied in
Chapter 5.

It is hoped that readers with young minds of any age admit the incon-
trovertible character of the limitations of special and general relativities and
participate in the laborious efforts toward new vistas because any lack of par-
ticipation in new frontiers of science, whether for personal academic interest
or other reason, is a gift of scientific priorities to others.
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Appendix 3.A
Universal Enveloping Isoassociative Algebras

The main structural component of Lie’s theory is its universal enveloping
associative algebra ξ(L) of a Lie algebra L. In fact, Lie algebras can be obtained
as the attached antisymmetric part [ξ(L)]− ≈ L; the infinite dimensional basis
of ξ(l) permit the exponentiation to a finite transformation group G; and the
representation theory is crucially dependence on the right and/or left modular
associative action originally defined on G.

In Section 3.2.9B we have reviewed the rudiments of the universal enveloping
isoassociative algebras ξ̂(L) of a Lie-Santilli isoalgebra L̂. It is easy to see that
all features occurring for ξ(L) carry over to the covering isoform ξ̂(L).25

In this appendix we would like to outline a more technical definition of
universal enveloping isoassociative algebras since they are at the foundations
of the unification of simple Lie algebras of dimension N into a single Lie-Santilli
isoalgebra of the same dimension (Section 3.2.13).

With reference to Figure 3.A.1, the envelop ξ(L) can be defined as the
(ξ, τ) where ξ is an associative algebra and τ is a homomorphism of L into the
antisymmetric algebra ξ− attached to ξ such that: if ξ′ is another associative
algebra and τ ′ is another homomorphism of L into ξ′− a unique isomorphism
γ exists between ξ and ξ′ exists in such a way that the diagram in the l.h.s
of Figure 3.A.1 is commutative. The above definition evidently expresses the
uniqueness of the Lie algebra L up to local isomorphism, and illustrates the
origin of the name “universal” enveloping algebra of L.

With reference to the r.h.s. diagram of Figure 3.A.1, the universal envelop-
ing isoassociative algebra ξ̂(L) of a Lie algebra L was introduced in Ref. [4]
as the set {(ξ, τ), i, ξ̂, τ̂} where: (ξ, τ) is a conventional envelope of L; i is an
isotopic mapping L → i(L) = L̂ ∼ L; ξ̂ is an associative algebra generally non-
isomorphic to ξ; τ̂ is a homomorphism of L̂ into ξ̂−; such that: if ξ̂′ is another
associative algebra and τ̂ ′ is another homomorphism of L̂ into ξ̂′−, there exists

25We use the denomination ξ̂(L) rather than ξ̂(L̂) to stress the fact that the generators of ξ are those

of L and not of L̂, a requirement that is essential for consistent physical applications because the
generators of L represent ordinary physical quantities (such as total energy, total linear momentum,
etc.) that, as such, cannot be changed by isotopies.
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Figure 3.A.1. A schematic view of the universal enveloping associative algebra of a Lie
algebra L and its lifting for the Lie-Santilli isoalgebra L̂ according to the original proposal
[4] of 1978.

a unique isomorphism γ̂ of ξ̂ into ξ̂′ with τ̂ ′ = γ(τ̂) and two unique isotopies
i(ξ) = ξ̂ and i(ξ̂) = ξ̂′.

A primary objective of the above definition of isoenvelope is the lack of
uniqueness of the Lie algebra characterized by the isoenvelope or, equivalently,
the characterization of a family of generally nonisomorphic Lie algebras via
the use of only one basis. The above definition of isoenvelope also explains in
more details the variety of realization of the simple 3-dimensional Lie-Santilli
isoalgebra L̂3 provided in Eq. (3.2.236), and may be of assistance in extending
the same classification to other isoalgebras.

The above notion of isoenvelope represents the essential mathematical struc-
ture of hadronic mechanics, namely, the preservation of the conventional basis,
i.e., the set of observables of quantum mechanics, and the generalization of
the operations on them via an infinite number of isotopies so as to admit
a new class of interactions structurally beyond the possibilities of quantum
mechanics.
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Appendix 3.B
Recent Advances in Isotopology

In Section 3.2.7 we introduced the elements of the Tsagas-Sourlas-Santilli-
Falcón-Núñez isotopology (or TSSFN Isotopology for short). In this appendix
we ourline recent advances on the isotopology by the Spanish mathematicians
R. M. Falcón Ganfornina and J. Núñez Valdés [24,25].

