
Chapter 9

EXPERIMENTAL VERIFICATIONS AND
APPLICATIONS IN CHEMISTRY

9.1 ISOCHEMICAL MODEL OF THE HYDROGEN
MOLECULE

9.1.1 Introduction
Chemistry provides some of the most important experimental verifications

and applications of hadronic mechanics in its version known as hadronic chem-
istry essentially consisting of the isotopic methods of Chapter 3 for chemical
processes that are invariant under time reversal (isochemistry), the genotopic
methods of Chapter 4 for irreversible processes (genochemistry), the multi-
valued methods of Chapter 5 for biological structures (hyperchemistry), and
their isoduals for the first known formulation of antimatter chemistry (isodual
iso-, geno- and hyper-chemistry). A comprehensive study of these formula-
tions is presented in monograph [67]. This chapter is essentially dedicated to a
review of the experimental verifications and scientific applications of isochem-
istry. Industrial applications of hadronic chemistry are presented in Chapters
11 and 12.

As an indication, in Sections 1.2 and 1.3 we showed that, following one
century of failed attempts, quantum chemistry was unable to represent from
unadulterated basic axioms a residual amount of 2% of molecular binding
energies with electric and magnetic moments being wrong even in their signs,
while the improvement of the representation via the so-called “screenings of
the Coulomb law” causes the loss of the quantum of energy as well as other
inconsistencies.

By comparison, in this chapter we show that hadronic chemistry has permit-
ted the first exact and invariant representation from first principles of molec-
ular binding energies and other molecular data without adulteration of the
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basic axioms, while admitting as particular cases conventional screenings of
the Coulomb law.

The studies presented in this chapter are devoted to the representation of
molecular structures assumed as isolated from the rest of the universe, thus
being invariant under time reversal. Consequently, unless otherwise stated,
all studies of this chapter are based on isochemistry. various experimental
verifications and applications of the broader genochemistry and hyperchemistry
and their isoduals are under way by various scholars and they will be reported
in their works.

As it is well known, the primary structural characteristics of quantum chem-
istry (see, e.g., Refs. [1]) are those of being:

1) linear, in the sense that eigenvalue equations depend on wavefunctions
only to the first power;

2) local-differential, in the sense of acting among a finite number of isolated
points; and

3) potential, in the sense that all acting forces are derivable from a potential
energy.

Therefore, quantum chemistry is a Hamiltonian theory, i.e., models are com-
pletely characterized by the sole knowledge of the Hamiltonian operator, with
a unitary structure, i.e., the time evolution verifies the unitarity conditions

U = eiH×t, U × U † = U † × U = I, H = H†, (9.1.1)

when formulated on conventional Hilbert spaces over the conventional fields
of complex numbers.

Despite outstanding achievements throughout the 20-th century, quantum
chemistry cannot be considered as “final” because of numerous insufficiencies
identified in Chapter 1.

A most important insufficiency is the inability to represent deep mutual
penetrations of the wavepackets of valence electrons in molecular bonds. The
latter interactions are known to be:

1̂) nonlinear, i.e., dependent on powers of the wavefunctions greater than
one;

2̂) nonlocal-integral, i.e., dependent on integrals over the volume of over-
lapping, which, as such, cannot be reduced to a finite set of isolated points;
and

3̂) nonpotential, i.e., consisting of “contact” interactions with consequential
“zero range,” for which the notion of potential energy has no mathematical or
physical sense.

A representation of the latter features evidently requires a nonhamiltonian
theory, i.e., a theory which cannot be solely characterized by the Hamiltonian,
and requires additional terms. It then follows that the emerging theory is
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nonunitary i.e., its time evolution verifies the law,

U × U † = U † × U �= I, (9.1.2)

when formulated on conventional Hilbert spaces over conventional fields.
It is evident that the above features are beyond any hope of scientific-

quantitative treatment via quantum mechanics and chemistry.
In the preceding Chapter 3 we have submitted the foundations of a general-

ization covering of quantum chemistry under the name of hadronic chemistry,
first submitted by Santilli and Shillady in Ref. [2], which is capable of providing
an invariant representation of the above-mentioned nonlinear, nonlocal, non-
potential, nonhamiltonian, and nonunitary interactions in deep correlations of
valence electrons.

In Chapter 3, we have also shown that the conventional “screenings” of
the Coulomb potential (which are necessary for a better representation of
experimental data) are outside the axiomatic structure of “quantum” chem-
istry because such screenings can only be reached via nonunitary maps of the
Coulomb law, thus resulting in being particular cases of the broader hadronic
chemistry.

The main purpose of this chapter is the application of hadronic chemistry
to the construction of a new model of molecular bonds and its verification in
the representation of experimental data of the hydrogen molecule.

Since molecular structures are considered as isolated, thus being
closed, conservative, and reversible, the applicable branch of hadronic chem-
istry is isochemistry, which is characterized by the identification of the nonuni-
tary time evolution with the generalized unit of the theory, called isounit,

U × U † = Î(r, p, ψ, ∂ψ, ...) �= I, (9.1.3)

assumed hereon not to depend explicitly on time, and the reconstruction of
the totality of the formalism of quantum chemistry into a new form admitting
of Î, rather than I, as the correct right and left new unit.

The capability by the isounit to represent nonlinear, nonlocal, and non-
hamiltonian interactions is evident. Its selection over other possible choices is
mandated by the condition of invariance, that is, the prediction of the same
numerical values for the same quantities under the same conditions, but at
different times. In fact, whether generalized or not, the unit of any theory is
the basic invariant.

A central assumption of this chapter is that quantum mechanics and chem-
istry are exactly valid at all distances of the order of the Bohr radius (� 10−8

cm), and the covering hadronic chemistry only holds at distance of the order
of the size of the wavepackets of valence electrons (1 fm = 10−13 cm).

This condition is evidently necessary, on one side, to admit the conventional
quantum structure of the hydrogen atom, and, on the other side, to admit
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Figure 9.1. A schematic view of the central conditions studied in this chapter, the deep
overlapping of the wavepackets of valence electrons in singlet coupling (to verify Pauli’s
exclusion principle). These conditions are known to be nonlinear, nonlocal, and nonpotential
(due to the zero-range, contact character of the interactions), thus not being representable
via a Hamiltonian, and, consequently, not being unitary. As a result, the ultimate nature
of valence bonds is outside any credible representation via quantum chemistry. Hadronic
chemistry (Chapter 3) has been built for the specific scope of representing the conditions
herein considered of the bonding of valence electrons.

quantitative studies of the nonhamiltonian interactions of short range valence
bonds.

The above condition is readily achieved by imposing that all isounits used
in this chapter recover the conventional unit at distances greater than 1 fm,

lim
r�1 fm

Î(r, p, ψ, ∂ψ, . . . ) = I, (9.1.4a)

|Î| � 1, |T̂ | � 1. (9.1.4b)

In fact, under the above condition, hadronic chemistry recovers quantum
chemistry everywhere identically. The reader should keep in mind the cru-
cial implications of conditions (9.1.4b) which, as shown in Sect. 3.4, permit
a dramatic increase of the convergence of chemical series, with corresponding
decrease of computer time, as verified in the models of this chapter and of the
following ones.

The reader should also note that, quite remarkably, rather than being im-
posed, both conditions (9.4a) and (9.4b) are naturally verified by actual chem-
ical models.

It should be recalled that, under the assumption of representing closed-
isolated systems, isochemistry verifies all conventional laws and principles of
quantum mechanics (Chapter 3). Therefore, there is no a priori mean for
rejecting the validity of hadronic chemistry within the small region of space
of valence bonds.
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It then follows that the selection of which theory is valid is referred to
the capability to represent experimental data. Quantum mechanics has been
capable of achieving an exact representation of all experimental data for the
structure of one individual hydrogen atom. Therefore, quantum mechanics is
here assumed as being exactly valid within such a well defined physical system,
any possible improvement being redundant at best.

By comparison, quantum mechanics and chemistry have not been able to
achieve an exact representation of the experimental data of the different con-
ditions of molecular structures, as discussed in detail in Chapter 1. As a
result, these theories are not considered as being exactly valid for the different
conditions of molecular bonds (see Fig. 1.7).

As we shall see in this chapter, hadronic chemistry can indeed provide an
exact representation of molecular characteristics, and, therefore, it is consider
as being exactly valid for the indicated conditions of applicability.

A knowledge of isomathematics of Chapter 3 is essential for a technical
understanding of the content of this chapter. A comprehemnsive presentation
is available in monograph [67]

(see also representative papers [3, 4]).
For mathematically less inclined readers, we recall from Sect. 3.3.6 that

specific applications of isochemistry can be constructed in their entirety via a
simple nonunitary transform of conventional quantum chemical models. In fact
such a transform adds precisely the desired short range, nonlinear, nonlocal,
and nonhamiltonian effects.

Figure 9.2. A schematic unit of the hadronic horizon, namely, of the sphere of radius 1 fm
(= 10−13 cm) outside which quantum chemistry is assumed to be exactly valid, and inside
which nonlinear, nonlocal, and nonpotential effects are no longer negligible, thus requesting
the use of hadronic chemistry for their numerical and invariant treatment.
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9.1.2 Isochemical Model of Molecular Bonds
We now present the conceptual foundations of our isochemical model of

molecular bonds for the simplest possible case of the H2 molecule, which was
first submitted by Santilli and Shillady in Ref. [5]. We shall then extend the
model to the water and to other molecules in the subsequent chapter.

Since the nuclei of the two H-atoms remain at large mutual distances, the
bond of the H2 molecule is evidently due to the bond of the peripheral valence
electrons, as generally acknowledged [1].

Our main assumption [5] is that pairs of valence electrons from two different
atoms can bond themselves at short distances into a singlet quasi-particle state
called “isoelectronium,” which describes an oo-shaped orbit around the two
nuclei similar to that of planets in binary star systems (Fig. 9.3).

It is important to note that recent studies in pure mathematics [39] have
established that the oo-shaped orbit, called the figure eight solution, is one of
the most stable solutions of the N -body problem.

The primary binding force of the isoelectronium is assumed to be of nonlin-
ear, nonlocal, and nonpotential type due to contact effects in deep overlappings
of the wavepackets of the valence electrons, as studied in Sect. 9.3.

However, the reader should be aware that the isoelectronium is expected
to have a component of the binding force of purely potential type because,
when the electrons are in singlet coupling, the magnetostatic attraction may
be conceivably bigger than the electrostatic repulsion at distances of the order
of one fermi or less (see Fig. 9.4 for details).

It should be stressed, however, that a purely potential origin of the iso-
electronium is not expected to be exactly valid for various reasons, the most
visible one being the fact that, at the very small mutual distances here con-
sidered, magnetostatic and electrostatic laws diverge, thus prohibiting reliable
quantitative studies.

Hadronic chemistry has been built to resolve all divergences in the study
of the isoelectronium thanks to the isomathematics with product A×̂B =
A× T̂ ×B, and the isotopic element T̂ restricted to have absolute values much
smaller than 1. In this way, the hadronic component of the isoelectronium
binding force will “absorb” all divergent or otherwise repulsive effects, resulting
in convergent numerical values.

The reader is also discouraged to reduce the isoelectronium to a purely
quantum structure because, in this way, the theory would preserve all the in-
sufficiencies of chemistry studied in Chapter 1, most importantly, the inability
to reach an exact representation of molecular characteristics from the strict
application of first quantum principles without ad hoc adulterations. In fact,
as now well established, such an exact representation requires screenings of
the Coulomb law, which can only be obtained via nonunitary transforms. The
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Figure 9.3. A schematic view of the proposed isochemical model of the hydrogen molecule
with fully stable isoelectronium, where the top view refers to absolute zero degree tem-
perature and in the absence of any motions, while the lower view includes rotations, thus
recovering the conventional spherical distribution. The view is complementary to that of
Fig. 9.7 for the unstable isoelectronium. The model is here depicted in terms of orbits of the
valence electrons, rather than in terms of orbitals, or density distributions. The fundamental
assumption is that the two valence electrons, one per each atom, correlate themselves into
a bonded singlet state at short distance we have called isoelectronium, which is assumed in
this figure to be stable. In this case the only orbit yielding a stable H-molecule is that in
which the isoelectronium describes a oo-shaped orbit around the respective two nuclei, as it
occurs for planets in certain systems of binary stars. The isoelectronium is then responsible
for the attractive force between the two atoms. The binding energy is instead characterized
by the oo-shaped orbit of the isoelectronium around the two nuclei, conceptually represented
in this figure via a standing wave for a particle of spin 0, charge −2e, and null magnetic mo-
ment. As we shall see in this chapter, the model then permits a representation of: the reason
why the H2 and H2O molecules have only two hydrogen atoms; the exact representation of
the binding energy; the resolution of some of the inconsistencies of the conventional model;
and other advances. Note finally that the model is easily extendable to dimers such as HO,
HC, etc., as studied in Chapter 3. The novelty in predictive character of the model can be
seen from these preliminary lines. For instance, the model depicted in this figure predicts
that the hydrogen molecule becomes asymmetric, thus acquiring an infrared signature, under
sufficient magnetic polarization, which removes its rotational motions.

same nonunitary broadening of quantum chemistry is requested on numerous
other counts independent from the isoelectronium.

Despite these limitations, the purely magnetostatic-electrostatic structure
of the isoelectronium remains important in first approximation, because it re-
covers in a very simple way the hadronic horizon (Fig. 9.2), as well as the
prediction by hadronic mechanics dating back to 1978 that triplet couplings
are highly unstable. In fact, in the latter case, both electrostatic and magne-
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Figure 9.4. A schematic view of the conventional Coulomb forces of electrostatic and mag-
netostatic type in the structure of the isoelectronium. Since the charges are equal, they cause
a repulsion. However, since the coupling is in singlet, the magnetic polarities are opposite,
thus implying an attraction. Elementary calculations show that the magnetostatic attraction
equals the electrostatic repulsion at a mutual distance of the order of 1 fm, while it becomes
bigger at smaller distances, thus explaining the reason why the hadronic horizon has been set
at 10−13 cm. This evidence establishes that the bonding force of the isoelectronium can also
see its origin on purely Coulomb forces and, more particular, on the dominance of magnetic
over electric effects at short distances, which is a rather general occurrence under the proper
conditions (see the new chemical special of magnecules in Chapter 8). Despite this fully po-
tential attractive total force, it should be stressed that the isoelectronium cannot be treated
within a purely quantum mechanics context for various reasons. The first reason is that
with the decrease of the distance, both electrostatic and magnetostatic effects diverge, thus
preventing any serious scientific study. Hadronic mechanics and chemistry have been built
precisely to remove these divergencies via the isotopies of generic products A×̂B = A×T̂ ×B
with |T̂ | � 1 (Chapter 3). Therefore, the hadronic treatment of the isoelectronium permits
convergent numerical predictions which would be otherwise impossible for quantum chem-
istry. Independently from that, the nonunitary lifting of quantum chemistry is mandated
by the need to achieve an exact representation of experimental data on molecules which,
as now established, requires screenings solely obtainable via nonunitary transforms of the
Coulomb potential. Thus, any attempt to preserve old theories as exactly valid is doomed
to failures. Despite that, the electrostatic and magnetostatic effects depicted in this figure
illustrate that conventional potential effects should also be expected in the structure of the
isoelectronium. In other words, rather than assuming either a purely quantum or a purely
hadronic setting, we have in media virtus, i.e., the most plausible origin of the bonding
force of the isoelectronium is that partially of potential and partially of nonpotential type.
Still in turn, this implies the possibility of a significant (negative) binding energy for the
isoelectronium, which is evidently that characterized by the potential component (Sect. 9.3).

tostatic forces would be repulsive, thus prohibiting any possible bound state,
in beautiful agreement with Pauli’s exclusion principle.

It is easy to predict that the isoelectronium cannot be permanently stable
when interpreted as a quasi-particle of about 1 fm charge diameter. In fact, the
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mere presence of exchange forces, which remain fully admitted by isochemistry,
prevents the achievement of a complete stability under the indicated small
mutual distances of the electrons. As we shall see in more details in Chapter 6,
there are additional technical reasons which prevent the complete stability at
short distances, and actually render the isoelectronium a short lived quasi-
particles when the valence electrons are assumed at mutual distances of 1
fm.

However, it is easy to see that the isoelectronium must be fully stable when
the mutual distance of the two valence electrons is permitted to be of the order
of molecular size. In fact, any instability under the latter long range condi-
tions would imply a necessary violation of the fundamental Pauli’s exclusion
principle.

In different words, the isoelectronium is one of the first known quantitative
representations of Pauli’s principle, in the sense that:

1) When assumed to be of potential type, the interaction responsible for
Pauli’s principle implies catastrophic inconsistencies, such as shifts of experi-
mentally established energy levels, deviations from all spectroscopic lines, etc.
As a result, a quantitative representation of Pauli’s principle is impossible for
quantum mechanics, evidently due to its strictly potential character. For this
reason, Pauli’s principle is merely imposed in quantum mechanics without any
explanations, as well known. By comparison, a quantitative representation is
possible for hadronic mechanics precisely because of its admission of nonpoten-
tial interactions, that is, interactions which have no bearing on energy levels
and spectroscopic lines.

2) Quantum mechanics admits, in general, both singlet and triplet couplings
because particles are assumed to be point like as per the very topological struc-
ture of the theory. By comparison, hadronic mechanics represents particles as
expended at mutual distances smaller than their wavepackets, and solely ad-
mits singlet couplings due to highly repulsive-unstable forces predicted for all
triplet couplings. The latter repulsive forces originate from the drag experi-
enced by one wavepackets when rotating within and against the rotation of
the other wavepacket, as well as by the fact that in triplet couplings both
magnetostatic and electrostatic effects are repulsive (Fig. 9.4); and

3) Quantum mechanics cannot provide an exact representation of an attrac-
tion between identical electrons at very short distances, as discussed earlier,
in disagreement with the experimental evidence, e.g., that the two electrons of
the helium are bonded most of the time, to such an extent that they are emit-
ted in such a bonded form during photodisintegrations, and in other events.
By comparison, hadronic mechanics has been built to represent precisely the
bonding of identical electrons in singlet coupling under interactions not deriv-
able from a potential.
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The assumption of the isoelectronium as being unstable when its valence
electrons are at mutual distances of molecular order, implies a violation of
Pauli’s principle, e.g., because of the automatic admission of triplet couplings
for two electrons at the same energy level.

When assumed as being stable in the limit case of a quasi-particle of 1
fm charge radius, the most stable trajectory of the isoelectronium is of oo-
type, each o-branch occurring around each nucleus (Fig. 9.3). As illustrated
in Fig. 9.4 (see also Chapter 8), such a shape automatically prevents the
inconsistent prediction of ferromagnetic character of all molecules.

When the correlation-bond is distributed over the entire molecular orbit,
the trajectory of the isoelectronium is also expected to be oo-shaped around
the two nuclei with inverted direction of rotation from one o-branch to the
other. This is suggested by a variety of reasons, such as: the need of avoiding
the inconsistent prediction of ferromagnetic character, the compatibility with
the limit case of a fully stable particle at short distance (which, as we shall
see, can describe several oo-shaped orbits prior to separation), and others.

It should be indicated that the assumption of a finite lifetime of the isoelec-
tronium irrespective of size implies the possibility of adding several H-atoms
to the H2 molecule for the duration of the unbound valence electrons, as well
as other inconsistencies, such as the capability by hydrogen and water to be
paramagnetic (Chapter 8).

In this chapter, we apply the above hypothesis to the construction of a new
model of the hydrogen molecule and prove its capability to:

1) provide an essentially exact representation of the binding energy and
other characteristics of the hydrogen molecules;

2) said representation occurs from first axiomatic principles without exiting
from the underlying class of equivalence as occurring for Coulomb screenings;

3) explain for the first time to our knowledge the reason why the hydrogen
molecule has only two atoms;

4) introduce an actual “strongly” attractive molecular bond;
5) achieve a much faster convergence of power series with consequential

large reduction in computer times;
6) prevent inconsistencies such as the prediction that the hydrogen is fer-

romagnetic. In fact, whatever magnetic polarity can be acquired by the orbit
around one nucleus, the corresponding polarity around the second nucleus will
necessarily be opposite, due to the opposite direction of the rotations in the
two o-branches, thus preventing the acquisition of a net total polarity North-
South of the molecule.

By recalling from Chapter 3 that Gaussian screenings of the Coulomb law
are a particular case of the general nonunitary structure of hadronic chemistry,
one can see from these introductory lines that our first achievement on scien-
tific records of an essentially exact representation of molecular characteristics
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Figure 9.5. A schematic view of the impossibility for the isochemical model of the hydro-
gen molecule to acquire a net magnetic polarity, thus resolving a serious inconsistency of
quantum chemistry. Recall from Chapter 1 that current molecular models are based on
exchange, van der Waals, and other forces of nuclear origin, all implying the independence
of the orbitals of the individual atoms. Under these assumptions, quantum electrodynamics
demands that all molecules acquire a net total magnetic polarity North-South when exposed
to an external magnetic field, in dramatic disagreement with reality. The isochemical model
of molecular structure resolves this inconsistency because, as indicated in Fig. 4.3, the most
stable trajectory for the isoelectronium is oo-shaped as it also occurs for the trajectory of
planets in binary stars, with each o-branch around each nucleus. In this case, the rotation of
the two o-branches are necessarily opposite to each other, thus resulting in opposite magnetic
polarities, with the consequential impossibility to reach a net molecular magnetic polarity.
As we shall see in Chapter 7, the above features have important industrial applications for
new clean fuels and energies.

is reduced to the proper selection of the basic nonunitary transform, because
the latter will permit dramatically more restrictive screenings.