PROPOSITION 3.2.B1: Consider a mathematical structure

(E, +,×, ◦, •, . . . ),
if we construct an isotopic lifting such that:

a) Both primaries ∗, Î and secondaries �, Ŝ isotopic elements are used.

b) (E, �, ∗, . . . ) is a structure of the same type as the initial, which is endowed
with isounits S, I, . . . , with respect to �, ∗ , . . . , respectively.

c) I is an unit with respect to ∗ in the corresponding general set V , being
T = Î−I ∈ V the associated isotopic element.

Then, by defining in the isotopic level the operations:

â+̂b̂ = â � b; â×̂b̂ = â ∗ b; . . . (3.B.1)

And being defined in the projection level:

â = a ∗ Î; α+̂β = ((α ∗ T ) � (β ∗ T )) ∗ Î; α×̂β = α ∗ T ∗ β; . . . (3.B.2)

It is obtained that the isostructure (Ê, +̂, ×̂, . . . ) is of the same type as the
initial one.

The study in Refs. [24,25] is made by taking into consideration both iso-
topic and projection levels. Equivalent results related to injective isotopies are
also obtained. In the first place, Proposition 3.2.A1 is verified for topological
spaces and for their elements and basic properties: isotopologies, isoclosed
sets, isoopen sets, T2, etc:

A topological isospace is every isospace endowed with a topological space
structure. If, besides, such an isospace is an isotopic projection of a topological
space, it is called isotopological isospace.
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Similarly, they are defined concepts of (iso)boundary isopoint, closure of a
set, closed set, isointerior isopoint, interior of a set, open set, (iso)Hausdorff
isospace and second countable isospace, among others.

PROPOSITION 3.2.B2: The space from which any topological isospace in
the isotopic level is obtained can be endowed with the final topology relative to
the mapping I.

The isotopic projection of a topological space is an isotopological isospace
in the projection level. If such a projection is injective, then every topological
isospace in such a level is, in fact, isotopological.

Similar results are obtained for the concepts of (iso)boundary isopoint, isoin-
terior isopoint and (iso)Hausdorff isospace.

Next, Refs. [24,25] generalize Kadeisvili’s isocontinuity [19]. Particularly,
the basic isofield can be endowed with an isoorder, according to the following
procedure.

Let K̂ be an isofield associated with a field K, endowed with an order ≤, by
using an isotopology which preserves the inverse element with respect to the
addition. We define the isoorder ≤̂ as â≤̂b̂ if and only if a ≤ b. If the isotopy
is injective, the isoorder ≤̂ en K̂ is defined in the same way.

PROPOSITION 3.2.B3: The isoorders ≤̂ and ≤̂ are orders over K̂ and K̂,
of the same type as ≤.

Let Û be a R̂ isovectorspace with isonorm |̂|.|̂| ≡ |̂|.|| and isoorder ≤̂, ob-
tained from an isotopy compatible with respect to each one of the initial
operations. It will be said that an isoreal isofunction f̂ of Û is isocontinuous
in X̂ ∈ Û , if for all ε̂>̂Ŝ, there exists δ̂>̂Ŝ such that for all Ŷ ∈ Û with
|̂|X̂ − Ŷ |̂|<̂δ̂, it is verified that |̂f̂(X̂)− f̂(Ŷ )̂|<̂ε̂. We will say that f̂ is isocon-
tinuous in Û if it is isocontinuous in X̂, for all X̂ ∈ Û . Finally, when dealing
with injective isotopies, the isocontinuity in the projection level is defined in
a similar way.

PROPOSITION 3.2.B4: The isocontinuity in Û is equivalent to the conti-
nuity in U . In the case of injective isotopies, both ones are equivalent to the
one in Û .

The isocontinuity on isotopological isospaces is also analyzed:
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An isocontinuous isomapping in the isotopic level between two topological
isospaces M̂ and N̂ is every isomapping f̂ : M̂ → N̂ preserving closures. The
definition in the projection level is given in a similar way.

PROPOSITION 3.2.B5: They are verified that:

a) f̂ is isocontinuous if and only if the mapping f from which comes from is
continuous. That result is similar in the projection level by using injective
isotopies.

b) Every isoconstant isomapping is isocontinuous.

c) Isocontinuity is preserved by both topological composition and product.

Finally, the analysis of (iso)(pseudo)metric isospaces is also concreted:

PROPOSITION 3.2.B6: Let M̂ be a K̂ isovectorspace, isotopic lifting of a
vectorspace M , endowed with a (pseudo)metric d y defined on an ordered field
K, by using an isotopy which preserves the inverse element and compatible with
respect to the addition in K. Then, the isofunction d̂ is an iso(pseudo)metric.

Let (M̂, d′) be an (iso)(pseudo)metric K̂ isovectorspace, endowed with an
isoorder ≤̂. Bd′(X̂0, ε̂) = {X̂ ∈ M̂ : d′(X̂, X̂0)<̂ε̂} is called metric ball with
center X̂0 ∈ M̂ and radius ε̂>̂Ŝ. If M is endowed with a (pseudo)metric d,
with d̂ = d′, then every metric ball Bd′ = B

d̂
= B̂d in M̂, which is isotopic

lifting of a metric ball Bd in M , is called metric isoball in M̂ .

PROPOSITION 3.2.B7: Under conditions of Proposition XXX, if Bd(X0, ε)
is a metric ball in M , then ̂Bd(X0, ε) = B

d̂
(X̂0, ε̂) is a metric ball in M̂ .

A metric neighborhood of an isopoint X̂ ∈ M̂ is a subset Â ⊆ M̂ containing
a metric ball centered in X̂. The set of metric neighborhoods of X̂ is denoted
by ℵ̂d′

X̂
. Finally, if d′ is the isoEuclidean isodistance over R̂n, the associated

metric neighborhoods are called isoEuclidean neighborhoods.

PROPOSITION 3.2.B8: Let d′ and d′′ two (iso)(pseudo)metrics over an
isovectorspace M̂ . It is verified that ℵ̂d′

X̂
= ℵ̂d′′

X̂
if and only if every metric ball

Bd′(X̂, ε̂) contains a ball Bd′′(X̂, ρ̂) and every ball Bd′′(X̂, δ̂) contains a ball
Bd′(X̂, µ̂).
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PROPOSITION 3.2.B9: Every isospace endowed with an (iso)(pse-
udo)metric is an isotopological isospace.

PROPOSITION 3.2.B10: Let f̂ : (M̂, d′) → (N̂ , d′′) be an isomapping
between K̂-isospaces endowed with (iso)(pseudo)metric and let us consider
X̂ ∈ M̂ . Then, f̂ is isocontinuous in X̂ if and only if for all ε̂>̂Ŝ there
exists δ̂ ∈ K̂ such that δ̂>̂Ŝ, and if Ŷ ∈ Bd′(X̂, δ̂), then it is verified that
f̂(Ŷ ) ∈ Bd′′(f̂(X̂), ε̂).

PROPOSITION 3.2.B11: Let f̂ : M̂ → N̂ be an isomapping between two
isotopological isospaces M̂ and N̂ . If conditions of the definition of isoconti-
nuity are satisfied, then f̂ is isocontinuous if and only if f̂−1(Û) is an isoopen
of M̂ , for all isoopen Û of N̂ .
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Appendix 3.C
Recent Advances on the Lie-Santilli Isotheory

In Section 3.2.9 we have outlined the rudiments of the Lie-Santilli isothe-
ory. It may be useful for the mathematically oriented reader to outline recent
developments achieved by by the Spanish mathematicians R. M. Falcón Gan-
fornina and J. Núñez Valdés [24,25,43] in the field beyond those presented in
monographs [2,6,36,37].