The derivability of the essentially exact representation from first axioms of
hadronic chemistry without adulterations is evident.

Equally evident is the first introduction of an actual, “strongly” attractive
interatomic force (where the word “strongly” does not evidently refer to strong
interactions in hadron physics), which is absent in current models due to
the notorious “weak” nature of exchange and other forces of current used in
molecular structures (where the word “weak” does not evidently refer to the
weak interactions among leptons).

The representation of the reason why the hydrogen (or water) molecule
has only two H-atoms is inherent in the very conception of the isoelectronium.
Once the two valence electrons of the H-atoms couple themselves into a singlet
quasi-particle state, there is no possibility for a third valence electron to par-
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Figure 9.6. A schematic view of the trigger, namely, the external means suitable to force
electrons with the same charge to penetrate the hadronic barrier (Fig. 9.2), in which attrac-
tive hadronic forces overcome the repulsive Coulomb barrier.

ticipate in the bound state, e.g., because we would have an impossible bound
state between a fermion (the third electron) and a boson (the isoelectronium).

The achievement of a much faster convergence of the power series, or, equiv-
alently, a dramatic reduction of computer times for the same calculations, is
evident from the structure of hadronic chemistry as discussed in Chapter 3.

The avoidance of the prediction of ferromagnetic features (acquisition of
a total North-South polarity under an external magnetic field) is due to the
nature of the orbit of the isoelectronium, as discussed in details below and in
Chapter 8.

In this chapter, we shall study two realizations of the proposed new model
of the hydrogen molecule, the first model is a limiting case in which the iso-
electronium is assumed to be stable (with an infinite lifetime) at ordinary
conditions, and the second model in which the isoelectronium is assumed to
be unstable (with a finite lifetime). The lifetime of the isoelectronium will
then be computed in Chapter 6.

The hypothesis of the bonding of electrons at short distances was first in-
troduced by Santilli [7a] for the structure of the π0 meson as a hadronic bound
state of one electron and one positron. Animalu [7b] and Animalu and Santilli
[7c] extended the model to the Cooper pair in superconductivity as a hadronic
bound state of two identical electrons.

A notion which is important for the very existence of the isoelectronium
is that of a trigger, namely, external (conventional) interactions, which cause
the identical electrons to move one toward the other and to penetrate the
hadronic horizon (Fig. 9.2) against their repulsive Coulomb interactions. Once
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inside the above mentioned horizon, the attractive hadronic forces overcome
the repulsive Coulomb interaction, resulting in a bound state.

In the case of the π0 model as a bound state of an electron and a positron
at short distances, there is no need for a trigger because the constituents
naturally attract each other. On the contrary, the existence of the Cooper
pair does indeed require a trigger, which was identified by Animalu [7b] and
Animalu and Santilli [7c] as being provided by the Cuprate ions. For the case
of an isolated hydrogen molecule, we conjecture that the trigger is constituted
by the two H-nuclei, which do indeed attract the electrons. We essentially
argue that the attraction of the electrons by the two nuclei is sufficient to
cause the overlapping of the two wavepackets, thus triggering the electrons
beyond the hadronic horizon.

It should be indicated that we cannot use the term “electronium” because
it would imply a bound state of two identical electrons under quantum me-
chanics, which is known to be impossible. The term “electronium” would also
be technically inappropriate because the constituents are not ordinary elec-
trons, but rather “isoelectrons,” i.e., the image of ordinary particles under
nonunitary transforms or, more technically, irreducible isounitary representa-
tions of the covering of the Poincarè symmetry known as the Poincarè-Santilli
isosymmetry [3c, 3d, 4a].

We cannot close this conceptual section without a few comments regarding
the possibility of treating the isoelectronium via quantum electrodynamics
(QED), since the latter appears to be the natural discipline for a valence bond
of two identical electrons at short distance. This issue is compounded by the
general belief of the unrestricted exact validity of QED all the way to very
small distances of the order of 10−24 cm.

It is easy to see that, as it is the case for quantum mechanics, a quantitative
treatment of the isoelectronium is beyond the technical capabilities of QED
for numerous conceptual and technical reasons. In fact, QED is purely linear,
local and potential, while the interactions we are interested in representing are
nonlinear, nonlocal and nonpotential.

In any case, it is easy to prove via the use of the Feynman diagrams that
QED cannot represent any attraction between identical electrons in singlet
coupling at short distance, as it occurs in the physical reality for the two elec-
trons of the Helium, the Cooper pair, the valence electrons, and other systems.
On the contrary, the isotopies of quantum electrodynamics (ISOQED) are ex-
pected to provide such a representation, but their study here would be vastly
beyond the limited scope of this monograph.

The reconciliation between the current belief of the unrestricted exact va-
lidity of QED and the bonding of identical electrons is permitted by the fact
that all experimental verifications of QED at shorter and shorter distances
have been conducted via the use of higher and higher energies. On the con-
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trary, the experimental verification of QED for the conditions of the isoelec-
tronium require smaller and smaller energies which experimental verifications
have been absent in the physics of the 20-th century due to the notorious
emphasis on high energies.

As a final comment, it should be noted that the limitations of QED for the
study of the isoelectronium are purely classical, and rest on the inability of
classical electrodynamics to represent the physical evidence of the attraction
of identical spinning charges at sufficiently small distances, evidence which is
even visible to the naked eyes, e.g., in ball lighting as created by nature, in
microwave ovens or other means.

As a matter of fact, no classical theory of electromagnetism can possibly be
considered as “final” until it achieves the capability of representing the attrac-
tion of identical charges under suitable conditions. As a result, no quantum
theory of electromagnetism, including QED, can be considered as “final” un-
less it is based on the preceding classical theory. One of the objectives of
classical and operator isochemistry is precisely that of achieving such a miss-
ing representation.

9.1.3 The Limit Case of Stable Isoelectronium
We are now equipped to conduct a nonrelativistic study of the isoelectro-

nium (Fig. 9.3) in the limit case of full stability under the assumption that
the binding force is of purely hadronic type without potential contributions
(Fig. 9.4). This approach is evidently done to test the effectiveness of hadronic
chemistry for the numerical studies of the problem considered, since correc-
tions due to potential effects can be easily added.

The reader should be aware upfront that the above assumptions imply that
the isoelectronium has no binding energy, trivially, because nonpotential forces
have no potential energy by conception.

The reader should be aware that the actual hadronic treatment should be
conducted within the context of isomathematics, that is, on isoeuclidean and
isohilbert spaces defined over isofields. To avoid excessive mathematical com-
plexity, in this section we study the projection of this isotopic treatment on
conventional spaces over conventional fields. However, it should be stressed
that the only correct formulation remains the isotopic one.

As we shall see, the hadronic treatment of the isoelectronium yields an
attraction of the type of the Hulten potential which is so strong to “absorb” at
short distances all other forces, whether attractive or repulsive. However, the
direct interpretation of the Hulten potential as an actual potential would be
erroneous, since it solely occurs in the projection of the model on conventional
spaces, while being completely absent in the technically appropriate treatment
on isospaces over isofields. The direct interpretation of the Hulten potential
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as an actual potential well of quantum mechanical nature would also be in
direct contradiction with the absence of binding energy.

Therefore, the assumption of the projected model as the correct one leads
to insidious inconsistencies and misrepresentations, such as the possible in-
terpretation of the isoelectronium via a potential well, which treatment is
very familiar in quantum mechanics, but the same treatment has no physi-
cal meaning for the isoelectronium. This is due to the fact that, as stressed
earlier, a necessary condition to avoid inconsistencies in the interpretation of
Pauli’s principle is that its interaction does not admit a potential energy, thus
rendering meaningless, or at best contradictory, conventional potential wells.

Note that the emergence of a “strong” Hulten potential eliminates the issue
whether the isoelectronium is due to the dominance of the attractive magne-
tostatic forces over the repulsive electric ones (Fig. 9.4). This is due to the
fact that the Hulten potential, as we shall review shortly in detail, behaves at
short distances as constant/r, thus absorbing all Coulomb forces, irrespective
of whether attractive or not. Moreover, the unified treatment via the Hulten
potential presented below eliminates the divergent character of these forces at
short distances, thus permitting meaningful numerical results.

We should finally indicate, to avoid inconsistencies, that the study of this
section deals with the limit case of a perfectly stable isoelectronium interpreted
as a quasi-particle of about 1 fm charge diameter, while in reality such form of
the isoelectronium is unstable. Moreover, in this section we shall not study the
expectation that the isoelectronium persists beyond the 1 fm mutual distance
of the valence electrons, as necessary to prevent violations of Pauli’s principle.

We begin our quantitative analysis with the nonrelativistic quantum me-
chanical equation of two ordinary electrons in singlet couplings, e−↓ and e−↑
represented by the wavefunction ψ↑↓(r) = ψ(r),(

p × p

m
+

e2

r

)
× ψ(r) = E × ψ(r). (9.1.5)

To transform this state into the isoelectronium representing the bonding of
the H-electron with a valence electron of another atom of generic charge ze,
we need first to submit Eq. (9.1.5) to a nonunitary transform characterizing
the short range hadronic effects, and then we must add the trigger, namely,
the Coulomb attraction by the nuclei.

This procedure yields the isoschrödinger equation for the isoelectronium
(Chapter 1),

U × U † = Î = 1/T̂ > 0, (9.1.6a)

Â = U × A × U †, A = p, H, . . . , (9.1.6b)

U × (A × B) × U † = Â×̂B̂ = Â × T̂ × B̂, ψ̂ = U × ψ, (9.1.6c)
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1
m

p̂ × T̂ × p̂ × T̂ +
e2

r
× T̂ − z × e2

r

)
× ψ̂(r) = E0 × ψ̂(r), (9.1.6d)

p̂×̂ψ̂(r) = −i × T̂ ×∇ψ̂(r), (9.1.6e)

where the factor T̂ in the first Coulomb term originates from the nonunitary
transform of model (9.1.5), while the same factor is absent in the second
Coulomb term because the latter is long range, thus being conventional. As a
result, in the model here considered the trigger is merely added to the equation.

The angular component of model (9.1.6) is conventional [3], and it is hereon
ignored. For the radial component r= |r| , we assume the isounit [7]

Î = eN×ψ/ψ̂ ≈ 1 + N × ψ/ψ̂, N =
∫

dr3 ψ̂†(r)1↓ × ψ̂(r)2↑, (9.1.7a)

T̂ ≈ 1 − N × ψ/ψ̂, (9.1.7b)

|Î| � 1, |T̂ | � 1, (9.1.7c)

lim
r�1fm

Î = 1, (9.1.7d)

where one should note that Eqs. (9.1.7c) and (9.1.7d) are automatically verified
by expressions (9.1.7a) and (9.1.7b).

Note that the explicit form of ψ is of Coulomb type, thus behaving like

ψ ≈ N × exp(−b × r), (9.1.8)

with N approximately constant at distances near the hadronic horizon of ra-
dius

rc =
1
b
, (9.1.9)

while ψ̂ behaves like

ψ̂ ≈ M ×
(

1 − exp(−b × r)
r

)
, (9.1.10)

with M being also approximately constant under the same range [7a]. We
then have

T̂ ≈ 1 − VHulten

r
= 1 − V0

e−b×r

(1 − e−b×r)/r
, (9.1.11)

namely, we see the appearance of a Hulten potential in this local approxima-
tion. But the Hulten potential behaves at short distances like the Coulomb
one,

VHultenr ≈ 1
b
≈ V0

b
× 1

r
. (9.1.12)
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As a result, inside the hadronic horizon we can ignore the repulsive (or
attractive) Coulomb forces altogether, and write

+
e2

r
×T̂ − e2

r
≈ +

e2

r
×

(
1 − VHulten

r

)
− z×e2

r
= −V × e−b×r

1 − e−b×r
, (9.1.13)

by therefore resulting in the desired overall attractive force among the identical
electrons inside the hadronic horizon.

By assuming in first approximation |T̂ | = ρ ≈ 1, the radial equation of
model reduces to the model of π0 meson [7a] or of the Cooper pair [7b, 7c],
although with different values of V and b.[

1
r2

(
d

dr
r2 d

dr

)
+

m

ρ2×h̄2

(
E0 + V × e−b×r

1−e−b×r

)]
× ψ̂(r) = E0×ψ̂(r). (9.1.14)

The exact solution and related boundary conditions were first computed in
Ref. [7a], Sect. 5, and remain fully applicable to the isoelectronium.

The resulting spectrum is the typical one of the Hulten potential,

|E0| =
ρ2 × h̄2 × b2

4 × m

(
m × V

ρ2 × h̄2 × b2
× 1

n
− n

)2

, (9.1.15)

which evidently possesses a finite spectrum, as well known.
To reach a numerical solution, we introduce the parametrization as in

Ref. [7a],

k1 =
1

λ × b
, (9.1.16a)

k2 =
m × V

ρ2 × h̄2 × b2
. (9.1.16b)

We note again that, from boundary conditions, k2 must be bigger than but
close to one, k2 ≈ 1 [7].

We therefore assume in first nonrelativistic approximation that

m × V

ρ2 × h̄2 × b2
= 1. (9.1.17)

By assuming that V is of the order of magnitude of the total energy of the
isoelectrons at rest as in the preceding models [7],

V ≈ 2 × h̄ × ω ≈ 2 × 0.5 MeV = 1 MeV, (9.1.18)

and by recalling that ρ ≈ 1, we reach the following estimate for the radius of
the isoelectronium

rc = b−1 ≈
(

h̄2

m × V

)1/2

=
(

h̄

m × ω0

)1/2

=
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=
(

1.054 × 10−27erg · sec
1.82 × 10−27 g × 1.236 × 1020 Hz

)1/2

= (9.1.19)

= 6.8432329 × 10−11cm = 0.015424288 bohrs = 0.006843 Å,

It should be noted that: 1) the above values of rc and V are only upper
boundary values in the center-of-mass frame of the isoelectronium, i.e., the
largest possible values under the assumptions of this section; 2) the values
have been computed under the approximation of null relative kinetic energy
of the isoelectrons with individual total energy equal to their rest energy; and
3) the values evidently decrease with the addition of the relative kinetic energy
of the isoelectrons (because this implies the increase of m in the denominator).

The actual radius of the isoelectronium, when considered to be an quasi-
particle as in this section, is also expected to vary with the trigger, that is,
with the nuclear charges, as confirmed by the calculations presented in the
next sections. This illustrates again the upper boundary character of value
(9.1.19).

The value k1 is then given by

k1 =
V

2 × k2 × b × c0
= 0.19, k2 ≈ 1. (9.1.20)

Intriguingly, the above two values for the isoelectronium are quite close to the
corresponding values of the π0 [7a] and of the Cooper pair [7b, 7c] (see also
Sect. 1.9),

k1 = 0.34, k2 = 1 + 8.54 × 10−2, (9.1.21a)

k1 = 1.3 ×
√

z × 10−4, k2 = 1.0 ×
√

z, (9.1.21b)

It is important to see that, at this nonrelativistic approximation, the binding
energy of the isoelectronium is not only unique, but also identically null,

|E0| =
ρ2×h̄2×b2

4×m

(
m×V

ρ2×h̄2×b2
− 1

)2

=
V

4×k2
×(k2 − 1)2 = 0. (9.1.22)

This result is crucial to prevent inconsistencies with Pauli’s exclusion princi-
ple, which, as indicated earlier, requires no potently energy between the two
electrons for its interpretation in a way consistent with experimental data.

The notion of a bound state with only one allowed energy level (called
“hadronic suppression of the atomic spectrum” [7a]) is foreign to conven-
tional quantum mechanics and chemistry, although it is of great importance
for hadronic mechanics. In fact, any excitation of the constituents, whether
the π0, the Cooper pair or the isoelectronium, causes their exiting the hadronic
horizon, by therefore re-acquiring the typical atomic spectrum. Each of the
considered three hadronic states has, therefore, only one possible energy level.
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The additional notion of a bound state with null binding energy is also for-
eign to quantum mechanics and chemistry, although it is another fundamental
characteristic of hadronic mechanics and isochemistry. In fact, the hadronic
interactions admit no potential energy, and as such, they cannot admit any
appreciable binding energy, as typical for ordinary contact zero-range forces
of our macroscopic Newtonian reality.

The null value of the binding energy can be confirmed from the expression of
the meanlife of the isoelectronium, which can be written in this nonrelativistic
approximation [7a]

τ =
h̄

4×π×h̄2 |ψ̂(0)|×α×EKin
ê = 7.16×104× k1

(k2 − 1)3×b×c0
. (9.1.23)

The full stability of the isoelectronium, τ = ∞, therefore, requires the exact
value k2 ≡ 1, which, in turn, implies E0 ≡ 0.

The above derivation characterizes the limiting assumption of a fully stable
isoelectronium in nonrelativistic approximation. By comparison, the Cooper
pair under the same derivation is not permanently stable because its binding
energy is very small, yet finite [7b], thus implying a large yet finite meanlife.
Also by comparison, the π0 cannot be stable, and actually has a very small
meanlife, evidently because the constituents are a particle-antiparticle pair
and, as such, they annihilate each other when bound at short distances.

Another important information of this section is that the isoelectronium is
sufficiently small in size to be treated as a single quasi-particle. This property
will permit rather important simplifications in the isochemical structure of
molecules studied in the next sections.

By comparison, the Cooper pair has a size much bigger than that of the iso-
electronium [7b, 7c]. This property is fundamental to prevent that the Cooper
pair takes the role of the isoelectronium in molecular bonds, i.e., even though
possessing the same constituents and similar physical origins, the isoelectron-
ium and the Cooper pair are different, non-interchangeable, hadronic bound
states.

The lack of binding energy of the isoelectronium is perhaps the most im-
portant information of this section. In fact, it transfers the representation of
the binding energy of molecular bonds to the motion of the isoelectronium in
a molecular structure, as studied in the next sections.

A novelty of isochemistry over quantum chemistry is that the mutual dis-
tance (charge diameter) between the two isoelectrons in the isoelectronium
could, as a limited case, also be identically null, that is, the two isoelectrons
could be superimposed in a singlet state. Rather than being far fetched, this
limit case is intriguing because it yields the value −2e for the charge of the
isoelectronium, the null value of the relative kinetic energy, and an identically
null magnetic field. This is a perfectly diamagnetic state, which evidently al-
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lows a better stability of the isochemical bond as compared to a quasi-particle
with non-null size.

Note that, if conventionally treated (i.e., represented on conventional spaces
over conventional fields), the nonunitary image of model (9.1.5) would yield
noninvariant numerical results which, as such, are unacceptable (Sect. 1.7).
This occurrence mandates the use of the covering isochemistry and related
isomathematics which assures the achievement of invariant results.

Note also that the main physical idea of isounit (9.1.7) is the representation
of the overlapping of the wavepackets of the two electrons under the condi-
tion of recovering conventional quantum chemistry identically whenever such
overlapping is no longer appreciable. In fact, for sufficiently large relative dis-
tances, the volume integral of isounit (9.1.7a) is null, the exponential reduces
to I, Eq. (9.1.7d), the nonunitary transform becomes conventionally unitary,
and quantum chemistry is recovered identically.

It is also important to see that, under transform (9.1.7a), model (9.1.5) is
implemented with interactions which are: nonlinear, due to the factor ψ/ψ̂
in the exponent; nonlocal, because of the volume integral in (9.1.7a); and
nonpotential, because not represented by a Hamiltonian.

We finally note that the explicit form of the isotopic element T̂ , Eq. (9.1.7b),
emerges in a rather natural way as being smaller than one in absolute value,
Eq. (9.1.7c), i.e.,

|T̂ | = |1 − N × ψ/ψ̂| � 1. (9.1.24)

As pointed out in Chapter 3, this property alone is sufficient to guarantee
that all slowly convergent series of quantum chemistry converge faster for
isochemistry.

9.1.4 Isochemical Model of the Hydrogen Molecule
with Stable Isoelectronium

We are now sufficiently equipped to initiate the study of the isochemical
model of the hydrogen molecule, first submitted by Santilli and Shillady in
Ref. [5] (see Figs. 9.3, 9.4 an d 9.5). In this Section we shall begin the study
by identifying the equation of structure of the H-molecule under the limit as-
sumption that the isoelectronium is perfectly stable at short distances, namely,
that the two valence electrons are permanently trapped inside the hadronic
horizon, resulting in the main features derived in the preceding section

mass ≈ 1 MeV, spin = 0,

charge = 2 × e, magnetic moment ≈ 0,
(9.1.25a)

radius = rc = b−1 = 6.8432329 × 10−11cm =

= 0.015424288 bohrs = 0.006843 Å.
(9.1.25b)
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The more realistic case when the isoelectronium is unstable at such small
distances is studied later on in this chapter, where we shall also reach an
essentially exact representation of the characteristics of the hydrogen molecule.

The main reason for assuming the isoelectronium to be stable at short dis-
tances with characteristics (9.1.25) is that such an approximation permits
rather major structural simplifications, most notably, the transition, from the
conventional hydrogen molecule (which is a four-body system), to the isoche-
mical model of this section (which is a three-body system, Fig. 9.3). By recall-
ing that four-body systems do not admit an exact solution, while restricted
three-body systems do admit an exact analytic solution, the implications of
the approximate model of this section are sufficient to warrant an inspection.

Our foundation is the conventional quantum model of H2 molecule [1],(
1

2µ1
p1 × p1 +

1
2µ2

p2 × p2+ (9.1.26)

+
e2

r12
− e2

r1a
− e2

r2a
− e2

r1b
− e2

r2b
+

e2

R

)
× |ψ〉 = E × |ψ〉.

Our task is that of subjecting the above model to a transform

U × U †|r≈rc = Î = 1/T̂ �= I, (9.1.27)

which is nonunitary only at the short mutual distances

rc = b−1 = r12 ≈ 6.8 × 10−11cm, (9.1.28)

and becomes unitary at bigger distances,

U × U †|r≤10−10cm �= I, Ir�10−10cm = I. (9.1.29)

This guarantees that our isochemical model coincides with the conventional
model everywhere except for small contributions at small distances.

Assumption (9.1.29) also guarantees that the conventional energy level of
the individual hydrogen atoms are not altered. In other words, assumption
(9.1.29) realizes the main conception of this monograph, the exact charac-
ter of quantum mechanics for the structure of one hydrogen atom, and its
insufficiency for two hydrogen atoms bounded into the hydrogen molecule
(Chapter 1).

The Hilbert space of systems (9.1.26) can be factorized in the familiar form
(in which each term is duly symmetrized or antisymmetrized) as in Refs. [1]

|ψ〉 = |ψ12〉 × |ψ1a〉 × |ψ1b〉 × |ψ2a〉 × |ψ2b〉 × |ψR〉, (9.1.30a)

HTot = H12 ×H1a ×H1b ×H2a ×H2b ×HR. (9.1.30b)
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The nonunitary transform we are looking for shall act only on the r12 vari-
able while leaving all others unchanged. The simplest possible solution is given
by

U(r12)×U †(r12) = Î = exp

[
ψ(r12)

ψ̂(r12)

∫
dr12ψ̂

†(r12)1↓×ψ̂(r12)2↑

]
, (9.1.31)

where the ψ’s represent conventional wavefunctions and the ψ̂’s represent
isowavefunctions.

As an alternative yielding the same results, one can transform short-range
terms (isochemistry), and add un-transformed long-range terms (quantum
chemistry), resulting in the radial equation(

− h̄2

2 × µ1
T̂ ×∇1 × T̂ ×∇1 −

h̄2

2 × µ2
T̂ ×∇2 × T̂ ×∇2+

+
e2

r12
− e2

r1a
− e2

r2a
− e2

r1b
− e2

r2b
+

e2

R

)
× |ψ̂〉 = E × |ψ̂〉. (9.1.32)

By recalling that the Hulten potential behaves at small distances like the
Coulomb one, Eq. (9.1.32) becomes(

− h̄2

2 × µ1
×∇2

1 −
h̄2

2 × µ2
×∇2

2 − V × e−r12×b

1 − e−r12×b
−

− e2

r1a
− e2

r2a
− e2

r1b
− e2

r2b
+

e2

R

)
× |ψ̂〉 = E × |ψ̂〉. (9.1.33)

The above equation does indeed achieve our objectives. In fact, it exhibits
a new explicitly attractive force between the neutral atoms of the hydrogen
molecule, which force is absent in conventional quantum chemistry. The equa-
tion also explains the reasons why the H2 molecule admits only two H-atoms.
As we shall see in the remaining sections, Eq. (9.1.33) also permits essentially
exact representations of the binding energy and other molecular character-
istics, yields much faster convergence of series with much reduced computer
times, and resolves other insufficiencies of conventional models.

9.1.5 Exactly Solvable, Three-Body, Isochemical
Model of the Hydrogen Molecule

Our isochemical model of the hydrogen molecule, Eqs. (9.1.33), can be sub-
jected to an additional simplification, which is impossible for quantum chem-
istry. In our isotopic model, the two isoelectrons are bonded together into a
single state we have called isoelectronium. In particular, the charge radius of
the latter is sufficiently small to permit the values (see Fig. 9.3)

r12 ≤ r1a, and r1b, r12 ≈ 0, (9.1.34a)
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r1a ≈ r2a = ra, r1b ≈ r2b = rb. (9.1.34b)

Moreover, the H-nuclei are about 2,000 times heavier than the isoelectron-
ium. Therefore, our model (9.1.33) can be reduced to a restricted three body
problem similar to that possible for the conventional H+

2 ion [1], but not for
the conventional H2 molecule.

Such a restricted model essentially consists of two H-protons at rest at a
fixed mutual distance plus the isoelectronium moving around them in the oo-
shaped orbit of Fig. 9.4, according to the structural equation(

− h̄2

2µ1
×∇2

1 −
h̄2

2µ2
×∇2

1 − V × e−r12b

1−e−r12b
−

−2e2

ra
− 2e2

rb
+

e2

R

)
× |ψ̂〉 = E × |ψ̂〉. (9.1.35)

Under the latter approximation, the model permits, for the first time, the
achievement of an exacts solution for the structure of the H2 molecule, as
it is the case for the H+

2 ion or for all restricted three-body problems. This
solution will be studied in Chapter 6 via variational methods. The exact
analytic solution has not been studied at this writing, and its study is here
solicited by interested colleagues. At this introductory level we only limit
ourselves to a few comments.

Note that the above exact solution of the hydrogen molecule is only possible
for the case of the isoelectronium fully stable at short mutual distances. In
fact, for the case of the mutual distance of the valence electrons no longer
restricted to 1 fm, the model is a full four-body structure, which, as such,
admits no exact solution.

Note also that model (9.1.35) is the isochemical model of the H2 molecule
inside the hadronic horizon. The matching representation outside the hadronic
horizon is presented in the next section.

Note also that the above restricted three-body model can be used for the
study of the bonding of an H-atom to another generic atom, such as HO, thus
permitting, again for the first time, novel exact calculations on the water as
HOH, namely, as two intersecting isotopic bonds HO and OH, each admitting
an exact solution, with possible extension to molecular chains, and evident
extensions to other molecules.

Readers interested in studying model (9.1.35) should keep in mind that
the rest energy of the isoelectronium is unknown at this writing, thus being
a free parameter suitable for fitting experimental data. More specifically, in
Eq. (9.1.35) we have assumed from Sect. 9.3 that

misoelectronium = 2 × melectron. (9.1.36)
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However, the results of Sect. 9.3 are approximate. In particular, they hold
under the assumption that the isoelectronium has no internal binding energy.
Such an assumption was made for the specific purpose of proving that non-
potential forces represented with the isounit can indeed yield a bound state.
In particular, the assumption was suggested by the need to represent Pauli’s
exclusion principle without the introduction of a potential.

However, such a view may be solely valid at molecular distances of valence
electrons, and not necessarily at short distances. As a result, the isoelectron-
ium may indeed have an internal binding energy, that is, it can have internal
forces derivable from a potential in addition to the nonpotential forces without
binding energy of hadronic chemistry, as outlined in Fig. 9.4.

This is due to the fact that the structure of the isoelectronium implies three
acting forces: one repulsive Coulomb force due to the same changes, plus two
attractive forces due to the two pairs of opposite magnetic polarities in singlet
configuration. The latter two attractive forces may overcome the repulsion
due to the change beginning at distances of the order of one Fermi, resulting
in a conceivable net attractive force derivable from a potential.

Under the latter conditions, the isoelectronium would indeed have a negative
binding energy, resulting in the unknown value

misoelectronium < 2 × melectron. (9.1.37)

The understanding is that the case misoelectronium > 2×melectron is impossible.
The unknown character of the isoelectronium mass alters considerably the

perspective of restricted model (9.1.35). As we shall see in Chapter 6, it is
possible to prove via variational and other methods that model (9.1.35) under
assumption (9.1.36) does not admit exact solutions accurately representing
the binding energy of the hydrogen molecule. However, under the use of the
isoelectronium mass free for fitting experimental data, the situation may be
different.

Another information which should not be assumed to be exact is the size of
the isoelectronium, Eq. (9.1.19). In fact, as stressed in Sect. 9.3, such a value
too must be assumed to be an upper boundary value. In model (9.1.35) the
isoelectronium is assumed to be point-like. However, the model can be first
extended via Eq. (9.1.35) for a stable isoelectronium with a fixed unknown
radius

rc = b−1 ≤ 6.8 × 10−11cm. (9.1.38)
A second extension of model (9.1.35) should also be taken into consideration,
that in which

rc = b−1 ≥ 6.8 × 10−11cm, (9.1.39)
because, as stressed in Sects. 9.2 and 9.3, any assumption that the isoelectron-
ium ceases to exist at distances bigger than 10−11 cm would imply a violation
of Pauli’s exclusion principle.
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As a matter of fact, the assumed mass (9.1.36) is more in line with assump-
tion (9.1.39), than with assumption (9.1.38), again, to prevent the existence at
large mutual distances of the valence electrons of attractive internal potential
forces with a binding energy which would alter conventional atomic structures.

Even though, admittedly, the size of the isoelectronium is variable in the
physical reality, its average into a constant value may have meaning, of course,
as a first approximation.

A third quantity of model (9.1.35) deserving inspection is the experimental
value of the bond length, which is generally referred to the distance between
the two nuclei R. In principle, such a distance is expected to be altered by a
fully stable isoelectronium. Therefore, a solution of model (9.1.35) in which R
is fitted from the experimental data is indeed meaningful, of course, as a first
approximation.

In conclusion, in both, the four-body model (9.1.33) and the restricted
three-body model (9.1.35), we have three quantities which, in principle, can
be assumed to be unknown and, therefore, should be derived from the fit
of experimental data: 1) the mass of the isoelectronium; 2) the size of the
isoelectronium; and 3) the bond length.

There is no doubt that an exact analytic solution of model (9.35) suitable
to represent the binding energy of the hydrogen is permitted by the above
three free fits with intriguing implications for all H-bonds whose study is left
to interested researchers.

9.1.6 Isochemical Model of the Hydrogen Molecule
with Unstable Isoelectronium

In this section we review the study of Ref. [5] on the solution of the restricted
isochemical model of the hydrogen molecule, Eq. (9.1.35) and Fig. 9.3, via
conventional variational methods used in chemistry, under the assumption
that the isoelectronium has characteristics (9.3.21). As we shall see, these
studies have achieved an essentially exact representation of experimental data
on the hydrogen molecule, including its binding energy and bond length, for
the first time from exact first principles without ad hoc adulterations.

For historical papers in chemistry connected to our model, see Refs. [6].
Representative, more recent papers with technical connections to our study as
outlined below are given by Refs. [8 – 38].

The possibilities that the mass of the isoelectronium be smaller than 2×mass
of electron and its radius be bigger than 6.8×10−11 cm will not be considered
in this section.

For this purpose we first note that the solution of the full model with the
Hulten potential e−rb/(1 − e−rb) where rc = b−1 is the size of the isoelectro-
nium, implies rather considerable technical difficulties. Therefore, we shall
study model (9.1.35) under an approximation of the Hulten potential given by
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one Gaussian of the type

e−rb

1 − e−rb
≈ 1 − Ae−br

r
, (9.1.40)

with A a constant identified below.
It is known that a linear combination of sufficient number of Gaussians can

approximate any function. Therefore, the achievement of an essentially ex-
act representation of molecular data via approximation (9.1.40) will evidently
persist under the full use of the Hulten potential.

Recall from Sect. 9.3 that the stable character of the isoelectronium is cru-
cially dependent on the use of the attractive Hulten potential, which “absorbs”
repulsive Coulomb forces at short distances resulting in attraction. Therefore,
the weakening of the Hulten potential into the above Gaussian form has the
direct consequence of turning the isoelectronium into an unstable state.

In this and in the following sections, we shall therefore study an isochemical
model of the hydrogen molecule which is somewhat intermediary between the
conventional chemical model and the isochemical model with a fully stable
isoelectronium.

It should be indicated that the terms “unstable isoelectronium” should be
referred as the period of time in which the two valence electrons remain within
the hadronic horizon of 6.8 × 10−11 cm. The same terms should not be inter-
preted to the fact that the isoelectronium does not exist outside the hadronic
horizon, because the latter view implies a number of inconsistencies, such as
possible violation of Pauli’s exclusion principle, acquisition by molecules of
ferromagnetic character, etc.

The main objective of this section is to show the achievement of the exact
representation of molecular characteristics even for the case of one Gaussian
approximation (9.1.40). The question whether the isoelectronium is stable or
unstable evidently depends on the amount of instability and its confrontation
with experimental data, e.g., on magnetic susceptibility. As such, the issue
will be addressed theoretically and experimentally in a future paper.

Under the above assumption, our first step is the study of model (9.1.35) in
an exemplified Coulomb form characterized by the following equation, hereon
expressed in atomic units (a.u.)

H × Ψ =
(
−1

2
∇2 − 2

ra
− 2

rb
+

1
R

)
× Ψ, (9.1.41)

where the differences from the corresponding equation for the H+
2 ion [1] are

the replacement of the reduced mass µ = 1 with µ = 2, and the increase in
the electric charge from e = 1 to e = 2.

The standard method for solving the above equation is the following. The
variational calculation is set up in matrix algebra form in a nonorthogonal
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basis set S which has been normalized to 1. The metric of this non-orthogonal
system of equations S is used to set up the orthogonal eigenvalue problem and
the eigenvalues are sorted to find the lowest value. H and S are Hermitean
matrices. E is a diagonal matrix with the energy eigenvalues

HC = ESC; define C = S− 1
2 C ′, then HS− 1

2 C ′ = ES− 1
2 C ′, (9.1.42a)

(S− 1
2 HS+ 1

2 C ′) = H ′C ′ = E(S− 1
2 SS− 1

2 )C ′ = EC ′, (9.1.42b)

where the last equation is obtained by multiplying the first equation from
the left by S− 1

2 , and use the unitary property that S− 1
2 = S+ 1

2 to form an
orthogonal eigenvalue problem. Finally we solve for C ′ by diagonalizing H ′

and obtain C = S− 1
2 C ′.

Here the basis is formed from contracted basis sets Φ, which are fixed linear
combinations of Gaussian spheres χ fitted to real shapes of spherical harmonic
functions. The eigenvector column in C gives the basis coefficients of the
molecular orbitals according to the expression

Ψi =
∑
ci,j

(j : Ψj =
∑
aj,k

Ψk; χ =
(

2α

π

)3/4

exp[−(α − A)2] = /α, A). (9.1.43)

The problem of how to form a sharp cusp on a 1s orbital is solved to
a practical extent by using up to six Gaussians; here we use the very best
“least-energy” 1s orbital from Pople’s group [18]. In this problem the s-, p-,
d- and f -orbitals are polarization functions that merely serve to evaluate the
effect of other angular components on the 1s orbitals which are the main terms
of the 1s-sigma bond in H2.

Gaussian orbitals can easily be scaled to screened nuclear charge values by
multiplying the Gaussian exponents by the square of the scaling factor (in
effect, shrinking the space of the H-atom model) followed by renormalization
of the linear combination of Gaussians. In this work the scaling constant of the
1s orbitals was optimized to 1.191 and the 2-, 3- and 4-shell orbitals optimized
as scaled shells rather than optimizing each orbital individually.

As the orbitals were optimized using parabolic fitting to three energy values
as a function of the scaling value, it became apparent that the bond length
of the three-body model is much shorter than the usual value of 1.4011 Bohr
(= 0.74143 Angströms). Thus, the bond length was re-optimized after op-
timization of the scaling for each principle shell. The scaling constants and
the orbital contractions are Angströms at an energy of −7.61509174 Hartrees
(= −207.2051232 eV) where the achievement of an exact representation of the
binding energy is studied in detail.

Although a large basis set of 1s, 2s, 2p, 3s, 3p, 3d, 4s, 4p, and 4f orbitals
was used, this variational energy is probably higher than the exact solution of
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the type used by Bates, Ledsham and Stewart [12]. However, the energy of
the 6-gaussian (6G) Least-Energy 1s function [18] is −0.499946 Hartrees for
the H atom so the energy quoted here should be within 0.001 Hartrees of the
exact solution.

While it is expected that a collapsed isoelectronium pair would be even
more unstable than a collapsed positronium quasi-particle due to the repul-
sive interaction of the electrons, this three-body model of H2 predicts over 6
Hartrees added molecular stability and a substantial decrease in bond length.
The E(1) value of the electronium-pair of some −11.473164 Hartrees is lower
than the total energy of the molecule due to the repulsion of the proton-nuclei
from the 1/R term of the Hamiltonian.

9.1.7 Gaussian Approximation of the Isochemical
Model of the Hydrogen Molecule as a
Four-Body System

As indicated earlier, it is possible that the valence electrons bond themselves
into the isoelectronium not in a permanent fashion, but rather in a statistical
fashion, with only a percentage of their time in a bonded state, in which case
the restricted three-body model is evidently insufficient. In this section we
review the studies of Ref. [5] on the full four-body isochemical model of H2,
which model also permits the achievement of an exact representation of the
binding energy from first principles without adulterations (see Fig. 9.7).

A considerable effort has been made since the time of Hylleraas [20] in
the 1930’s to find a way to calculate the last 2% of the binding energy of
molecules. Boys [22] derived a form of “configuration interaction” which of-
fered exact variational solutions, but this proved to be very slowly convergent
and only applicable to small molecules. Moller-Plesset perturbation developed
by Pople et. al. [23] is popular today, but studies up to eighth order have been
shown not to converge after huge expense in computer time. Linked-cluster
diagrams by Bartlett et. al. [24]) multiconfiguration-self-consistent-field (MC-
SCF) calculations by Schaefer et. al. [25] and Goldstone-Bruekner-Feynman
diagrammatic perturbation by Kelly [26] have all been shown to require very
large computer resources, are limited to small molecules and sometimes fail to
give even negative binding energies as shown by Goddard [27] for Cr2.

All these slow and expensive methods seem to share one common feature,
the use of high energy empty ”virtual” orbitals from a ground state calculation,
usually of Hartree-Fock-Roothaan type, to improve the representation of the
ground state.

One might ask how it is possible to lower the energy by using higher energy
wavefunctions. The fact that some energy lowering is found suggests electron
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Figure 9.7. A schematic view of the isochemical model of the hydrogen molecule with unsta-
ble isoelectronium due to the weakening of the Hulten potential and consequential relaxation
of the infinite lifetime, as a view complementary to that of Fig. 9.4 with stable isoelectron-
ium. In this case the notion of isoelectronium essentially represents a tendency of pairs of
valence electrons to correlate-bond in singlet states at short distances. The use of isochem-
istry, rather than conventional chemistry, is necessary because even this weaker form of the
isoelectronium, as well as all screenings of the Coulomb potential at large, are nonunitary
images of conventional Coulomb settings, as established in Chapter 1. Therefore, all these
models require a representation on isospaces over isofields for their invariant formulation. In
the text, we present the projection of such an invariant formulation on conventional spaces
over conventional fields for simplicity.

dynamics is indeed complicated, and the rate of convergence of this method
is quite slow.

The method adopted here is to use the usual Hartree-Fock-Roothaan self-
consistent-field equations [1] (which also has some formal flaws such as the
self-interaction terms [27]), and question the form of the Coulomb interaction
of the electron.

Note that reducing the values of the Coulomb integrals will lower the energy
by reducing the electron-electron repulsion while reducing the exchange terms
will raise the energy, but the 1/2 factor reduces the effect of the exchange
terms. Thus, a reduction of the value of the integrals will lower the energy.
Note that Goddard [27] has already recommended reducing the atomic self-
energy by subtracting 1.39 eV from Hartree-Fock exchange integrals in the
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cases of Cr2 and Mo2. In this way, we reach the expressions

FC = ESC; Fi,j = Hi,j +
∑
k,l

Pk,l[(i, j|k, l) − 1
2
(i, k|j, l)], (9.1.44a)

(i, j|k, l) =
∫ ∫

χi(1)χj(1)
1

r12
χk(2)χl(2) dτ1dτ2, (9.1.44b)

Pi,j = 2
∑

n

cn,icn,j (sum n only over occupied orbitals). (9.1.44c)

The 1995 paper on Cooper pairs by Santilli and Animalu [7c] invokes the
non-local hadronic attractive force first identified in the π0-meson [7a] as ap-
plied to singlet-paired electrons which form a boson particle. After using a
non-local isotopic nonlinear transformation, the hadronic attraction was trans-
formed back to real-space and modeled resulting into an attractive force which
overcomes the repulsive Coulomb force. In turn, the latter occurrence consti-
tutes the physical-chemical origin in the use of a suitably screened Coulomb
potential for the binding energy.

Examination of the original 1978 paper on positronium collapse by Santilli
[7a], reveals that the Hulten potential is not necessarily a unique represen-
tation of the hadronic force; since a linear combination of similar potentials
could be used to represent the same hadronic bound state, provided that they
characterize an attractive force among the electrons capable of overcoming
their Coulomb repulsion.

This work assumes that until matrix elements of a two-Gaussian-screened-
Coulomb potential can be used to approximate the real-space form of the
hadronic attraction. This form has the important property that it can be
merged with the general case of the four-center Coulomb or exchange integral
derived by Shavitt [16] using the famous Gaussian transform technique.

1
r12

=

√
1
π

∞∫
0

s−
1
2 exp[−sr2

12]ds, (9.1.45a)

1 +
p + q

pq
s =

1
1 − t2

. (9.1.45b)

For future reference, note that this transform already has a pole at the
lower limit where s = 0. This pole was removed at the last step by a change in
variable, given as Eqs. (9.1.45). Shavitt was able (as a former graduate student
of S.F. Boys) to show that the Gaussian transform technique reproduced the
formula previously derived by Boys [6] in 1950 using electrostatic arguments.
The Gaussian-lobe basis SCF programs by Shillady [8, 28] and others.
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It is important to note that the formula is completely general in orienta-
tion of four Gaussian sphere lobe-orbitals as well as the distance between two
electrons. As modified for description of correlation of two electrons, such a
general formula can describe angular correlation as well as distance interac-
tion. Thus, matrix Coulomb repulsion to model the real-space form of the
hadronic attraction of two electrons.