Falcón and Núñez introduced in 2001 [37] a new construction model of iso-
topies which was similar to the one proposed by Santilli in 1978 although in its
multivalued version presented by the same author later on [6] (see Chapter 4)
because based on the use of several isolaws and isounits as operations existing
in the initial mathematical structure. Such a model, which from now on will be
called MCIM (isoproduct construction model based on the multiplication), was
later generalized in Refs. [24,25,43]. In a schematic way, Santilli’s isotopies
can be described with the following diagram:

Conventional Level −−−−−−−−−−−−−−−−−→
General Level
(V, ∗, �, . . . )

∪
(E, +,×, . . . ) (E, �, ∗, . . . )

↓ � ↓ I

Projection Level π←−−−−−−−−−−−−−−−−−− Isotopic level

(Ê, +̂, ×̂, . . . ) (Ê, +̂, ×̂, . . . )

where, by construction:

a) The mapping I : (E, �, ∗, . . . ) → (Ê, +̂, ×̂, . . . ) : X → X̂ is an isomorphism.

b) The isotopic projection is onto:
π : (Ê, +̂, ×̂, . . . ) → (Ê, +̂, ×̂, . . . ) : â → π(â) = â = a ∗ Î.

c) â+̂b̂ = â � b; â×̂b̂ = â ∗ b; . . . .

d) â = a ∗ Î; α+̂β = ((α ∗ T ) � (β ∗ T )) ∗ Î; α×̂β = α ∗ T ∗ β; . . .

PROPOSITION 3.2.C1: The following properties are verified:
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a) The isotopic projection associated with each injective isotopic lifting is an
isomorphism.

b) If the isotopic lifting used is compatible with respect to all of initial opera-
tions, then the isostructure Ê is isomorphic to the initial E.

c) The relation of being isotopically equivalents is of equivalence.

d) Every isotopy π ◦ I : (E, +,×, ◦, •, . . . ) → (Ê, +̂, ×̂, ◦̂, •̂, . . . ) can be consid-
ered as an isotopic lifting which follows the MCIM, that is, every mathe-
matical isostructure is an isostructure with respect to the multiplication.

Then, it has a perfect sense to considerer each one of the isostructures which
result of applying the MCIM to conventional structures. Particularly, we can
consider the construction of Santilli’s isoalgebras (as the isotopic lifting of each
algebra, which is endowed with a structure of algebra).

PROPOSITION 3.2.C2: Let U be a K-algebra and let Û be a K̂-isovector-
space. If a K(a, �, ∗)-algebra (U, �,�, ·) is used in the general level, then the
isotopic lifting Û corresponding to the isotopy of primary elements Î and �

and secondary ones Ŝ and �, when MCIM is used, has a structure of isoalgebra
on K̂, and it preserves the initial type of the algebra.

A particular type of isoalgebra is the Lie-Santilli isoalgebra [4]. Particularly,
if Û is the isotopic projection of a Lie-Santilli isoalgebra,

Î = Î(x, dx, d2x, t, T, µ, τ, . . . )

is an isounit and a basis Û , {ê1, . . . , ên} is fixed, where êi ·̂ êj =
∑

ĉh
ij •̂ êh,

∀ 1 ≤ i, j ≤ n, then coefficients ĉh
ij ∈ K̂ are the Maurer-Cartan coefficient

of the isoalgebra, which constitute a generalization of the conventional case,
since they are not constants in general, but functions dependent of the factors
of Î.

Another interesting isoalgebra is the Santilli’s Lie-admissible algebra [4],
that is, the isoalgebra Û such that with the commutator bracket [., .]

Û
:

[X̂, Ŷ ]
Û

= (X̂ ·̂Ŷ ) − (Ŷ ·̂X̂) is an isotopic Lie isoalgebra. The following re-
sult is satisfied:

PROPOSITION 3.2.C3: Under conditions of Proposition XXX, let us sup-
pose that the law ◦̂ of the isoalgebra Û is defined according X̂ ◦̂Ŷ = (X ◦Y )�Î ,
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for all X, Y ∈ U . If U is a Lie (admissible) algebra, then Û is a Lie isoad-
missible isoalgebra.