Well-founded admiration for Shavitt’s work in deriving the Coulomb in-
teraction was rekindled as his derivation was checked. This work added the
Gaussian screening as exp[−r2]/r so that the special properties of Gaussians
could be used, especially the property that polar coordinates readily separate
into factorable x, y, z components. The goal is to evaluate the two-electron
four-center matrix elements of the Gaussian-screened-Coulomb potential as
shown below,

Y (r) =
1 − 2 exp[−αr2]

r
. (9.1.46)

Intriguingly, the Gaussian exponent carried through the original derivation
of the Coulomb interaction by resorting to a well known auxiliary function
F0 which has been studied by Shillady [8, 28] and others. Since both s

1
2 and

(s + α)
1
2 occur in the denominator of the screened-Coulomb form, two poles

occur in the integral. A change of variable absorbs the term

1 +
p + q

pq
(s + α) =

1
1 − t2

, (9.1.47)

while the pole due to (s+α)−1/2 shifts the other pole at s−
1
2 to the lower limit

of the integral. A smooth spike is evident at the lower value of the integration
using a 70 point Simpson’s Rule Integration ( two ranges are used with 20
points more closely spaced near the pole and 50 points for the remaining
range.)

The above work was carried out using 64 bit double precision arithmetic
which provides 14 significant figures. A simple offset (δ) of 1.0×10−15 has pro-
vided useful results with this simple offset to avoid numerical overflow. While
this pole is a problem in need of a continuous function to integrate, numerical
integration seems to handle this well to 14 significant figures, particularly since
the routines used for the Coulomb integrals are known to be accurate only to
12 significant figures [28].

The area under the pole-spike is estimated as a narrow triangle upon a
rectangle 1.0×10−15 wide with the height of the triangle set at 1.79940×1013

times the height of the point set 1.0× 10−15 into the range of integration (the
first Simpson point).

The present code for this screened-Coulomb integral is presently slower than
the corresponding function used for the Coulomb integrals due to the 70 point
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Simpson integration [28], but the integrand is nearly flat after the spike at
s = 0.0 so that portion of the integrand can be evaluated more rapidly with
fewer points. The simple offset of the lower limit by 1.0 × 10−15 is adequate
for this monograph.(

aA(1), bB(1)
∣∣∣∣exp(−α(r12)2)

r12

∣∣∣∣ cC(2), dD(2)
)

= (9.1.48a)

=
2π5/2

pq
√

p + q
e[ab/(a+b)]AB

2−[cd/(c+d)]CD
2

×

×
1∫

ρ

e−[pq/(p+q)]PQ
2
t2

(
[pq/(p + q)]t2

[pq/(p + q)]t2 + α(t2 − 1)

)1/2

dt, (9.1.48b)

ρ = δ +
α
√

p + q

pq + (p + q)α
, p = (a + b), q = c + d, δ = 1.0 × 10−15, (9.1.48c)

pole = (1.79940 × 1013)e−[pq/(p+q)]PQ
2
ρ2

. (9.1.48d)
The new integral was incorporated into the same routine used to evaluate

the usual Hartree-Fock-Roothaan SCF scheme except F0 was supplemented
by the new auxiliary function (9.1.46). The H2 molecule was treated using the
same fixed-nuclei method with a bond distance of 1.4011 Bohrs. A simple basis
set of just one Least-Energy 6G-1s orbital [18] centered on each H-nucleus was
used to test the new program “Santilli-Animalu-Shillady-Lobe” (SASLOBE),
which is set to handle up to 512 contracted orbitals.

It must be stated that the energies given are now parametrically dependent
on the Gaussian-screening constant as E(α). The energy is variationally bound
to be above the true energy in a narrow range around the optimum value. It is
extremely important to note that the energy is lowered using the new attractive
hadronic term, but the optimum value is difficult to locate and “variational
collapse” occurs when rc is extended or reduced away from a shallow minimum
in the energy.

In order to minimize the number of parameters in the model (only one, the
Coulomb screening constant A) two equations were imposed on the Gaussian-
function. First, the function was required to be equal to zero at some radial
cutoff value rc which is assumed to be the inverse of the b-variable of Sect. 9.1.5,

b =
1
rc

= A
exp[−αr2

c ]
rc

, A = exp[+αr2
c ]. (9.1.49)

Second, this radial cutoff value was used as sigma of the inverted Gaussian
(radius at half-height),

A exp
[
− ln 2

r2
c

r2
c

]
=

A

2
, α =

ln 2
rc

, A = 2. (9.1.50)
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The upper boundary of the radius of the isoelectronium has been estimated
in Sect. 9.3 to be about 0.6843× 10−10 cm, which corresponds to 0.012931401
Bohrs. This radius does lower the Hartree-Fock-Roothaan energy noticeably
for H2, and further optimization of the pole-spike produced an SCF energy of
−1.17446875 Hartrees with a cutoff radius of 0.0118447 Bohrs or 1.18447 ×
10−10 cm using the minimum 1s basis. In conclusion, the fitted value of
b ≡ 1/rc is reasonably close to the estimate value for the H2 molecule. The
minimum basis was later extended to 6G-1s, 1G-2s, 1G-2p for pole calibration.

Details of the exact representation of the binding energy via the above
second method are presented in Appendix 9.B.

9.1.8 Summary of the Results
In order to demonstrate the advantage of the isochemical model using a

Gaussian-screened-Coulomb attraction between electrons, a standard Boys-
Reeves [22] calculation was carried out in Ref. [2]. This included all single-
and double-excitations CISD from the ground state Hartree-Fock-Roothaan
SCF orbitals for a 99 × 99 “codetor” [6] interaction. Only the 1s orbitals
were optimized with a scaling of 1.191 for the Least-Energy 6G-1s orbitals,
but the basis also included 1G-2s, 2G-2p, 1G-3s, 1G-3p, 3G-3d, Thd 1G-4sp
(tetrahedral array of four Gaussian spheres), and 4G-4f orbitals scaled to
hydrogenic values as previously optimized [17].

The additional basis functions provide opportunity to excite electrons to
higher orbitals as is the standard technique in configuration interaction, some-
what contrary to the main hypothesis of this work, which is that there is an
attractive hadronic force between electron pairs inside the rc critical radius.
The results of the above calculations are summarized in Table 9.1.

The Boys-Reeves C.I. achieved an energy of −1.14241305 Hartrees based on
an SCF energy of −1.12822497 Hartrees. This was followed by one additional
iteration of “natural orbitals” (CINO), in which the first order density matrix
is diagonalized to improve the electron pairing to first order [29]. The fact that
this procedure lowered the energy only slightly to −1.14241312 Hartrees (i.e.,
−7.0×10−7 Hartrees), indicates the 99-configuration representation is close to
the lower energy bound using this basis set while the isochemistry calculation
produced the exact energy with a comparatively much smaller basis set.

Since SASLOBE has only a n7 routine for the necessary integral transfor-
mation instead of the most efficient n5 algorithm (� n is the number of basis
functions), the SASLOBE C.I. runs are somewhat slow and required about 20
hours on a 300 MFLOPS Silicon Graphics computer.

With more efficient routines, this time can be reduced to about three hours.
However, the screened-Coulomb attraction method used a smaller basis and
achieved lower energies in a few seconds. It is also estimated that careful
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Table 9.1. Summary of results for the hydrogen molecule.

Species H2 H2
a H2

Basis screening
1s 1.191 6.103 1.191
2s 0.50 24.35 0.50
2p 0.50 24.35 2.36
3s 0.34 16.23 *
3p 0.34 16.23 *

3d 0.34 −16.2b *
4sp 0.25 12.18 *
4f 0.25 12.18 *
Variational energy (a.u.) * −7.61509174 *
SCF energy (a.u.) −1.12822497 * −1.13291228
CI energy (a.u.) −1.14231305 * *
CINO energy (a.u.) −1.14241312 * *
SAS energy (a.u.) * * −1.174444
Exact energy (a.u.) [30] −1.174474 * −1.174474
Bond length (bohr) 1.4011 0.2592 1.4011
Isoelectronium radius (bohr) * * 0.01124995

aThree-body Hamiltonian (5.1).
bThe negative 3d scaling indicates five equivalent three-sphere scaled to 16.20 rather than ”canonical”
3d shapes.

spacing of fewer quadrature points in the new integral routine can certainly
reduce the SASLOBE run times by a factor of 2 at least.

Therefore it is clear that calculations in hadronic chemistry are, conserva-
tively, at least 1,000 times faster than a C.I. calculation, an occurrence fully
similar to the corresponding case in hadronic vs. quantum mechanics.

Another estimate is that, since the new integral corrections require a little
more time than the usual Coulomb integrals (but do not take any additional
storage space), the computer run-times for an isochemistry calculation should
only be about three times the run-times for the corresponding Hartree-Fock-
Roothaan calculation in any given basis set.

The extension of the isochemical model of the H2 molecule to other molecules
is conceptually straightforward. In particular, the notion of isoelectronium es-
sentially restricts all possible bonds to the established ones, as it is the case
for the water molecule (see next chapter).

In order to generalize the underlying quantitative treatment to molecules
containing H–to–F, the pole-spike was re-optimized to obtain 100% of the



ELEMENTS OF HADRONIC MECHANICS, VOL. III 391

correlation energy below the SCF energy in the given basis set since the SCF
energy here was not quite at the Hartree-Fock limit.

Table 9.2. Isoelectronium results for selected molecules.

Species H2 H2O HF

SCF-energy (DH) (a.u.) −1.132800a −76.051524 −100.057186

Hartree-Fockd (a.u.) −100.07185d

Iso-energy (a.u.) −1.174441c −76.398229c −100.459500c

Horizon Rc (Å) 0.00671 0.00038 0.00030

QMC energyd,e (a.u.) −1.17447 −76.430020e −100.44296d

Exact non-rel. (a.u.) −1.174474f −100.4595d

Corellation (%) 99.9b 91.6b 103.8
SCF-dipole (D) 0.0 1.996828 1.946698
Iso-dipole (D) 0.0 1.847437 1.841378
Exp. dipole (D) 0.0 1.85g 1.82g

Timeh (min:s) 0:15.49 10:08.31 6:28.48

(DH+) Dunning-Huzinaga (10S/6P), [6,2,1,1,1/4,1,1]+H2P1+3D1.
aLEAO-6G1S + optimized GLO-2S and GLO-2P.
bRelative to the basis set used here, not quite HF-limit.
cIso-energy calibrated to give exact energy for HF.
dHartree-Fock and QMC energies from Luchow and Anderson [33].
eQMC energies from Hammond et al. [30].
fFirst 7 sig. fig. from Kolos and Wolniewicz [34].
gData from Chemical Rubber Handbook, 61st ed., p. E60.
hRun times on an O2 Silicon Graphics workstation (100 MFLOPS max.).

The energy obtained here results from the calibration of the pole-spike to
the experimental value of HF, and is below the Quantum Monte Carlo (QMC)
energy of Luchow and Anderson [33], which requires hours on a much larger
computer, as compared to less than 10 minutes for this work. In fact, the run
times for HF were about 8 CPU minutes on a 100 MFLOP Silicon Graphics
O2 workstation.

The principal value of the pole (9.1.48d) was calibrated for 100% energy of
HF, H2O has two tight sigma bonds and two diffuse lone-pairs so a single com-
promise value is a good test of the method. In HF the F− is nearly spherical
so an average rc value does a better job of describing the “correlation hole”
of transient isoelectronium. The computed dipole moments are in excellent
agreement with the experimental values. The use of the same pole value for
H2O and HF degrades the H2 energy slightly. The results of our studies for
H–to–F based molecules are summarized in Table 9.2.
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A comparison of the above date (particularly those on computer times) with
corresponding data obtained via conventional approaches is instructive.

9.1.9 Concluding Remarks
The fundamental notion of the new model of molecular bonds studied in

this chapter [5] is the bonding at short distances of pairs of valence electrons
from two different atoms into a singlet quasi-particle state we have called
isoelectronium, which travels as an individual particle on an oo-shaped orbit
around the two respective nuclei.

The isoelectronium and related methodology are then characterized by a
covering of contemporary chemistry called isochemistry, which is the branch
of the more general hadronic chemistry specifically constructed to represent
closed-isolated systems with linear and nonlinear, local and nonlocal, and po-
tential as well as nonpotential internal forces.

A main assumption is that linear, local, and potential interactions are suf-
ficient for atomic structures since the atomic distances are much bigger than
the size of the wavepackets of the electrons. However, in the transition to
molecular structures we have the additional presence of nonlinear, nonlocal,
and nonpotential effects due to the deep penetration of the wavepackets of
valence electrons, which is essentially absent in atomic structures (Fig. 1.7).

The attractive short-range interactions needed to overcome the repulsive
Coulomb force in the isoelectronium structure originate precisely from non-
linear, nonlocal, and nonhamiltonian effects in deep wave-overlappings; they
are described by hadronic mechanics [3b]; and their invariant formulation is
permitted by the recently achieved broadening of conventional mathematics
called isomathematics.

Specific experimental studies are needed to confirm the existence of the
isoelectronium, by keeping in mind that the state may not be stable outside
a molecule in which the nuclear attraction terms bring the electron density to
some critical threshold for binding, a feature we have called the “trigger.”

Nonrelativistic studies yield a radius of the isoelectronium of 0.69 × 10−10

cm. This “horizon” is particularly important for isochemical applications
and developments because outside the horizon the electrons repel one-another
while inside the horizon there is a hadronic attraction.

The same nonrelativistic studies also predict that, as a limit case, the iso-
electronium is stable within a molecule, although partially stable configura-
tions also yield acceptable results. The question of the stability vs. instability
of the isoelectronium inside the hadronic horizon must therefore also be left
to experimental resolutions.

The understanding is that, when the restriction to the hadronic horizon is
lifted, and molecular dimensions are admitted for the inter-electron distance,
the isoelectronium must be stable, otherwise violations of Pauli’s exclusion
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principle could occur. In this sense, the isoelectronium is a direct representa-
tion of Pauli’s exclusion principle.

The foundations of the isoelectronium can be seen in a paper by Santilli
[7a] of 1978 on the structure of the π0-meson as a bound state of one electron
and one positron. The latter model also illustrates the capability of hadronic
mechanics vs. quantum mechanics. In fact, quantum mechanics cannot rep-
resent the π0 as the indicated bound state of one electron and one positron
because of numerous inconsistencies, such as: the inability to represent the
rest energy of the π0, which would require a “positive” binding energy, since
the sum of the rest energies of the constituents is much smaller than the rest
energy of the bound state; the impossibility to represent the charge radius of
the π0, which can only be that of the positronium for quantum mechanics; the
lack of representation of the meanlife of the π0; and other insufficiencies.

By comparison, all the above insufficiencies are resolved by hadronic me-
chanics, which permits the first quantitative, numerical representation of all
characteristics of the π0 as a bound state of one electron and one positron
at short distances, including its spontaneous decay with the lowest mode
π0 → e− + e+, which results in being the hadronic tunnel effect of the con-
stituents [7a].

In particular, the indicated model of the π0 contains the first identification
of the attractive character of nonlinear, nonlocal, and nonhamiltonian inter-
actions due to deep wave-overlappings in singlet coupling (and their repulsive
character in triplet coupling).

The isoelectronium also sees its foundations in subsequent studies by An-
imalu [7b] of 1994 and Animalu and Santilli [7c] of 1995 on the construction
of hadronic superconductivity for a quantitative representation of the struc-
ture of the Cooper pair. We have in this case an occurrence similar to the
preceding one for the structure of the π0. In fact, quantum mechanics can
indeed represent superconductivity, but only via an ensemble of Cooper pairs,
all assumed to be point-like. In particular, quantum mechanics simply cannot
represent the structure of one Cooper pair, due to the divergent character of
the Coulomb repulsion between the identical electrons of the pair.

Again Animalu-Santilli hadronic superconductivity did indeed resolve this
insufficiency and permitted, for the first time, the achievement of a structure
model of one Cooper pair in remarkable agreement with experimental data.
Hadronic superconductivity also shows predictive capacities simply absent in
quantum mechanics, such as the prediction of a new electric current mostly
given by the motion of electron pairs, rather than the conventional electric cur-
rent composed of individual electrons (patent pending). Such a new hadronic
current implies an evident reduction of the electric resistance due to the es-
sentially null magnetic moment of the pair, as compared to the large magnetic
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moment of individual electrons, and its interactions with atomic electrons
when moving within a conductor.

Note finally that the preceding hadronic model of the π0 and of the Cooper
pair are ultimately due to the capability of hadronic mechanics to eliminate
divergencies at short distances, which is technically realized via the isotopies
of the unit and related associative products of quantum mechanics

I → Î = 1/T̂ , (9.1.51a)

|Î| � 1, |T̂ | � 1, (9.1.51b)

A × B → A × T̂ × B, (9.1.51c)

under which divergent or slowly convergent series can be evidently turned into
rapidly convergent forms.

The tendency of identical valence electrons to bond into the isoelectronium
is additionally confirmed by other evidence, such as ball lighting, which are
composed by a very large number of electrons bonded together into a small
region.

In summary, incontrovertible experimental evidence establishes that elec-
trons have the capability of bonding themselves at short distances contrary
to their Coulomb repulsion. Quantum mechanics simply cannot provide a
scientific study of this physical reality. Hadronic mechanics resolved this im-
passe, by first identifying the conditions needed to achieve attraction, called
“trigger,” and then permitting quantitative numerical study of the bond.

The isoelectronium results in having deep connections with a variety of
studies in chemistry conducted throughout the 20-th century [6, 8 – 38], and
actually provides the physical-chemical foundations for these studies as well as
their appropriate mathematical formulation for the invariance of the results.

In summary, the isochemical model of molecular bonds submitted by Santilli
and Shillady [5] is supported by the following conceptual, theoretical and
experimental evidence:

1) The isoelectronium introduces a new attractive force among the neutral
atoms of a molecular structure which is absent in quantum chemistry and
permits a quantitative understanding of the strength and stability of molecular
bonds.

2) The isoelectronium permits an immediate interpretation of the reasons
why the H2 and H2O molecules only admit two H-atoms.

3) The isoelectronium permits the achievement of a representation of the
binding energy of the hydrogen molecule which is accurate to the seventh digit,
thus allowing meaningful thermodynamical calculations.

4) The isoelectronium provides an explanation of the long known, yet little
understood Pauli’s exclusion principle, according to which electrons correlate
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themselves in singlet when on the same orbital without any exchange of en-
ergy, thus via a process essentially outside the representational capabilities of
quantum mechanics and chemistry.

5) The isoelectronium is consistent with the known existence of supercon-
ducting electron-pairs which bond themselves so strongly to tunnel together
through a potential barrier.

6) The isoelectronium provides a quantitative model for the explanation of
electron correlations. Instead of a complicated “dance of electrons” described
by positive energy excitations, the isochemistry explanation is that electrons
are energetically just outside the horizon of a deep attractive potential well
due to their wavefunctions overlapping beyond the critical threshold of the
hadronic horizon.

7) The isoelectronium is consistent with the “Coulomb hole” studied by
Boyd and Yee [35] as found from subtracting accurate explicitly-correlated
wavefunctions from self-consistent-field wavefunctions. In our studies the
“Coulomb hole” is re-interpreted as a “hadronic attraction”.

8) The isoelectronium is also in agreement with the “bipolaron” calculated
for anion vacancies in KCl by Fois, Selloni, Parinello and Car [36] and bipo-
laron spectra reported by Xia and Bloomfield [37].

9) The isoelectronium permits an increase of the speed in computer calcula-
tions conservatively estimated at least 1,000-fold, and prevents the inconsistent
prediction that all molecules are ferromagnetic (see Chapter 7).

Moreover, another remarkable result of this study is that the value of the
radius of the isoelectronium, 0.69 × 10−10 cm, computed via dynamical equa-
tions in Sect. 9.3 has been fully confirmed by the independent calculations
conducted in Sects. 9.1.6 and 9.1.7 via the Gaussian-lobe basis set, yielding
0.00671 Å.

We should also mention preliminary yet direct experimental verifications of
the isoelectronium offered by the ongoing experiments on photoproduction of
the valence electrons in the helium indicating that electrons are emitted in
pairs [38]. The studies of this monograph warrant the systematic conduction
of these experiments specifically for the hydrogen molecule, and the experi-
mental finalization as to whether electrons are emitted in an isolated form or
in pairs, including relative percentages of both emissions. If conducted below
the threshold of disintegration of the isoelectronium, the proposed experiments
can evidently provide final proof of the existence of the isoelectronium.

We should finally note that the representation of the binding energy and
other characteristics of the hydrogen molecule exact to the seventh digit first
achieved in Ref. [5] constitutes the strongest experimental evidence to date
on the insufficiency of quantum mechanics and the validity of the covering
hadronic mechanics for the representation of nonlinear, nonlocal, and nonpo-
tential, thus nonhamiltonian and nonunitary effects due to deep overlappings
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of the “extended wavepackets” of electrons with a “point-like charge struc-
ture.”

It is evident that all the above results provide scientific credibility for the
isoelectronium, the related isochemical model of molecular bonds, and the
underlying hadronic chemistry, sufficient to warrant systematic theoretical and
experimental studies.

As shown in Chapter 7, a significant feature of the proposed novel isochem-
istry is not only the capability to provide accurate representations of experi-
mental data in shorter computer times, but also the capability to predict and
quantitatively treat new industrial applications.

9.2 ISOCHEMICAL MODEL OF THE WATER
MOLECULE

9.2.1 Introduction
Water is an extremely important compound on Planet Earth in a biological

as well as geophysical sense. As a consequence, comprehensive studies on
water have been conducted since the beginning of quantitative science with
outstanding scientific achievements (see, e.g., Ref. [1]). Nevertheless, despite
all these efforts, a number of fundamental issues on the structure of the water
molecule remain still open, such as:

1) The total electrostatic force among the atomic constituents of a water
molecule is null in semiclassical approximation, while the currently used forces
(exchange, van der Waals and other forces [40]) are known from nuclear physics
to be “weak,” thus insufficient to fully explain the “strong” bond among the
constituents (where the words “weak” and “strong” do not refer hereon to
the corresponding interactions in particle physics). In different words, the
representation of the nuclear structure required the introduction of the “strong
nuclear force” because of the insufficient strength of the exchange, van der
Waals and other forces. It appears that current models on the water molecule
lack the equivalent of the “strong nuclear force” to achieve a full representation
of molecular structures.

2) Quantum chemistry has not provided a rigorous explanation of the reason
why the water molecules only has two hydrogen atoms. This is an evident
consequence of the assumption of exchange and other nuclear-type forces which
were built in nuclear physics for an arbitrary number of constituents, a feature
which evidently persists in its entirety in molecular structures.

3) Quantum chemistry has been unable to achieve an exact representation
of the binding energy of the water molecule under the rigorous implementation
of its basic axioms, such as the Coulomb law. In fact, there is a historical 2%
still missing despite efforts conducted throughout the 20-th century.
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4) More accurate representations have been recently achieved although via
the use of Gaussian screenings of the Coulomb law, which, however, are outside
the class of equivalence of quantum chemistry, since they are nonunitarily
connected to the Coulomb law.

5) Quantum chemistry cannot provide a meaningful representation of ther-
modynamical properties related to water. In fact, the value of 2% missing
in the representation of binding energy corresponds to about 950 Kcal/mole
while an ordinary thermodynamical reaction takes about 50 Kcal/mole. The
use of quantum chemistry in thermodynamical calculations would, therefore,
imply an error of the order of 20 times the value considered.

6) Quantum chemistry has been unable to reach an exact representation of
the electric and magnetic dipole and multipole moments of the water molecule
to such an extent that, sometimes, the models result in having even the wrong
sign (see, e.g., Ref. [42a], p. 22). This insufficiency is generally assumed to be
due to the incompleteness of the assumed basis, although one should not keep
adding terms without deeper analysis.

7) Computer usages in quantum chemical calculations require excessively
long periods of time. This occurrence, which is due to the slow convergence of
conventional quantum series, has persisted to this day, despite the availability
of more powerful computers.

8) Quantum chemistry has been unable to explain the “correlation energy”
which is advocated for the missing percentages of the binding energies. Orbital
theories work well at qualitative and semi-empirical levels, but they remain
afflicted by yet unresolved problems, such as the currently used correlation
among many electrons as compared to the evidence that the correlation solely
occurs for electron pairs.

9) Quantum chemistry predicts that the water molecule is ferromagnetic, in
dramatic disagreement with experimental evidence. This prediction is a con-
sequence quantum electrodynamics, which establishes that, under an external
magnetic field, the orbits of valence electrons must be polarized in such a way
as to offer a magnetic polarity opposite to that of the external homogeneous
field. As it is well known, the individual atoms of a water molecule pre-
serve their individuality in the current model of chemical bonds. As a result,
quantum electrodynamics predicts that all valence electrons of the individual
atoms of a water molecule acquire the same magnetic polarization under a
sufficiently strong external magnetic field, resulting in a total net magnetic
polarity North-South.

Particularly insidious are variational methods because they give the im-
pression of achieving exact representations within the context of quantum
chemistry, while this can be easily proved not to be the case. To begin, rep-
resentations of 100% of the experimental data occur with the introduction of
a number of empirical parameters which lack a physical or chemical meaning.
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Moreover, it is easy to prove that variational solutions cannot be the solution
of quantum chemical equations, trivially, because the former provide 100%
representations, while the latter do not. In reality, the arbitrary parameters
introduced in variational and other calculations are a measure of the deviation
from the basic axioms of quantum chemistry.

When passing from the structure of one water molecule to more general
molecular structures the number of open, basic, unsolved issues increases. For
instance, it is generally admitted that quantum chemistry has been unable to
provide a systematic theory of the liquid state in general, let alone that of
liquid water in particular [40].

Also, chemical reactions in general are irreversible, while the axiomatic
structure of quantum chemistry is strictly reversible because the theory is
strictly Hamiltonian and all known potential forces are reversible. This results
in an irreconcilable incompatibility between the very axiomatic structure of
quantum chemistry and chemical reactions in general, and those involving
water in particular. In fact, an axiomatically consistent representation of
irreversibility is expected to imply effects which are simply inconceivable for
quantum chemistry, evidently because they are outside its structure.

When passing to water as a constituent of biological entities, the limitations
of quantum chemistry reach their climax. In fact, biological structures (such
as a cell) are not only irreversible (because they grow, age and die), but have
such a complex structure to require multi-valued theories (also known in math-
ematics as hyperstructures). The expectation that quantum chemistry, with
its reversible and single-valued structure, can effectively represent biological
systems and their evolution is beyond the boundaries of science.

In view of the above numerous and basic limitations, in the preceding works
[41] Santilli and other scientists have constructed a covering of quantum me-
chanics under the name of hadronic mechanics. By conception and construc-
tion, quantum and hadronic mechanics coincide everywhere, except inside a
small sphere of radius of the order of 1 fm (= 10−13 cm) called hadronic
horizon, in which interior (only) the broader theory holds.

Hadronic mechanics results in being a form of “completion” of quantum
mechanics much along the historical Einstein-Podolsky-Rosen argument, al-
though achieved via the addition of contact, nonhamiltonian, nonlinear, non-
local, and nonpotential forces due to deep overlappings of the wavepackets of
particles.

On more technical grounds, hadronic mechanics is based on new mathe-
matics, called iso-, geno- and hyper-mathematics [41c] (see Chapter 2) for the
characterization of reversible, irreversible, and multivalued systems, respec-
tively, possessing features not representable via the Hamiltonian.

These new mathematics are characterized by a progressive generalization
of the trivial unit I of quantum mechanics into generalized units Î of Her-
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mitean single-valued, nonhermitean single-value, and nonhermitean multi-
valued character, respectively, first proposed by Santilli in 1978 (see Refs.
[41]),

I → Î = Î†, I → Î �= Î†, I → {Î} = {Î1, Î2, Î3, ...} �= {Î}†. (9.2.1)

The new mathematics then emerge from the reconstruction of the conventional
mathematics of quantum mechanics in such a way as to admit Î, rather than
I, as the correct left and right unit at all levels.

The iso-, geno-, and hyper-mathematics characterize corresponding branches
of hadronic mechanics, called iso-, geno-, and hyper-mechanics, which have
been constructed for the corresponding representation of:

1) closed-isolated, reversible, single-valued systems with Hamiltonian and
nonhamiltonian internal forces;

2) open-nonconservative, irreversible, single valued systems with unrestricted
interactions with an external system; and

3) open-nonconservative, irreversible, multi-valued systems of arbitrary struc-
ture.

Subsequently, Animalu and Santilli [43] constructed hadronic superconduc-
tivity, with corresponding iso-, geno-, and hyper-branches (Sect. 9.1.9) for the
representation of the structure (rather than an ensemble) of the Cooper pairs,
in a way remarkably in agreement with experimental data.

In 1999, Santilli and Shillady [43a] constructed hadronic chemistry (Chap-
ter 3) with corresponding branches called iso-, geno-, and hyperchemistry.
Since molecules are considered as isolated from the rest of the universe, and
are reversible in time, they are studied via isochemistry.

Santilli and Shillady [43a] also constructed a new isochemical model of the
hydrogen molecule (Chapter 4) based on the assumption that pairs of valence
electrons from different atoms couple themselves into a singlet quasi-particle
state called isoelectronium.

As shown in Chapter 4, the new model was proved to resolve at least the
major insufficiencies of the quantum chemical model of the hydrogen molecule,
such as: explain why the molecule has only two H-atoms; represent the binding
energy to the seventh digit; achieve computer calculations which converge at
least 1,000 times faster than those of quantum chemistry; and permit other
advances.

The main scope of this chapter is that of studying the new isochemical model
of the water molecule first submitted by Santilli and Shillady in Ref. [43b] via
a suitable expansion of the results obtained for the hydrogen molecule.

The main assumption is that, when the valence electrons of the water
molecule correlate-bond themselves into singlet pairs in accordance with Pauli’s
exclusion principle, there is the emergence of new interactions structurally be-
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yond any hope of representation by quantum mechanics and chemistry, triv-
ially, because they are nonhamiltonian.

In particular, the new interactions are strongly attractive, thus introducing,
for the first time, a molecular bond sufficiently “strong” to represent reality.
These and other features of the model, such as the sole possible correlation-
bond being in pairs, will resolve all insufficiencies 1)–9) indicated earlier, as
we shall see.

To provide introductory guidelines, let us recall that the main function of
the isounit Î (hereon assumed to be Hermitean, single-valued and positive-
definite) is that of representing all interactions, characteristics and effects out-
side the representational capabilities of a Hamiltonian. This includes the rep-
resentation of contact, nonpotential and nonhamiltonian interactions in deep
overlapping of the wavepackets of valence electrons.

By recalling that, whether conventional or generalized, the unit is the fun-
damental invariant of any theory, the representation of the new interactions
via the generalized unit assures invariance, that is, the prediction of the same
numbers for the same quantities under the same conditions but at different
times.

Representation of nonhamiltonian effects via quantities other than the gen-
eralized unit are encouraged, provided that they achieve the indicated invari-
ance, as a necessary condition to avoid the catastrophic inconsistencies of
Sect. 9.1.7.

The most fundamental mathematical, physical, and chemical notion of the
new model of structure of the water molecule studied in this Chapter is, there-
fore, the generalization of the trivial unit +1 of current models into the isounit.

On pragmatic grounds, isochemistry can be easily constructed via a step-
by-step application of the nonunitary transform

Î = 1/T̂ = U × U † > 0, (9.2.2)

to all aspects of quantum chemistry (Sect. 9.1.4). In particular, we shall as-
sume that the above isounit recovers the conventional unit outside the hadronic
horizon, and its average value is much bigger than 1,

lim
r�1 fm

Î = I. (9.2.3a)

|Î| � 1. (9.2.3b)

Assumption (9.2.3a) will assure the compatibility of a generalized discipline
for the bonding of valence electrons, while preserving conventional quantum
mechanics identically for the structure of the individual atoms composing the
water molecule. Assumption (9.2.3b) will assure a much faster convergence of
perturbative expansions, and other features.
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In summary, the new isochemical model of the water molecule [43b] studied
in this chapter can be constructed via the following steps:

1) Select a nonunitary transforms according to rules (9.2.2) and (9.2.3)
which is representative of contact, nonlinear, nonlocal, and nonpotential effects
in deep wave-overlapping, essentially similar to that used for the hydrogen
molecule [43a] of the preceding Chapter;

2) Submitting to the selected nonunitary transform the totality of the no-
tions, equations, and operations of the conventional quantum chemical model
of the water molecule; and

3) Reconstructing the entire mathematics of the conventional model in such
a way as to admit Î, rather than I, as the correct left and right unit at all levels,
with no known exceptions. This lifting is necessary to avoid the catastrophic
inconsistencies of Sect. 1.7 (e.g., to achieve invariance), thus requiring the
isotopic lifting of numbers and fields, Cartesian and trigonometric functions,
ordinary and partial differential equations, etc.

The axiomatically correct isochemical model of the water molecule is that
formulated on isospaces over isofields. However, on pragmatic grounds, one
can study its projection on ordinary spaces over ordinary numbers, provided
that the results are interpreted with care.

For instance, in the indicated projection there is the general emergence
of a potential, which, as such, may lead to imply that the model carries a
potential energy and/or it can be treated via a conventional potential well.
Such interpretations are correct if and only if the potential is well defined on
isospaces over isofields. On the contrary, if said potential solely emerges in the
projection, then it has a purely mathematical meaning without any associated
energy.

The best illustration of the above seemingly contradictory occurrences was
that for the isoelectronium of Sect. 9.3, whose structure did indeed exhibit
the appearance of the Hulten potential, yet the quasi-particle had no binding
energy. The reason is that binding energies are indeed well defined on isospaces
over isofields via the isoschrödinger’s equation and related isoeigenvalues, while
the Hulten potential does not exist on isospaces, and solely occurs in the
projection of the isoschrödinger’s equation on ordinary Hilbert spaces.

To illustrate this important point, consider the isotopies of the conventional
Schrödinger’s equation via the nonunitary transform indicated above,

U×(H×|ψ〉) = (U×H×U †)×(U×U †)−1×(U×|ψ〉) =

= Ĥ × T̂ × |ψ̂〉 = Ĥ × |ψ̂〉 = U × (E × |ψ〉) =

= [E×(U×U †)]×(U×U †)−1×(U×|ψ〉) = Ê×T̂×|ψ̂〉 =

= E × |ψ̂〉,

(9.2.4)
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with corresponding liftings of numbers and Hilbert spaces,

U × n × U † = n × (U × U †) = n × Î , n̂ ∈ R̂, (9.2.5a)

U×〈ψ|×|ψ〉×U † = 〈ψ̂|×T̂×|ψ̂〉×(U×U †) = 〈ψ̂| × |ψ̂〉 × Î ∈ Ĉ. (9.2.5b)

As one can see, binding energies Ê = E × Î are fully defined on isohilbert
spaces Ĥ over isofields R̂, and actually acquire the conventional value E fol-
lowing the simplification Ê×T̂×|ψ̂〉 = (E/T̂ )×T̂×|ψ̂〉 = E×|ψ̂〉.

However, the Hulten potential does not exist on isospaces over isofields,
trivially, because it does not exist in the Hamiltonian Ĥ which is fully con-
ventional.

The Hulten potential of the isoelectronium of Sect. 9.3 emerge only when
we project the real system, that on isohilbert spaces with equation Ĥ × |ψ̂〉 =
E × |ψ̂〉, on conventional Hilbert spaces. As such, one should not expect that
the Hulten potential necessarily carries an actual binding energy.

The reader should equally exercise caution for other aspects, and generally
abstain from formulating opinions for hadronic chemistry essentially depen-
dent on quantum chemical concepts and notions.

9.2.2 Main Characteristics of the Water Molecule
Water is a mixture of several different molecules in different percentages and

molecular weights. In fact, we know three different isotopes of the hydrogen,
1H, 2H and 3H, and six different isotopes of the oxygen ranging from 14O to
19O. In this monograph, we shall solely study the molecule 1H2−16O, and de-
note it H2O = H-O-H where the symbol “−” is referred to the molecular bond.
Such a water molecule will be studied hereon under the following conditions:
1) at absolute zero degrees ◦K; 2) in the absence of any rotational, vibrational,
translational, or other motions; and 3) with all atoms in their ground state
(see Ref. [40] for all details contained in this section).

The electrons of the individual H-atoms are assumed to be in the ground
state 1s. Of the eight electrons of the oxygen, two electrons with opposite spin
orientation are in the lowest 1s state which is tightly bound to the nucleus; two
electrons are in the next possible state 2s; and the remaining four electrons
are in the 2p state.

By using a three-dimensional reference frame with the y-z plane contain-
ing the nuclei of the H and O-atoms with origin in the latter, the 1s and 2s
electrons have a spherical distribution while the 2p electrons are in orbitals
perpendicular to the yz plane denoted 2px; the remaining two electrons have
orbitals perpendicular to the xz and xy planes denoted 2py and 2pz, respec-
tively.

Also, the energy of formation of the water molecule from hydrogen and
oxygen is −9.511 eV; the binding energy is −10.086 eV; the sum of the ground
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Figure 9.8. A conceptual rendering of the conventional water molecule with its typical
electric polarization. Note the consequential predominance of a positive charge in the two
hydrogen atoms that is responsible in part for the angle of 105◦ between the two HO radicals.

state energies of the three separate atoms is −2, 070.46 eV; the total molecular
energy at 0◦K is −2, 080.55 eV as a result of kinetic energy +2,080.6 and
potential energy −4, 411.4; the nuclear repulsion energy is +250.2 eV; the
total electrostatic energy is −2, 330.8 eV; the dissociation energy of O-H is
5.11 eV and that of H alone is 4.40 eV.

Again at 0◦K and for all atoms in their ground states, the bond length
of the H-O dimer is 0.95718 × 10−8 cm, while the two dimers H-O and O-H
form a characteristic angle of 104.523◦. Therefore, by no means the scripture
H-O-H denotes that the water has a linear structure because of the indicated
characteristic angles in between the two dimers H-O and O-H.

It is evident that when the individual atoms are in their excited states, the
bond length and the characteristic angle change. In fact, increases of up to
8.5◦ have been measured for the characteristic H-O-H angle for excited states.
The same characteristic angle is expected to be altered by the application of
sufficiently strong electric and magnetic fields, although we are unaware of
accurate measurements under the indicated conditions.

The water molecule possesses an electric dipole moment of 1.83 × 10−8

e.s.u. cm and a mean quadrupole moment of −5.6 × 10−26 e.s.u. cm. It
should be recalled that the very existence of a non-null value of electric dipole
and quadruple moments excludes the linear structure of the water H-O-H in
ordinary isolated conditions (that with a characteristic angle of 180◦).
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Water is a diamagnetic substance with a magnetic polarization (also called
susceptibility) of (2.46, 0.77 and 1.42)×10−6 e.m.u./mole for the corresponding
three space-dimension xx, yy and zz, respectively.

In first approximation, the water molecule can be represented via two indi-
vidual H-O dimers with wavefunction of the molecular orbitals (m.o.’s),

ψ1 = λφ(H′, 1s) + µφ(O, 2pz), (9.2.6a)

ψ2 = λφ(H′′, 1s) + µφ(O, 2py), (9.2.6b)

where λ and µ are parameters.
However, the above simple model predicts a characteristic angle of 90◦. As

a consequence, the model is generally modified with a mixture of electrons
from the 2p and 2s states also called hybridization. The occurrence confirms
that any model of the water with charge distributions of the valence electrons
in the H-O-H plane is insufficient to represent the experimental data. In turn,
this mixing creates the known two lobes on the side of the oxygen atom, away
from the hydrogen atoms, above and below the molecular plane. This results
in models of the type

ψ1 = λ[cos εψ(O, 2s) + sin εφ((O, 2p)] + µφ(H′, 1s), (9.2.7a)

ψ2 = λ[cos εψ(O, 2s) + sin εφ((O, 2p)] + µφ(H′′, 1s), (9.2.7b)

where ε is the hybridization parameter with generic value of the order of
cos ε = 0.093 confirming that the valence electrons are mainly from 2p states.

It should be indicated that the exact configuration, location and function
of the two lone-pair electron lobes are unsettled at this writing, since they are
evidently dependent on the selected theoretical model. Also, the individual
electric and/or magnetic dipoles of the lobes cannot be measured (only their
total values is measurable), thus implying lack of direct experimental evidence
on the individual lobes.

We should also recall that the individual H-O and O-H bonds are not inde-
pendent from each other, as confirmed by the different values of the dissocia-
tion energies.

Water is both an acid and a base due to dissociation of H2O into H+ and
O-H− to the extent that the product of the concentrations [H+][O-H−] sets up
an equilibrium whose constant value is 1.0 × 10−14, which is the well known
pH scale of the equations

pH = − log10[H
+], pOH = 14 − pH. (9.2.8)

In neutral water the ion concentrations are [H+] = [O-H−] = 1.004×10−7

mole/liter.
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Water is quite polar with a dipole moment of 1.84 to 1.834 Debye and a bulk
dielectric constant of 80 at 20 ◦C. This implies that pure water is not a good
conductor, with a direct current conductivity of only 5.7× 10−8 ohm−1·cm−1.

However, it is well known that small amounts of strong acids such as HCl or
H2SO4 can make water highly conducting due to the ease with which H+ can
attach to H2O to form H3O+ which then offers a domino effect for one H+ to
successively “bump” an H+ off the other side of H3O+ and so produce a very
effective conduction mechanism [44]. In fact it is well known that in aqueous
solutions the transport numbers for the anions and cations are not equal,
because up to 70% of the current is carried by H+. Although OH− typically
carries much less current than H+ in aqueous conduction of electricity (due to
its larger size and lack of the domino-effect cited earlier for H+), once a current
flow is initiated additional ions are created due to collisions in solution.

An important aspect is the known existence of an equilibrium between H-
O-O-H and HO− around pH 11.63 [45] with a voltage dependence of 1.363 ±
0.0293 pH as given by M. Pourbaix for aqueous equilibria involving H+, O-H−,
H−, H-O-O-H and H-O−. Thus, there is no doubt of the existence of small
amounts of H-O-O-H in water at high pH.

In a high current process the flow of H+ will be much greater than that
of OH− so that as H2O is electrolyzed to 2H2 and 1O2, local concentra-
tions/fluctuations will slightly favor higher pH (local depletion of H+) and
hence favor the existence of H-O-O-H.