In this way, Santilli’s Lie-admissible isoalgebras inherit the usual properties
of conventional (admissible) Lie algebras. In the same way, usual structures
related with such algebras have also their analogue ones when isotopies are
used.

For instance, an isoideal of a Lie isoalgebra Û is every isotopic lifting of an
ideal � of U, which is by itself an ideal. In particular, the center of an Lie
isoalgebra Û ,

{
X̂ ∈ Û such that X̂ ·̂Ŷ = Ŝ, ∀Ŷ ∈ Û

}
, is an isoideal of Û . In

fact, it is verified the following result:

PROPOSITION 3.2.C4: Let Û be an Lie isoalgebra associated with a Lie
algebra U and let � be an ideal of U. Then, the corresponding isotopic lifting
�̂ is an isoideal of Û .

An isoideal �̂ of a Lie isoalgebra (Û , ◦̂, •̂, ·̂), is called isocommutative if
X̂ ·̂Ŷ = Ŝ, for all X̂ ∈ �̂ and for all Ŷ ∈ Û , being Û isocommutative if it
is so as an isoideal.

PROPOSITION 3.2.C5: Û is isocommutative if and only if U is commuta-
tive.

Lie-Santilli isoalgebras can also be introduced as fopllows. Given an K̂-
isoassociative isoalgebra (Û , ◦̂, •̂, ·̂), the commutator in Û associated with ·̂:
[X̂, Ŷ ]S = (X̂ ·̂Ŷ )−(Ŷ ·̂X̂), for all X̂, Ŷ ∈ Û is denominated Lie-Santilli bracket
product [., .]S with respect to ·̂. The isoalgebra (Û , ◦̂, •̂, [., .]S) is then denomi-
nated Lie-Santilli algebra.

DEFINITION 3.2.C6: Let Û be an K̂-isoassociative isoalgebra associated
with a K-algebra U , under conditions of Proposition XXX. Then, the Lie-
Santilli algebra associated with Û is an Lie isoalgebra if the algebra U is either
associative or Lie admissible.

Apart from that, a Lie-Santilli isoalgebra Û is said to be isosimple if, being
an isotopy of a simple Lie algebra, it is not isocommutative and the only isoide-
als which contains are trivial. In an analogous way, Û is called isosemisimple
if, being an isotopy of a semisimple Lie algebra, it does not contain non triv-
ial isocommutative isoideals. Note that, this definition involves that every
isosemisimple Lie isoalgebra is also isosimple. Moreover, it is verified:
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PROPOSITION 3.2.C7: Under conditions of Proposition XXX, the isotopic
lifting of a (semi)simple Lie algebra is an iso(semi)simple Lie isoalgebra. Par-
ticularly, every isosemisimple Lie isoalgebra is a direct sum of isosimple Lie
isoalgebras.

A lie-Santilli isoalgebra (Û , ◦̂, •̂, ·̂) is said to be isosolvable if, being an isotopy
of a solvable Lie algebra, in the isosolvability series

Û1 = Û , Û2 = Û ·̂Û , Û3 = Û2̂·Û2, . . . , Ûi = Ûi−1̂·Ûi−1, . . .

there exists a natural integer n such that Ûn = {Ŝ}. The minor of such integers
is called isosolvability index of the isoalgebra.

PROPOSITION 3.2.C8: Under conditions of Proposition XXX, the isotopic
lifting of a solvable Lie algebra is an isosolvable Lie isoalgebra.

An easy example of isosolvable Lie isolgebras are the isocommutative iso-
topic Lie isoalgebras, since they verify, by definition, that Û ·̂Û = Û2 = {Ŝ}. It
implies that every nonzero isocommutative Lie isoalgebra has an isosolvability
index equals 2, being 1 the corresponding to the trivial isoalgebra {Ŝ}.

PROPOSITION 3.2.C9: Let Û be a Lie isoalgebra associated with a Lie
algebra U . Under conditions of Proposition XXX, they are verified:

1) Ûi is an isoideal of Û and of Ûi−1, for all i ∈ N .

2) If Û is isosolvable and U is solvable, then every isosubalgebra of Û is iso-
solvable.