We should finally mention the inability of quantum chemistry to achieve
a scientific-quantitative representation (or at least an understanding) of the
different types of water when exposed to magnetic fields, as established by the
evidence, e.g., that plants grow faster when irrigated with water exposed to
one type of magnetic field, while they die rapidly when exposed to a different
type of magnetic field. In fact, quantum chemistry admits only one type of
water, H2O.

It is easy to see that this additional insufficiency of quantum chemistry is
a direct consequence of the current use of exchange, van der Waals and other
forces of nuclear origin under which the individual H and O atoms in the H2O
molecule preserve their individuality, thus resulting in one single configuration.

On the contrary, isochemistry introduces a real, strong bond for the valence
electrons via the notion of isoelectronium. In this latter case different types
of water, that is, water molecules with different physical characteristics, are
indeed readily possible, as we shall see.

9.2.3 Exactly Solvable Model of the Water Molecule
with Stable Isoelectronium

In the preceding Chapter 3 [43a], we have introduced the main hypothesis
of the isochemical molecular model, according to which two electrons from two
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different atoms bond themselves into a singlet quasi-stable and quasi-particle
state called isoelectronium, which describes an oo-shaped orbit around the
nuclei, as it is the case for planets in certain binary stars (Fig. 9.3). The main
characteristics of the isoelectronium in first nonrelativistic approximation are
calculated in Sect. 9.3 and resulted in being:

charge − 2e, spin 0, magnetic dipole moment 0,

mass 1.022 MeV, radius = rc = b−1 ≈
≈ (h̄2/m × V )1/2 = (h̄/m × ω)1/2 = 6.8432329 × 10−11cm =

= 0.015424288 bohrs = 0.006843 Å.

(9.2.9)

In the above nonrelativistic approximation, the meanlife resulted in being
infinite (full stability, with the understanding that relativistic corrections are
expected to render such a meanlife finite (partial stability). All conventional
forces of current use in chemistry (exchange, van der Waals and other forces)
then hold when the valence electrons are at mutual distances bigger than the
hadronic horizon.

In this Chapter, we study the isochemical model of the water molecule
H2O=H-O-H first introduced by Santilli and Shillady [43b], under the as-
sumption that the molecule is considered at ◦C and in the absence of any
rotational, oscillation or other motion. The main hypothesis is that each elec-
tron from the two H-atoms couples in singlet with one 2p electron from the
O-atom, resulting in two isoelectronia, one per each H-O dimer as in Fig. 9.8.

In this Section we shall study a hadronic/isoschrödinger equation for the
water molecule under the above assumptions, which equation evidently ap-
proximate, yet exactly solvable for the first time to our knowledge. We shall
then show that the model is extendable to all other dimers comprising one
hydrogen atom, such as H-C.

For this purpose, we approximate the H-O-H molecule as being composed
of two intersecting identical dimers H-O with evidently only one oxygen atom.
This requires a first correction due to the lack of independence of said dimers
reviewed in Sect. 9.2. Moreover, in each H-O dimer we shall assume that the
oxygen appears to the isoelectronium as having only one net positive charge
+e located in the nucleus. This evidently requires a second correction which
essentially represents the screening of the various electrons of the oxygen.
Additional corrections are also in order along conventional lines [40].

A study of these corrections has indicated that they can all be represented
via one single Gaussian screening of the Coulomb law of the type [43b]

+e

r
→ +e(1 ± e−αr2

)
r

, (9.2.10)
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Figure 9.9. A schematic view of the proposed isochemical model of the water molecule here
depicted at absolute zero degrees temperature and in the absence of any motion for the
case of fully stable isoelectronium. It should be stressed that at ordinary temperature rota-
tional motions recover the conventional space distribution, thus recovering the conventional
“Mickey Mouse” configuration of the water. Also, the model is presented in terms of the
orbits of the valence electrons (rather than in terms of density distributions). The funda-
mental assumption is that the two valence electrons, one per each pair of atoms, correlate
themselves into two bonded singlet states at short distance we have called isoelectronia, one
per each dimer H-O, which states are assumed to be mostly stable (see the text for the
mostly unstable case). The water molecule is then reducible to two intersecting H-O dimers
with a common O-atom. The only orbits yielding a stable water molecule are those in which
each isoelectronium describes a oo-shaped orbit around the respective two nuclei of the H-
and O-atoms. The isoelectronia are then responsible for the attractive force between the
atoms. The binding energy is instead characterized by the oo-shaped orbits of the isoelectro-
nia around the respective two nuclei, conceptually represented in this figure via a standing
wave for a particle of spin 0 and charge −2e. Note that, in the absence of molecular motions,
the orbits of the two isoelectronia are perpendicular to the H-O-H plane, thus confirming a
characteristic of the water molecule reviewed in Sect. 9.2. Conventional exchange, van der
Waals and other forces remain admitted by the model when the isoelectronia are mostly
unstable. The model permits a representation of: 1) the “strong” value of the molecular
bond; 2) the reason why the H2O molecule has only two hydrogen atoms and one oxygen
atom; 3) a representation of the binding energy, electric and magnetic moments accurate to
several digits; and other advances studied in the text. The above model of the H-O dimer is
then extendable to other H-based dimers, such as H-C.

where α is a positive parameters to be determined from experimental data, the
sign “−” applies for the screened O-nucleus as seen from an electron (because
of the repulsion caused by the electron clouds of the oxygen), while the sign
“+” applies for the screened O-nucleus as seen from the H-nucleus (because
of the attraction this time caused by said electron clouds).
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The resulting model is structurally equivalent to the isochemical model of
the hydrogen molecule of Chapter 3 [43a], except for the modifications indi-
cated about, and can be outlined as follows.

By denoting with the sub-indices 1 and a the hydrogen, 2 and b the oxygen,
prior to the indicated screening and in the absence of all hadronic effects, the
conventional Schrödinger equation of the H-O dimer with the oxygen assumed
to have only one elementary charge +e in the nucleus is given by(

1
2µ1

p1 × p1 +
1

2µ2
p2 × p2−

− e2

r1a
− e2

r2a
− e2

r1b
− e2

r2b
+

e2

rR
+

e2

r12

)
× |ψ〉 = E × |ψ〉, (9.2.11)

As it was the case for the H2-molecule, our task is that of subjecting the
above model to a transform, which is nonunitary only at the short mutual
distances rc = b−1 = r12 of the two valence electrons (here assumed to be
hadronic horizon), and becomes unitary at bigger distances Îr≤10−10cm �= I,
Ir�10−10cm = I.

We assume that the state and related Hilbert space of systems (9.2.11) can
be factorized in the familiar form (in which each term is duly symmetrized or
antisymmetrized)

|ψ〉 = |ψ12〉 × |ψ1a〉 × |ψ1b〉 × |ψ2a〉 × |ψ2b〉 × |ψR〉, (9.2.12a)

HTot = H12 ×H1a ×H1b ×H2a ×H2b ×HR. (9.2.12b)

The nonunitary transform we are looking for shall act only on the r12 vari-
able characterizing the isoelectronium while leaving all other variables un-
changed. The simplest possible solution is given by

U(r12) × U †(r12) = Î = e[ψ(r12)/ψ̂(r12)]
∫

dr12ψ̂†(r12)1↓×ψ̂(r12)2↑ , (9.2.13)

where the ψ’s represents conventional wavefunction and the ψ̂’s represent
isowavefunctions, for which we have, again the fundamental condition of fast
convergence

|T̂ | = |(U × U †)−1| � 1. (9.2.14)

We now construct the isochemical model by transforming short-range terms
(isochemistry) and adding un-transformed long range ones (chemistry), thus
resulting in the radial equation(

− h̄2

2 × µ1
× T̂ ×∇1 × T̂ ×∇1 −

h̄2

2 × µ2
× T̂ ×∇2 × T̂ ×∇2+

+
e2

r12
× T̂ − e2

r1a
− e2

r2a
− e2

r1b
− e2

r2b
+

e2

R

)
× |ψ̂〉 = E|ψ̂〉. (9.2.15)
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By recalling that the Hulten potential behaves at small distances like the
Coulomb one, Eq. (9.2.15) becomes(

− h̄2

2 × µ1
×∇2

1 −
h̄2

2 × µ2
×∇2

2 − V × e−r12×b

1 − e−r12×b
−

− e2

r1a
− e2

r2a
− e2

r1b
− e2

r2b
+

e2

R

)
× |ψ̂〉 = E × |ψ̂〉. (9.2.16)

The above model can be subjected to an important simplification. In
first approximation under the assumption herein considered, the H-O dimer
(9.2.16) can be reduced to a restricted three body problem similar to that
possible for the conventional H+

2 ion [41], but not for the conventional H2

molecule, according to the equation(
− h̄2

2µ1
×∇2

1 −
h̄2

2µ2
×∇2

1 − V × e−r12b

1 − e−r12b
−

−2e2

ra
− 2e2

rb
+

e2

R

)
× |ψ̂〉 = E × |ψ̂〉. (9.2.17)

The indicated corrections due to the screening of the various electrons in the
oxygen and other corrections are needed in the “sensing” of the O-nucleus by
the isoelectronium as well as by the H-nucleus, yielding in this way our final
model(

− h̄2

2µ1
×∇2

1 −
h̄2

2µ2
×∇2

2 − V × e−r12b

1 − e−r12b
−

−2e2

ra
− 2e2(1 − e−αrb)

rb
+

e2(1 + e−αR)
R

)
× |ψ̂〉 = E × |ψ̂〉, (9.2.18)

where: α is a positive parameter; E is half of the binding energy of the water
molecule; and, as it was the case for model (9.1.35), the mass of the isoelec-
tronium, the internuclear distance, and the size of the isoelectronium can be
fitted from the value of the binding energy and other data.

Under the latter approximation, the model admits an exact analytic solu-
tion, for the first time to our knowledge, which solution however exists only
for the case of the fully stable isoelectronium. In fact, for the unstable isoelec-
tronium, the model becomes a four-body structure, which as such admits no
exact solution.

Besides being exactly solvable, model (9.2.18) exhibits a new explicitly at-
tractive “strong” force among the neutral atoms of the H-O dimer, which
is absent in conventional quantum chemistry; the equation also explains the
reasons why the water molecule admits only two H-atoms.
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As we shall see in the remaining sections, the model permits an essentially
exact representation of the binding energy, electric and magnetic moments; the
model yields much faster convergence of series with much reduced computer
times, and resolves other insufficiencies of conventional models.

Finally, the model is evidently extendable with simple adjustment to an
exact solution of other dimers involving the hydrogen, such as H-C. In addition,
it permits the identification of electric and magnetic polarizations, which are
not predictable with quantum chemistry (Chapter 8).

9.2.4 Gaussian Approximation of the Isochemical
Model of the Water Molecule with Unstable
Isoelectronium

The solution of the exactly solvable model (9.2.18) are not available at
this writing, and its study is here encouraged. In this section, we review the
studies of Ref. [43b] on a Gaussian approximation of the isochemical model
of the water molecules, with the Hulten potential approximated to a certain
Gaussian form.

It should be indicated from the onset that such an approximation implies
an evident weakening of the Hulten attraction among the two isoelectrons of
the isoelectronium, which, in turn, implies the instability of the isoelectronium
itself, thus reaching a model which is somewhat intermediate between the full
isochemical model and the conventional quantum chemical model of the water.

Despite this approximate character, the results of this section are significant
because they show the capability of isochemistry to achieve an essentially exact
representation of the binding energy, electric and magnetic moments and other
characteristics of the water molecule.

The results of this study can be outlined as follows. Since HOOH will be
slightly more allowed under the assumed conditions, collisions of HO− with
neutral H2O and the internal repulsion within the anion could favor the release
of a quasiparticle with charge −2e to form OH+. Collisions of OH+ with OH−

will then further enhance the concentration of HOOH, and transport of −2e
will contribute to the current.

The question here is whether under extreme cases of forced conduction a
singlet-pair of electrons (isoelectronium), can be “triggered” (Fig. 9.6) within
a water molecule to form and release a −2e charged isoelectronium particle
which will provide an additional conduction mechanism analogous to Cooper-
pairs of electrons in superconducting solids.

Since the energy depth of the V0 parameter in the isoelectronium Hulten
potential of the original 1978 derivation by Santilli [42] is not known, nor how
closely the Gaussian representation fits the Hulten form, we can only match
the radius of the two potentials and calculate the energy differences caused
by the “sticky-electrons” model in which a transient form of isoelectronium
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can occur (the Gaussian potential well may not be deep enough to ensure a
permanent bound state for the isoelectronium).

The “sticky-electron” model is a parametric model which includes the mag-
netic dipole attraction between singlet-paired electrons, as well as the nonlocal
merging of the wave-packets of each electron at short distance. The radius of
the Gaussian screening is then determined empirically by fitting the calculated
energy as nearly as possible to the most accurate energy values available.

As used here, it should be emphasized that the off-axis positions of the
Gaussian-lobe basis sets [46-48] ensure that angular correlation is included as
well as radial dependence, and can include the magnetic dipole attraction of
opposite electron spins as well as merger of wavepackets.

One radial screening parameter used with off-axis basis sets parametrically
covers all forms of short range attraction which may include angular depen-
dence. Thus the present model can give us an approximate energy difference
required to release an electron-pair from OH−.

OH− → OH+ + (2e)−2. (9.2.19)

It will be seen below that the energy difference between OH− and OH+ as
calculated, allowing a transient form of isoelectronium, is well within the volt-
age accessible using capacitive discharge through water. Such a mechanism
which would allow −2e particles to flow through water would not be super-
conductivity as conventionally understood, since the freely moving molecules
and ions are not constrained to lattice positions as in solids, so that resistive
I2R heating will still occur.

This is mainly due to the fact that conduction in liquids occurs by mobility
of both anions and cations along with size differences, polarizability differences
and special mechanisms such as the hydrogen-bonding “domino effect” for H+

transport. In solid-state conduction, only the electrons move by ignoring in-
place phonon oscillations because the atoms do not travel from one electrode
to the other.

Despite the indicated lack of superconducting character, it should be indi-
cated that yet, the essentially null magnetic moment of the −2e particle would
imply indeed a reduction of the resistivity.

The apparent motion of positively charges “holes” is also due to motion of
electrons while the atoms merely oscillate about mean lattice positions. In
solutions there is a two-way traffic with positive and negative ions travelling
in opposite directions and with differing velocities, thus leading to resistive
heat even up to the vaporization of the water as well as a high probability of
ion collisions.

It should be noted that in recent work Ashoori et. al. [49] have mea-
sured migration of paired-electrons to quantum dot wells in GaAs, while Boyd
and Yee [50] have observed “bipolaron” electron pairs in alkali halide lattice
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vacancies. Calculations leading to unexpected bipolarons in crystal lattice va-
cancies have also been observed by using the method of Car and Parinello [51].
These findings in solids lend support to the concept of an electron pair as an
individual particle, called by the authors isoelectronium.

The calculations given here do not prove the presence of isoelectronium
particles in high current aqueous electrical conduction; they only indicate the
energy threshold necessary to form the isoelectronium within the conducting
solution by double-ionization of OH−.

It is not easy to envision an experiment that would be able to analyze
components of a given current, due to multiple ion species in terms of the
amount of current due to −2e particles, and none is proposed here. However,
there may be a chemical test for such a mechanism. Once OH− is doubly-
ionized to form OH+, collisions with −2e particles would regenerate OH− ions
just as collisions of H+ with OH− will reform H2O,and no new species will be
evident.

However, if OH− collides with OH+ a new chemical species HO-OH will be
formed that may last long enough in the liquid to behave as a strong oxidizing
agent. Thus, organic compounds with double bonds (alkenes), which have
negligible conductance, could be added to water undergoing a high current
flow to cause hydroxylation of such compounds [52], (i.e., conversion of alkenes
to epoxide, which are then readily hydrolyzed in the presence of H+ to diols).
Enhanced concentrations of epoxides and diols would be indirect evidence of
double ionization of OH−, according to the expressions

OH+ + OH− → HO−OH, (9.2.20)

CH2 =CHR + HO−OH →
CH = CHR

\ /
O

+ H2O.

If the isoelectronium can be detected indirectly by a chemical method, this
would in itself be an important inference on the existence of a two-electrons,
spin-zero particle. More importantly, “isochemical reactions” could be driven
by high conduction “liquid plasma” environments where the isoelectronium is
at an enhanced concentration.

Another case of interest is that of aqueous mixtures of insoluble organic
compounds forming a separate oil layer over water in an intense magnetic field
of several Tesla. At normal thermal energy of room temperature kT ∼= RT
per mole the main energy form would be random Brownian motion.

However, in the presence of a strong magnetic field HO+ and HO− would be
constrained to favor circular motions in the magnetic field by the “cyclotron
effect,” but there is no obvious source of HO+.

Since two ions of opposite sign charges would be favored to collide by both
electrical attraction and by opposite path curvature in a magnetic field, there
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is an enhancement that when created as a normal result of H+, OH−,H−,
H2O2, HO−

2 , H2O equilibrium system studied by Pourbaix [45], any natural
concentration of HOOH would be augmented by collision of H+ with HOO−.

In addition there is some slight chance that H+ would collide with OH−

with sufficient excess energy to produce OH+ and H−. Thus the presence
of an intense magnetic field would cause positive and negative ions to collide
more easily while travelling in opposite rotational arcs in such a way as to
enhance the concentration of HOOH,

H+ + HOO− → HOOH, (9.2.21a)

H+ + OH− → H− + OH+, (9.2.21b)

OH+ + OH− → HOOH, (9.2.21c)

which could then epoxidate alkenes and upon hydrolysis would lead to diols.
A direct measure of this effect would be to determine the enhanced solubility

of alkenes in water. The alkenes are only slightly soluble in water (“oil and
water do not mix”) but alkenes converted to diols will have a measurably
greater solubility in water due to the attached OH-groups. Again. If such
enhanced solubility of alkenes in water can be caused by intense magnetic
fields, this would be indirect evidence of the existence of an electron-pair
particle with charge −2e.

In the description of the calculations below the key to the above possibility
is that it is easy to calculate the energy of OH− when one subtracts a small
amount from the two-electron repulsion terms in the usual HFR-SCF treat-
ment, due to the attraction of singlet-paired electrons at close range within
1.0 picometer.

In the recent Handbook of Computational Quantum Chemistry by Cook,
Ref. [53], p. 438, it is noted that solutions to the HFR-SCF scheme may not
always exist for anions. However, in the method used here convergence of
the HFR-SCF method was normal for an SCF process, because the so called
“self-energy” error of the Hartree-Fock method [54] (in which each electron
repels all electrons including itself) is largely cancelled by the new attractive
terms used here. In effect, this description of OH− is possible because of the
easy convergence of the “correlated-SCF process.”

9.2.5 The Method
The model adopted in Ref. [43b] is to use the usual Hartree-Fock-Roothan

self-consistent-field equations [55] (which also has some formal flaws such as
the self-interaction terms [54]) and lift in a nonunitary way the form of the
Coulomb interaction of the electrons.

Note that reducing the values of the Coulomb integrals will lower the energy
by reducing the electron-electron repulsion while reducing the exchange terms
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will raise the energy, but the factor 1/2 reduces the effect of the exchange
terms. Thus a reduction of the value of the integrals will lower the energy.

Note that Goodgame and Goddard [54] have already recommended reducing
the atomic self-energy by subtracting 1.39 eV from Hartree-Fock exchange
integrals in the cases of Cr2 and Mo2.

FC = ESC; Fi,j = Hi,j +
∑
k,l

Pk,l[(i, j|k, l) − 1/2(i, k|j, l)], (9.2.22a)

(i, j|k, l) =
∫ ∫

χi(l)χj(l)
1

r12
χk(2)χl(2)dτ1dτ2, (9.2.22b)

Pi,j = 2
∑

n

cn,icn,j (sum n only over occupied orbitals). (9.2.22c)

The 1995 paper on electron-electron pairs by Animalu and Santilli [42b] in-
vokes the non-local hadronic attractive force evident in the π0-meson by San-
tilli [42a] applied to a pair of singlet-paired electrons which form a boson
quasi-particle. However, the “collapsed positronium” rapidly decays since the
particle-antiparticle annihilation takes place in less than a picosecond.

In the electron-electron case it is believed that there may be a stable quasi-
particle singlet bond we have called the isoelectronium. After using a non-local
isotopic nonlinear transformation, the hadronic attraction was projected into
real-space, and modeled with a Hulten potential.

Considerable effort was made to evaluate the matrix elements for the Hul-
ten potential without success. Examination of the original 1978 paper on
positronium collapse by Santilli [6a] revealed that the Hulten potential is not
necessarily a unique representation of the hadronic force. In fact, a linear com-
bination of similar potentials could be used to represent the Hulten potential
if matrix elements of such other potentials could be evaluated.

The depth of the screened Gaussian approximation is determined by requir-
ing that the width at half height of the Gaussian is equal to the b value of
the Hulten horizon (the radius at which the Coulomb repulsion is annulled by
other attractive forces). Thus, the screened Gaussian potential probably has
a depth which is too shallow although the V0 depth parameter for the Hulten
potential is not known at present.

This work assumes that until matrix elements of a two-electron interaction
for singlet-pairs can be found for the Hulten potential, a Gaussian-screened-
Coulomb potential can be used to describe the real-space form of the hadronic
attraction and as a parameter fitted to experimental energies the screening
exponent probably includes other effects such as the magnetic dipole inter-
action of two electrons with opposite spin-magnetic-moments. This form has
the important property that it can be merged with the general case of the



ELEMENTS OF HADRONIC MECHANICS, VOL. III 415

four-center Coulomb or exchange integral derived by Shavitt [56] using the
famous Gaussian transform technique.

The Gaussian transform two-electron integral for four Gaussian spheres
has been used in a number of Gaussian-lobe basis SCF programs written by
Shillady [57, 58] and others. It is important to note that the formula is com-
pletely general in orientation of four Gaussian sphere lobe-orbitals as well as
the distance between two electrons.

As modified for a description of the correlation of two electrons, such a gen-
eral formula can describe angular correlation as well as distance interaction.
Thus matrix elements of a screened-Coulomb interaction were subtracted from
the usual 1/r Coulomb repulsion to model the real-space form of the hadronic
attraction of two electrons. The work outlined in this section, first presented
in Ref. [43b], added the Gaussian screening as exp[−αr2]/r so that the special
properties of Gaussians could be used, especially the properties that the prod-
uct of two Gaussians form another Gaussian (times a re-centering factor), and
that polar coordinates readily separate into factorable x, y, z components.

The goal was to evaluate the two-electron four-center matrix elements of
the Gaussian-screened Coulomb potential in the expression

Y (r) =
1 − 2 exp[−αr2]

r
. (9.2.23)

Amazingly, the Gaussian-Gaussian exponent and carried through the original
derivation until the last step when integration over “s” is required. α is usually
a very high number, this work used 0.13441885× 107. At this point the usual
Coulomb interaction resorts to a well known auxiliary function F0 which has
been studied by Shillady [57] and others.

Since both s1/2 and (s + α)1/2 occur in the denominator of the screened-
Coulomb form, two poles occur in the integral. A change of variable absorbs
the pole due to (s + α)−1/2 and shifts the other pole due to s−1/2 to the
lower limit of the integral. A smooth spike is evident at the lower limit of the
numerical integration using a 70 point Simpson’s Rule integration (two ranges
are used with 20 points more closely spaced near the pole and 50 points for
the remaining range).

This work was carried out using 64 bit double precision arithmetic, which
provides 14 significant figures. A simple offset δ of 1.0 × 10−15 has provided
useful results with this simple offset to avoid numerical overflow.

While this pole is formally a problem in needing a continuous function to
integrate, numerical integration seems to handle these Coulomb integrals are
known to be accurate only to 12 significant figures. The area under the pole-
spike is estimated as a narrow triangle upon a rectangle 1.0× 10−15 wide with
the height of the triangle set at 3.43207×108 times the height of the point set
1.0 × 10−15 into the range of integration (the first Simpson point).
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The present code for this screened-Coulomb integral is presently slower that
the corresponding F0 function [56] used for the Coulomb integrals due to the
70 point Simpson integration, but the integrand is nearly flat after the spike
at s = 0.0 so that portion of the integrand can be evaluated more rapidly with
fewer points. For results presented here, the simple offset of the lower limit by
1.0 × 10−15 is adequate for this monograph. Further details on the auxiliary
integral can be found in a previous paper on the H2 molecule [59].

Work in progress indicates it may be possible to express the new auxiliary
integral to an analytical expression involving the erf(x) function (see Chap-
ter 6), but until further checks are completed this work used the Simpson
integration. Note the integral is a result of a simplification of a twelve-fold
integration over the volume elements of two electrons, and has been reduced
to a one-dimensional integration multiplied by appropriate factors.

9.2.6 The Main Results
The geometry given for H2O by Dunning [60] was used to carry out the

usual HFR-SCF calculation after an additional 3d orbital mimic [58] was op-
timized in Ref. [43b] for the O atom and (2s,2p) orbitals were added for the H
atoms. The exponent for the O3d orbitals was optimized to three significant
figures and the (O3d,H2s,H2p) exponents were (2.498, 0.500, 1.000). These
polarization orbitals were added to the Dunning-Huzinaga (10s6p) [59] basis
with the H1s orbitals scaled to 1.2 which produced a lower energy than that
of a 6-31G∗∗ basis using the GAMESS program. The bond length of OH+ was
Angströms.

The same bond length was used for OH− since the anion calculation using
the usual HFR-SCF process was not feasible, and, in any case, the bond length
is only slightly longer than that in water. The horizon cutoff value of 0.00038
Angströms optimized for H2O was also used for OH+ and OH−.

The spike in the numerical integral routine was optimized by fitting the Rc

cut-off value so as to obtain as near as possible the non-relativistic energy of
the HF molecule as determined from Quantum Monte Carlo calculations [60].
The dipole moments for the ions are not very useful since ion dipoles are origin
dependent, but they were calculated using the center-of-mass as the origin.

As we see in Table 9.3, the difference in energy between OH− and OH+ is
0.497621 Hartrees (13.54 eV) according to the Correlated-SCF calculations.
It is clear from the standard SCF energy value for H2O that this basis is
very good, but not quite at the Hartree-Fock limit of energy. In addition, the
fitting of the numerical integration spike so as to most nearly reproduce the
total energy of HF is not exact.

These two artifacts introduce an energy uncertainty of about 0.0115 Hartrees,
but this is less uncertainty than that of the Quantum Monte Carlo (QMC) en-
ergy of Luchow and Anderson [61]. Note that the Iso-Dipoles for H2O and HF
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Table 9.3. Isoelectronium results for selected molecules [43b].

OH+ OH− H2O HF

SCF-Energya -74.860377 -75.396624 -76.058000 -100.060379

Hartree-Fockb -100.07185b

Iso-Energyc -75.056678 -75.554299 -76.388340 -100.448029
Horizon Rc (Å) 0.00038 0.00038 0.00038 0.00030

QMC Energyb,d -76.430020d -100.44296b

Exact non-rel. -100.4595
Iso-Dipole (D) 5.552581 8.638473 1.847437 1.8413778
Exper. Dipole 1.84 1.82

a Dunning-Huzinaga (10s/6p), (6,2,1,1,1/4,1,1)+H2s1+H2p1+3d1.
b Iso-Energy calibrated to give maximum correlation for HF.
c Hartree-Fock and QMC energies from Luchow and Anderson [61].
d QMC energies from Hammond, Lester and Reynolds [60].

are very close to the experimental values which indicates that the calculated
wavefunctions are of high quality.

Since the ionization energy of a neutral H atom is 13.60 eV and the energy
difference of 13.54 eV would convert OH− to OH+, a threshold of about 13.7 eV
should maintain H+ in solution as well as transfer (2e)−2 through an aqueous
solution to or from the OH−/OH+ system.

These calculations indicate that there may be an enhancement of current
flow with a potential above 13.7 volts across an aqueous cell and that the
enhanced concentration of HOOH may be measurable above a potential of
13.7 volts. It is worth repeating that this estimate is possible largely due to
the easy convergence of the Correlated-SCF process for a negative ion species;
a process which is formally not defined under the usual Hartree-Fock-Roothan
process [53], and most quantum chemists are familiar with the difficulty in
treating negative ions using the standard Hartree-Fock-Roothaan method.

Admitting that the Correlated-SCF equations are a parametrized approx-
imation to the Santilli derivation of the Hulten potential [42a] for a bound
electron-pair, the method has the advantage of easy incorporation into an ex-
isting Hartree-Fock-Roothaan Gaussian basis program merely by subtracting
a small “correlation integral” from the usual two-electron integrals.

With some thought, one should realize that fitting the single parameter
(Gaussian screening exponent, α) to experimental energies, and/or Quantum
Monte Carlo results will incorporate another attraction in the form of a mag-
netic dipole interaction between the spin moments of paired electrons. Includ-
ing the magnetic dipole interaction and substituting a Gaussian form for the
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Hulten exponential potential leaves only a simulation of the bound electron-
pair Isoelectronium. Thus, these results are for a model in which the usual
HFR-SCF method is corrected for at least two attractive interactions of elec-
trons causing them to approach each other as if they were “sticky”; hence the
term “sticky-electron-pair model.”

9.2.7 Conclusions
In Chapter 3, we have presented a covering of quantum chemistry under

the name of hadronic chemistry. In Chapter 4, we have applied the new
discipline to the construction of a new model of molecular structures based on
the bonding of a pair of valence electrons from different atoms into a singlet
quasi-particle state called isoelectronium.

We have then applied the model to the structure of the hydrogen molecule,
by achieving results manifestly not possible with quantum chemistry, such
as: a representation of the binding energy and other features of the hydrogen
molecule accurate to the seventh digit; an explanation of the reason why the
hydrogen molecule has only two hydrogen atoms; a reduction of computer
usage at least 1,000 fold; and other advances.

In this chapter, we have applied the isochemical model of molecular bonds
to the water and other molecules with similar results. In fact, the isoche-
mical model of the water and other molecules is supported by the following
conceptual, theoretical and experimental evidence:

1) It introduces a new strong binding force (which is absent in current
models) capable of explaining the strength and stability of molecules;

2) It explains the reason why the water molecule has only two hydrogen
atoms and one oxygen;

3) It permits a representation of the binding energy of the water and other
molecules, which are accurate to several digits;

4) It represents electric and dipole moments and other features of the water
and other molecules, also accurate to several digits;

5) It permits a reduction of computer usages in calculations at least 1,000
fold; as well as it permits other achievements similar to those obtained for the
hydrogen molecule.

Moreover, as it happened for the hydrogen molecule in Chapter 4, the value
of the radius of the isoelectronium, Eqs. (9.2.9) computed via dynamical equa-
tions has been fully confirmed by independent calculations for the water and
other molecules conducted via the Gaussian-lobe basis set.

The emission of electron pairs in superconductivity has been emphasized in
Chapter 3. In Chapter 4 we also indicated preliminary, yet direct experimental
verifications of the isochemical model of molecular bonds offered by the on-
going experiments on photoproduction of the valence electrons in the helium
indicating that electrons are emitted in pairs [62]. The systematic repetition of
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these experiments specifically for water is here recommended. The statistical
percentages of electron pairs over the total number of emitted electrons would
then establish whether the isoelectronium is fully or only partially stable.

We should finally note that the representation of the binding energy, elec-
tric and magnetic moments and other characteristics of the water and other
molecules exact to the several digits, as first achieved in Refs. [43] constitutes
the strongest experimental evidence to date on the insufficiency of quantum
mechanics and the validity of the covering hadronic mechanics for the repre-
sentation of nonlinear, nonlocal and nonpotential-nonunitary effects, due to
deep overlappings of the “extended wavepackets” of electrons with a point-like
charge structure.

The new isochemical model of the water molecule outlined in this chapter
has a number of intriguing new applications. For instance, the correlated-SCF
method is used to easily obtain an energy for the OH- anion in water, while
the OH+ ion is easily treated in either the standard or modified method. The
difference in energy between the 8-electron OH+ system and the 10-electron
OH− system is found to be 13.54 eV. This represents the energy needed to
remove (2e)−2 from OH−. This indicates there may be a threshold for current
flow in terms of (2e)−2 as a quasi-particle in aqueous media at 13.6 eV. This
voltage will also maintain H+ in solution to some extent. Organic alkenes in
solution should undergo epoxidation followed by solvolysis to diols under the
conditions of abundant (2e)−2.

Another interesting result is that the natural trace amounts of HOOH in
water may be increased in water by merely placing the sample in an intense
magnetic field. Positive and negative ions will traverse short arc segment
paths driven by simple thermal Brownian motion in a way which will lead to
an increase in collisions of oppositely charged ions. In particular, OH− and
OH+ may undergo collisions more frequently leading to an increase in HOOH.

This additional HOOH should then be available to react with alkenes to
form epoxides which will then hydrolyze in water to form diols. Such diols
would be much more soluble in water than the original alkenes. This leads
to the important possibility that merely exposing water-insoluble alkenes to
water in a magnetic field will lead to a chemical reaction of the alkenes to form
modified compounds which are more soluble in water. In other words, organic
oils containing some double bonds may be made somewhat more soluble in
water just by mechanical emulsification of the oils in water in an environment
of a high magnetic field.

Thus, mixtures of oils and water could be mechanically agitated in a mag-
netic field of several Tesla to produce new oils which are chemically similar
to the original oils (assuming a large organic structure) but more soluble in
water after exposure to the magnetic field (see Chapter 8 for details).
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Similarly, it is easy to see that, while the conventional quantum chemical
model of the water molecule predicts one and only configuration, our isoche-
mical model predicts various physically inequivalent configurations depending
on the relative orientation of the two oo-shaped orbits and other properties,
which are under separate study.

The industrial significance of the studies outlined in this chapter will be
presented in Chapters 7 and 8.

9.3 VARIATIONAL CALCULATIONS OF
ISOCHEMICAL MODELS

9.3.1 Introduction
In Ref. [64a] outlined in Chapter 4, Santilli and Shillady introduced a

restricted isochemical three-body model of the hydrogen molecule admitting
an exact solution, and a full four-body isochemical model of the hydrogen
molecule which no longer admits an exact solution.

In Ref. [64b] outlined in Chapter 5, Santilli and Shillady introduced two
corresponding isochemical models of the water and other molecules, one based
on a restricted three-body model of the HO dimer admitting exact solutions,
and a second fully isochemical four-body model.

As also reviewed in Chapters 4 and 5, Shillady’s SASLOBE variational
method [64] showed the capability of the isochemical models to reach an es-
sentially exact representation of experimental data on the hydrogen, water
and other molecules, as well as resolving other shortcomings or inconsistencies
of conventional quantum chemical molecular models.

A greatly detailed, independent verification of models [64a,64b] was con-
ducted by A.K. Aringazin and M.G. Kucherenko [65a] via exact solution and
by A.K. Aringazin [65b] via Ritz’s variational method, by confirming all nu-
merical results of Refs. [64].

In this chapter we outline Refs. [65] since they achieve new important
insights and results on isochemistry of rather general character, and possible
application to a variety of other molecules and applications of isochemistry.

9.3.2 Aringazin-Kucherenko Study of the Restricted,
Three-Body Isochemical Model of the Hydrogen
Molecule

In this section we outline the studies by Aringazin and Kucherenko [65a] of
Santilli-Shillady exactly solvable, restricted three-body isochemical model of
the H2 molecule [64a], Eq. (9.1.35), r12 � 0, i.e.,

− h̄2

2M
∇2

abψ +
(
−2e2

ra
− 2e2

rb
+

2e2

R

)
ψ = Eψ. (9.3.1)
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As the reader will recall from Chapter 4, model (9.3.1) constitutes a limit case
in which the two valence electrons are assumed to be permanently bonded
together into the stable singlet quasi-particle state with features (9.1.25), i.e.,

mass � 1 MeV, spin = 0, charge = 2e, magnetic moment � 0,

radius = rc = b−1 = 6.8432329 × 10−11 cm = (9.3.2)

= 0.015424288 bohrs = 0.006843 Å,

which we have called isoelectronium.
The assumption of stationary nuclei (or, equivalently, nuclei with infinite

inertia), then turns the four-body hydrogen molecule H2 into a restricted three-
body system which, as such, admits exact solution.

The reader should also recall that, the assumption of the rest energy of
the isoelectronium as given by twice the electron mass is merely an upper
boundary occurring when the internal forces are of purely nonpotential type.
In reality, a total attractive force of purely potential type is possible because
the magnetostatic attraction is bigger than the electrostatic repulsion as illus-
trated in Fig. 9.4. It is evident that the latter bond implies a negative binding
energy resulting in a value of the isoelectronium mass

Misoelectronium < 2melectron, (9.3.3)

which is unknown, and should be derived from fitting experimental data.
As one can see, the above restricted isochemical model of the H2 molecule is

similar to the conventional restricted three-body H+
2 ion. To avoid confusion,

we shall denote the three-body isochemical model with the “hat”, Ĥ2, and the
conventional (four-body) model without the “hat,” H2.

More specifically, studies [65a] were conducted under the following condi-
tions:
1) the isoelectronium is stable;
2) the effective size of the isoelectronium is ignorable, in comparison to inter-
nuclear distance of H2;
3) the two nuclei of H2 are at rest;
4) the rest energy of the isoelectronium is assumed to be unknown and to be
determined by the fit of the binding energy of the molecule;
5) the internuclear distance R of H2 is also assumed to be unknown and to be
fitted from the stability condition of the solution, and then compared with its
experimental value.

A main result of Ref. [65a] is that the restricted three-body Santilli-Shillady
model Ĥ2 is capable to fit the experimental binding energy for the following
value of the isoelectronium mass,

M = 0.308381me, (9.3.4)
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although its stability condition is reached for the following internuclear dis-
tance

R = 1.675828 a.u., (9.3.5)

which is about 19.6% bigger than the conventional experimental value R[H2] =
1.4011 a.u. = 0.742 Å.

These results confirm that the isochemical model (9.3.1) is indeed valid,
but only in first approximation, in accordance with the intent of the original
proposal [64a].

In Born-Oppenheimer approximation, i.e., at fixed nuclei, the equation for
the H+

2 ion-type system for a particle of mass M and charge q is given by

∇2ψ + 2M

(
E +

q

ra
+

q

rb

)
ψ = 0. (9.3.6)

In spheroidal coordinates,

x =
ra + rb

R
, 1 ≤ x ≤ ∞; y =

ra − rb

R
, −1 ≤ y ≤ 1; 0 ≤ ϕ ≤ 2π,

(9.3.7)
where R is the separation distance between the two nuclei a and b, we have

∇2 =
4

R2(x2 − y2)

(
∂

∂x
(x2 − 1)

∂

∂x
+

∂

∂y
(1 − y2)

∂

∂y

)
+ (9.3.8)

+
1

R2(x2 − 1)(1 − y2)
∂2

∂ϕ2
.

Eq. (9.3.1) then becomes[
∂

∂x
(x2 − 1)

∂

∂x
+

∂

∂y
(1 − y2)

∂

∂y
+

x2 − y2

4(x2 − 1)(1 − y2)
∂2

∂ϕ2
+ (9.3.9)

+
MER2

2
(x2 − y2) + 2MqRx

]
ψ = 0,

where
1
ra

+
1
rb

=
4
R

x

x2 − y2
. (9.3.10)

The use of the expression

ψ = f(x)g(y)eimϕ, (9.3.11)

then allows the separation

d

dx

(
(x2 − 1)

d

dx
f

)
−

(
λ − 2MqRx − MER2

2
x2 +

m2

x2 − 1

)
f = 0,
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d

dy

(
(1 − y2)

d

dy
g

)
+

(
λ − MER2

2
y2 − m2

1 − y2

)
g = 0, (9.3.12)

where λ is the separation constant. The exact solutions for f(x) and g(y) are
given by the angular and radial Coulomb spheroidal functions (csf) containing
infinite recurrence relations.

Aringazin and Kucherenko [65a] calculated the energy levels via the use of
recurrence relations of the type

Qk+1 = Qkκ̄N−k − Qk−1ρ̄N−kδ̄N−k+1, Q−1 = 0, Q0 = 1, (9.3.13)

where the coefficients are

ρs =
(s + 2m + 1)[b − 2p(s + m + 1)]

2(s + m) + 3
,

κs = (s + m)(s + m + 1) − λ, (9.3.14)

δs =
s[b + 2p(s + m)]

2(s + m) − 1
.

Ref. [65a] then used the value N = 16 for the power degree approximation of
both the radial and angular components. The two polynomials have 16 roots
for λ from which only one root is appropriate due for its asymptotic behavior
at R → 0. Numerical solution of the equation,

λ(x)(p, a) = λ(y)(p, b), (9.3.15)

gives the list of values of the electronic ground state energy,

E(R) = E1sσ(R), (9.3.16)

which corresponds to 1sσg term of the H+
2 ion-like system, as a function of

the distance R between the nuclei. Note that the term “exact solution” refers
to the fact that by taking greater values of N , for example N = 50, one can
achieve higher accuracy, up to a desired one (for example, twelve decimals).

Also, the scaling method based on the Schrödinger equation has been de-
veloped which enables one to relate the final E(R) dependence of different H+

2
ion-like systems to each other.

Table 9.4 presents result of the calculations of the minimal total energy and
the corresponding optimal distance, at various values of the isoelectronium
mass parameter

M = ηme, (9.3.17)

where M = η, in atomic units.
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Table 9.4. The minimal total energy Emin and the optimal internuclear distance Ropt of
Santilli-Shillady restricted three-body isochemical model Ĥ2 as functions of the mass M of
the isoelectroniuma.

M , a.u. Emin, a.u. Ropt, a.u. M , a.u. Emin, a.u. Ropt, a.u.

0.10 -0.380852 5.167928 0.32 -1.218726 1.614977
0.15 -0.571278 3.445291 0.33 -1.256811 1.566041
0.20 -0.761704 2.583964 0.34 -1.294896 1.519981
0.25 -0.952130 2.067171 0.35 -1.332982 1.476553
0.26 -0.990215 1.987664 0.40 -1.523408 1.291982
0.27 -1.028300 1.914050 0.45 -1.713834 1.148428
0.28 -1.066385 1.845688 0.50 -1.904260 1.033585
0.29 -1.104470 1.782044 0.75 -2.856390 0.689058
0.30 -1.142556 1.722645 1.00 -3.808520 0.516792
0.307 -1.169215 1.683367 1.25 -4.760650 0.413434
0.308 -1.173024 1.677899 1.50 -5.712780 0.344529
0.308381 -1.174475 1.675828 1.75 -6.664910 0.295310
0.309 -1.176832 1.672471 2.00 -7.617040 0.258396
0.31 -1.180641 1.667073

a See also Figs. 9.10 and 9.11.