3) La intersection and the product of a finite number of isosolvable isoideals
of Û are isosolvable isoideals. Moreover, under conditions of Proposition
XXX, the sum of a finite number of isosolvable isoideals is also an isosolv-
able isoideal.

By using this the last result it is deduced hat the sum of all isosolvable
isoideals of Û is another isosolvable isoideal, which is called isoradical of Û .
Note that it is different from the radical of Û , which would be the sum of all
solvable ideals of Û . The isoradical is denoted by isorad Û , to not be confused
with rad Û , and it will always contain {Ŝ}, because this last one is a trivial
isosolvable isoideal of every isoalgebra. Note also that as every isosolvable
isoideal of Û is a solvable ideal of Û , then isorad Û ⊂ rad Û . So, if Û is
isosolvable, then Û = isorad Û = rad Û , due to Û is solvable in particular.
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PROPOSITION 3.2.C10: If Û is a semisimple Lie isoalgebra over a field
of zero characteristic, then isorad Û = {Ŝ}.

A Lie-Santilli isoalgebra (Û , ◦̂, •̂, ·̂) is called isonilpotent if, being an isotopy
of a nilpotent Lie algebra, in the series

Û1 = Û , Û2 = Û ·̂Û , Û3 = Û2 ·̂Û , . . . , Û i = Û i−1 ·̂Û , . . .

(which is called isonilpotency series), there exists a natural integer n such that
Ûn = {Ŝ}. The minor of such integers is denominated nilpotency index of the
isoalgebra.

As a consequence immediate of this definition it is deduced that every
isonilpotent Lie isoalgebra is isosolvable and that every nonzero isocommu-
tative Lie isoalgebra has an isonilpotency index equals 2, being 1 the corre-
sponding of the isoalgebra {Ŝ}. Moreover, they are verified:

PROPOSITION 3.2.C11: Under conditions of Proposition XXX, the iso-
topic lifting of a nilpotent Lie algebra is an isonilpotent isotopic Lie isoalgebra.

PROPOSITION 3.2.C12: Let Û be a Lie isoalgebra associated with a Lie
algebra U . They are verified:

1) Under conditions of Proposition XXX, the sum of a finite number of isonilpo-
tent isoideals of Û is another isonilpotent isoideal.

2) If Û is also isonilpotent and U is nilpotent, then

(a) Every isosubalgebra of Û is isonilpotent.

(b) Under conditions of Proposition XXX, if Û is nonzero isonilpotent, then
its center is non null.

In a similar way as the case isosolvable, the result (1) involves that the
sum of all isonilpotent isoideals of Û is another isonilpotent isoideal, which is
denoted by isonihil-radical of Û , to be distinguished from the nihil-radical of
Û , which is the sum of the radicals ideals. It will be represented by isonil-rad
Û , which allows to distinguish it from the nil-rad Û . It is immediate that
isonil-rad Û ⊂ nil-rad Û ∩ isorad Û ⊂ nil-rad Û ⊂ rad Û .

Apart from that, it is possible to relate an isosolvable isotopic Lie isoalgebra
with its derived Lie isoalgebra, by using the following:

PROPOSITION 3.2.C13: Under conditions of Proposition XXX, an Lie
isotopic isoalgebra is isosolvable if and only if its derived Lie isoalgebra is
isonilpotent.



RECENT ADVANCES ON THE LIE-SANTILLI ISOTHEORY 299

Finally, an isonilpotent Lie isoalgebra (Û , ◦̂, •̂, ·̂) is called isofiliform if, being
an isotopy of a filiform Lie algebra, it is verified that

dim Û2 = n − 2, . . . , dim Û i = n − i, . . . , dim Ûn = 0,

where dim Û = n.
Note that the theory related with a filiform Lie algebra U is based on the

use of a basis of such an algebra. So, starting from a basis {e1, . . . , en} de U ,
which is preferably an adapted basis, we can deal with lots of concepts of it,
such that dimensions of U and of elements of the nilpotency series, invariants
i and j of U and, in general, the resting properties, starting from its structure
coefficients, which are, in fact, responsible for the complete study of filiform
Lie algebras.
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