Table 9.5. Summary of main data and results on the ground state energy E and the inter-
nuclear distance R.

E, a.u. R, a.u.

H+
2 ion, exact theory, N=16 [65a] -0.6026346 1.9971579

H+
2 ion, experiment [66] -0.6017 2.00

3-body Ĥ2, M=2me, exact theory [65a] -7.617041 0.258399

3-body Ĥ2, M=2me, var. theory [64a] -7.61509174 0.2592

3-body Ĥ2, M=0.381me, exact theory [65a] -1.174475 1.675828
4-body H2, rc=0.01125 a.u., Vg var. theory [64a] -1.174474 1.4011
4-body H2, rc=0.01154 a.u., Ve var. theory [65b] -1.144 1.4011
4-body H2, rc=0.08330 a.u., Ve var. theory [65b] -1.173 1.3184
H2, experiment -1.174474 1.4011

Aringazin and Kucherenko [65a] computed some 27 tables, each with the
identification of the minimum of the total energy, together with the corre-
sponding optimal distance R. Then, they collected all the obtained energy
minima and optimal distances in Table 9.4.
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Figure 9.10. The minimal total energy Emin(M) of the Ĥ2 system as a function of the
isoelectronium mass M .

0 0.5 1 1.5 2
Mass M, a.u.

0

1

2

3

4

5

R
o
p
t
,
a
.
u
.

Figure 9.11. The optimal internuclear distance Ropt(M) of the Ĥ2 system as a function of
the isoelectronium mass M .

With the fourth order interpolation/extrapolation, the graphical represen-
tations of Table 9.4 (see Figs. 9.10 and 9.11) show that the minimal total
energy behaves as

Emin(M) � −3.808M, (9.3.18)
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and the optimal distance behaves as

Ropt(M) � 0.517/M. (9.3.19)

One can see that at M = 2me we have

Emin(M) = −7.617041 a.u., Ropt(M) = 0.258399 a.u., (9.3.20)

which recover the values obtained in Ref. [64a]

Emin = −7.61509174 a.u., Ropt = 0.2592 a.u., (9.3.21)

to a remarkable accuracy.
The conclusion by Aringazin and Kucherenko is that the Santilli-Shillady

restricted three-body isochemical model of the hydrogen molecule is indeed
valid as suggested, that is, as in first approximation. The main data and
results on Emin and Ropt are collected in Table 9.5.

An important conclusion of Ref. [65a] is, therefore, that the two valence
electrons of the hydrogen molecule cannot be permanently bound inside the
hadronic horizon with radius of one Fermi.

The clear understanding, stressed in Chapter 4, is that the isoelectronium
must continue to exist beyond the hadronic horizon, otherwise, in its absence,
we would have a violation of Pauli’s exclusion principle.

9.3.3 Aringazin Variational Study of the Four-Body
Isochemical Model of the Hydrogen Molecule

In the subsequent Ref. [65b] Aringazin applied Ritz variational method
to Santilli-Shillady four-body isochemical model of molecule of the hydrogen
molecule (9.1.33), i.e.(

− h̄2

2m1
∇2

1 −
h̄2

2m2
∇2

2 − V0
e−r12/rc

1 − e−r12/rc
+

e2

r12
− (9.3.22)

− e2

r1a
− e2

r2a
− e2

r1b
− e2

r2b
+

e2

R

)
|ψ〉 = E|ψ〉,

without restriction that the isoelectronium has the permanent dimension of
about one Fermi.

In particular, Aringazin’s objective was to identify the ground state energy
and bond length of the H2 molecule, in Born-Oppenheimer approximation, via
a Gaussian screening of the Coulomb potential, Vg, the exponential screening
of the Coulomb potential,

Ve = −Ae−r12/rc

r12
, (9.3.23)
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as well as the original Hulten potential Vh of the model (9.3.22). The resulting
analysis is quite sophisticated, and cannot be reviewed herein the necessary
detail. Readers seriously interested in this verification of the new isochemical
model of the hydrogen molecule are suggested to study Aringazin’s original
memoir [65b].

The Coulomb and exchange integrals were calculated only for Ve while for
Vg and Vh Aringazin achieved analytical results only for the Coulomb integrals
because of the absence of Gegenbauer-type expansions for the latter potentials.

A conclusion is that the Ritz’s variational treatment of model (9.2.45) with
the potential (9.3.23) is capable to provide an exact fit of the experimental data
of the hydrogen molecule in confirmation of the results obtained by Santilli
and Shillady [64a] via the SASLOBE variational approach to Gaussian Vg-
type model. The main data and results on the ground state energy Emin and
internuclear distance Ropt are collected in Table 9.5.

Note that in the variational approach of Ref. [65b] Aringazin used a discrete
variation of the hadronic horizon rc and approximate exchange integral (9.3.24)
that resulted in approximate fittings of the energy and distance, as shown in
Table 9.5.

In addition, Ref. [65b] computed the weight of the isoelectronium phase
which results to be of the order of 1% to 6% that for the case of Ve model.
However, we note that this is it not the result corresponding to the original
Santilli-Shillady model, which is based on the Hulten potential Vh.

An interesting result is that in order to prevent divergency of the Coulomb
integral for Vh the correlation length parameter rc should run discrete values
due to Eq. (9.3.25). This condition has been used in the Ve model, although
it is not a necessary one within the framework of this model.

As recalled earlier, Aringazin [loc. cit.] assumes that the isoelectronium
undergoes an increase of length beyond the hadronic horizon, and the resulting
two electrons are separated by sufficiently large distance. This leads us to
problem of how to compute the effective life-time of isoelectronium.

To estimate the order of magnitude of such a life-time, Aringazin uses the
ordinary formula for radioactive α-decay since the total potential V (r) is of
the same shape as that here considered, with very sharp decrease at r < rmax

and Coulomb repulsion at r > rmax, where rmax corresponds to a maximum
of the potential.

This quasiclassical model is a crude approximation because in reality the
electrons do not leave the molecule. Moreover, the two asymptotic regimes act
simultaneously, with some distribution of probability, and it would be more
justified to treat the frequency of the decay process (i.e., the tunneling outside
the hadronic horizon), rather than the life-time of the isoelectronium.

However, due to the assumption of the small size of isoelectronium in com-
parison to the molecule size, we can study an elementary process of decay
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separately, and use the notion of life-time. The results of Aringazin’s calcula-
tions are presented in Table 9.6.

Table 9.6. Summary of Aringazin’s calculations [65b] on the lifetime of the isoelectronium,
where E is relative kinetic energy of the electrons, at large distance, r � rmax, in the center
of mass system.

Energy E, a.u. eV Lifetime, D0·sec

2 54.4 2.6 · 10−18

1 27.2 1.6 · 10−17

0.5 13.6 2.2 · 10−16

0.037 1 5.1 · 10−6

0.018 0.5 4.0
0.0018 0.1 3.1 · 10+25

In Ritz’s variational approach, the main problem is to calculate analytically
the so-called molecular integrals. The variational molecular energy in which
we are interested, is expressed in terms of these integrals. These integrals arise
when using some wave function, usually a simple hydrogen-like ground state
wave function, as an infinite separation asymptotic solution, in the Schrödinger
equation for the diatomic molecule. The main idea of Ritz’s approach is to
introduce parameters into the wave function, and vary them together with the
separation parameter R, to achieve a minimum of the total molecular energy,
which is treated as the resulting ground state energy.

In the case under study, Aringazin [loc. cit.] uses two parameters, γ and ρ,
where γ enters hydrogen-like ground state wave function

ψ(r) =

√
γ3

π
e−γr, (9.3.26)

and ρ = γR measures internuclear distance. These parameters should be varied
analytically or numerically in the final expression of the molecular energy, after
the calculation is made for the associated molecular integrals.

However, the four-body Santilli-Shillady model H2 suggests an additional
Hulten potential interaction between the electrons, which potential contains
two parameters V0 and rc, where V0 is a general factor, and rc is a correlation
length parameter characterizing the hadronic horizon. Thus, four parameters
should be varied, γ, ρ, V0, and rc.

The introducing of Hulten potential leads to a modification of some molec-
ular integrals, namely, of the Coulomb and exchange integrals. The other
molecular integrals remain the same as in the case of the usual model of H2,
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Figure 9.12. The Coulomb integral C′
e as a function of ρ, at λ = 1/37, where ρ = γR, R is

the internuclear distance, λ = 2γrc, and rc is the hadronic horizon.
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Figure 9.13. The Coulomb integral C′
e as a function of rc, at ρ = 1.67. For rc > 0.2 a.u.,

the regularized values are presented.

with well-known analytic results. Normally, the Coulomb integral, which can
be computed in bispherical coordinates, is much easier to resolve than the
exchange integral, which is computed in bispheroidal coordinates.
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Calculations of the Coulomb integral for Hulten potential Vh appeared to
be quite nontrivial [2b]. Namely, in the used bispherical coordinates, several
special functions, such as polylogarithmic function, Riemann zeta-function,
digamma function, and Lerch function, appeared during the calculation.

In order to proceed with the Santilli-Shillady approach, Aringazin [65b]
invoked two different simplified potentials, the exponential screened Coulomb
potential Ve, and the Gaussian screened Coulomb potential Vg, instead of
the Hulten potential Vh. The former potentials both approximate well the
Hulten potential at short and long range asymptotics, and each contains two
parameters denoted A and rc.

In order to reproduce the short range asymptotics of the Hulten potential,
the parameter A should have the value A = V0rc, for both potentials. The
Coulomb integrals for these two potentials have been calculated exactly owing
to the fact that they are much simpler than the Hulten potential.

In particular, we note that the final exact expression of the Coulomb integral
for Vg contains only one special function, the error function erf(z), while for
Ve it contains no special functions at all. In this way, Aringazin [65b] reaches
the exact expression

C ′
e = − Aλ2

8(1 − λ2)4
γe−2ρ

ρ

[
−(ρ + 2ρ2 +

4
3
ρ3) + 3λ2(5ρ + 10ρ2 + 4ρ3) −

−λ4(15ρ + 14ρ2 + 4ρ3) +λ6(8 + 11ρ + 6ρ2 +
4
3
ρ3 − 8e2ρ− 2ρ

λ )
]

, (9.3.27)

where λ = 2γrc. This Coulomb integral is plotted in Figs. 9.12 and 9.13.
The most difficult part of calculations [65b] is the exchange integral. Usu-

ally, to calculate it one has to use bispheroidal coordinates, and needs in an
expansion of the potential in some orthogonal polynomials, such as Legendre
polynomials in bispheroidal coordinates. In Ref. [65b], only the exponential
screened potential Ve is known to have such an expansion but it is formulated,
however, in terms of bispherical coordinates (so called Gegenbauer expansion).
Accordingly, the exchange integral E′

e for Ve at null internuclear separation,
R = 0 (in which case one can use bispherical coordinates) was calculated ex-
actly. After that, the R-dependence using the standard result for the exchange
integral for Coulomb potential E′

C (celebrated Sugiura’s result) was partially
recovered,

E′
e �

Aλ2

(1 + λ)4

(
1
8

+
1
2
λ +

5
8
λ2

)
8
5
E′

C , (9.3.28)

where λ = 2γrc (see Fig. 9.14). Thus, only some approximate expression of
the exchange integral for the case of Ve has been achieved. In this way, all
subsequent results apply to the approximate Ve-based model.
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Figure 9.14. The exchange integral E′
e as a function of rc, at ρ = 1.67.
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Figure 9.15. The total energy E = Emol as a function of ρ, at λ = 1/60, 1/40, 1/20, 1/10,
1/5. The lowest plot corresponds to λ = 1/5.

Inserting the so-obtained Ve-based Coulomb and exchange integrals into the
total molecular energy expression, the final analytical expression containing
four parameters, γ, ρ, A, and rc, was obtained. From a separate consideration
of the Hulten potential case, the existence of a bound state of two electrons
(which is the proper isoelectronium) leads to the following relationship between
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the parameters for the case of one energy level of the electron-electron system,
V0 = h̄2/(2mr2

c ). Thus, using the relation A = V0rc Aringazin has A = 1/rc ≡
2γ/λ, in atomic units (h̄ = me = c = 1).

Note that Aringazin [65b] introduces the one-level isoelectronium charac-
terized by the fact that the condition,

λ−1 = integer numbers > 0, (9.3.29)

follows from the analysis of the Coulomb integral for Hulten potential.
With the above set up, minimization of the total molecular energy of the

Ve-based model can be made. Numerical analysis shows that the λ-dependence
does not reveal any minimum in the interval of interest,

4 ≤ λ−1 ≤ 60, (9.3.30)

while there is a minimum of the energy for some values of γ and ρ, at fixed λ.
Therefore, 56 tables have been calculated to identify the energy minima and

optimal distances for different values of λ, in the interval (9.3.30).
Aringazin’s results are collected in Tables 9.7, 9.8, and Fig. 9.15. One can

see that the binding energy decreases with the increase of the parameter rc,
which corresponds to an effective radius of the isoelectronium.

In conclusion, the calculation by Aringazin [65b] reviewed in this Chapter
have not identified the meanlife of the isoelectronium assumed as a quasiparti-
cle of charge radius rc of about 1 fm. As one can see in Table 9.7, the predicted
meanlife varies over a rather large range of values.

The achievement of an accurate meanlife of the isoelectronium of 1 fm charge
radius can be reached only after reaching a more accurate knowledge of its rest
energy. As the reader will recall from Chapter 4, the value of 1 MeV should
be solely considered as an upper boundary value of the rest energy of the
isoelectronium, since it holds only in the absence of internal potential forces
while the latter cannot be excluded. Therefore, the actual value of the rest
energy of the isoelectronium is today basically unknown.

The reader should also recall that the terms “meanlife of the isoelectronium
when of charge radius of about 1 fm” are referring to the duration of time spent
by two valence electrons at a mutual distance of 1 fm which is expected to be
small. The understanding explained in Chapter 3 is that, when the restriction
of the charge radius to 1 fm is removed, and orbital mutual distances are
admitted, the isoelectronium must have an infinite life (for the unperturbed
molecule), because any finite meanlife under the latter conditions would imply
the admission of two electrons with identical features in the same orbit, and
a consequential violation of Pauli’s exclusion principle.

An interesting result of the Ritz variational approach to the Hulten potential
studied by Aringazin [65b] is that the charge radius of the isoelectronium rc
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Table 9.7. The total minimal energy Emin and the optimal internuclear distance Ropt as
functions of the correlation length rc for the exponential screened Coulomb potential Ve.

λ−1 rc, a.u. Ropt, a.u. Emin, a.u.

4 0.10337035071618050 1.297162129235449 -1.181516949656805
5 0.08329699109108888 1.318393698326879 -1.172984902150024
6 0.06975270534273319 1.333205576478603 -1.167271240301846
7 0.05999677404817234 1.344092354783681 -1.163188554065554
8 0.05263465942162049 1.352417789644028 -1.160130284706318
9 0.04688158804756491 1.358984317233049 -1.157755960428922

10 0.04226204990365446 1.364292909163710 -1.155860292450436
11 0.03847110142927672 1.368671725082009 -1.154312372623724
12 0.03530417706681329 1.372344384866235 -1.153024886026671
13 0.03261892720535206 1.375468373051375 -1.151937408039373
14 0.03031323689615631 1.378157728092548 -1.151006817317425
15 0.02831194904031777 1.380497017045902 -1.150201529091051
16 0.02655851947236431 1.382550255552670 -1.149497886394651
17 0.02500959113834722 1.384366780045693 -1.148877823925501
18 0.02363136168905809 1.385985219224291 -1.148327310762828
19 0.02239708901865092 1.387436244558651 -1.147835285349041
20 0.02128533948435381 1.388744515712491 -1.147392910500336
21 0.02027873303335994 1.389930082626193 -1.146993041730378
22 0.01936302821907175 1.391009413196452 -1.146629840949675
23 0.01852644434336641 1.391996158084790 -1.146298491232105
24 0.01775915199935013 1.392901727808297 -1.145994983116511
25 0.01705288514774330 1.393735733699196 -1.145715952370148
26 0.01640064219648127 1.394506328745493 -1.145458555325045
27 0.01579645313764336 1.395220473843219 -1.145220372020229
28 0.01523519631632570 1.395884147817973 -1.144999330178493
29 0.01471245291356761 1.396502514589167 -1.144793644973560
30 0.01422439038752817 1.397080057337240 -1.144601770891686

entering the Hulten potential and the variational energy, should run discrete
set of values during the variation.

In other words, this means that only some fixed values of the effective
radius of the one-level isoelectronium are admitted in the Santilli-Shillady
model when treated via the Ritz approach.

This result was completely unexpected and may indicate a kind of “hadronic
fine structure” of the isoelectronium whose origin and meaning are unknown
at this writing. It should be indicated that such a “hadronic fine structure”
of the isoelectronium is solely referred to the case when rc is restricted to be
about 1 fm or less. The problem whether such a “hadronic fine structure”
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Table 9.8. A continuation of Table 9.8.

λ−1 rc, a.u. Ropt, a.u. Emin, a.u.

31 0.01376766836566138 1.397620687025853 -1.144422362947838
32 0.01333936209977966 1.398127830817745 -1.144254245203342
33 0.01293689977547854 1.398604504597664 -1.144096385030938
34 0.01255801083612469 1.399053372836414 -1.143947871939897
35 0.01220068312791624 1.399476798299823 -1.143807900045981
36 0.01186312715793131 1.399876883556063 -1.143675753475045
37 0.01154374612489787 1.400255505817128 -1.143550794143290
39 0.01095393745919852 1.400954915288619 -1.143320213707519
40 0.01068107105944273 1.401278573036792 -1.143213620508321
41 0.01042146833640030 1.401586548200467 -1.143112256673494
42 0.01017418516195214 1.401879953246168 -1.143015746732479
43 0.00993836493541500 1.402159797887369 -1.142923750307661
44 0.00971322867044429 1.402427000676349 -1.142835958109381
45 0.00949806639934841 1.402682399061957 -1.142752088467028
46 0.00929222969498477 1.402926758144872 -1.142671884314343
47 0.00909512514431396 1.403160778323019 -1.142595110561057
48 0.00890620863525624 1.403385101987775 -1.142521551794315
49 0.00872498034101540 1.403600319405678 -1.142451010262626
50 0.00855098030451296 1.403806973898863 -1.142383304102633
51 0.00838378454080327 1.404005566419838 -1.142318265775268
52 0.00822300158793934 1.404196559601683 -1.142255740683024
53 0.00806826944722482 1.404380381352424 -1.142195585944305
54 0.00791925286251402 1.404557428052374 -1.142137669304475
55 0.00777564089552400 1.404728067404676 -1.142081868166104
56 0.00763714476025456 1.404892640982100 -1.142028068723488
57 0.00750349588477794 1.405051466507240 -1.141976165188595
58 0.00737444417302681 1.405204839898059 -1.141926059097351
59 0.00724975644291090 1.405353037106507 -1.141877658686723
60 0.00712921502024112 1.405496315774223 -1.141830878334298

persists for values of rc up to orbital distances is also unknown at this writing.
It should be also indicated that this remarkable property is specific to the
Hulten potential Vh, while it is absent in the Ve, or Vg models.

Moreover, Aringazin [65b] has achieved an estimation of the weight of the
isoelectronium phase for the case of Ve model which appears to be of the
order of 1% to 6%. This weight has been estimated from the energy contribu-
tion related to the exponentially screened potential Ve, in comparison to the
contribution related to the usual Coulomb interelectron repulsive potential.

Finally, an important result of the Ritz variational four-body model studied
by Aringazin [65b] is its fit to the experimental data of both the binding energy
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E and the bond length R of the hydrogen molecule thus providing an excellent
independent confirmation of the results obtained by Santilli and Shillady [64].
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Appendix 9.A
Isochemical Calculations for the Three-Body H2

Molecule

This appendix contains a summary of the computer calculations conducted
in Ref. [5] for the restricted three-body model of the hydrogen molecule ac-
cording to isochemistry, Eq. (9.1.35), showing an exact representation of the
binding energy. The calculations are based on the isoelectronium as per char-
acteristics (9.1.25).

Gaussian-Lobe Program for Large Molecules
set up by D. Shillady and S. Baldwin

Richmond Virginia 1978-1997
3 BODY H2 (Electronium)

ipear = 1, dt = 0.0, tk = 0.0, imd = 0, ntime = 60, mul = 1, iqd = 0, icor
= 3, mdtim = 0, idb = 0.

ELECTRONIUM-PAIR CALCULATION

Atomic Core Nuclear Coordinates

X Y Z
1. 0.000000 0.000000 0.000000

Z1s = 6.103 Z2s = 24.350 Z2p = 24.350
Z3s = 16.230 Z3p = 16.230 Z3d = -16.200
Z4p = 12.180 Z4f = 12.180

1. 0.000000 0.000000 0.259200
Z1s = 6.103 Z2s = 24.350 Z2p = 24.350
Z4p = 12.180 Z4f = 12.18O Z3d = -16.200

Basis Size = 50 and Number of Spheres = 142 for 2 Electrons.

Distance Matrix in Angströms:

H H

H 0.00000 0.13716
H 0.13716 0.00000

A-B-C Arcs in Degrees for 2 Atoms.
The Center of Mass is at Xm = 0.000000, Ym = 0.000000, Zm = 0.129600.
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One-Electron Energy Levels:

E( 1) = -11.473116428176 E(26) = 28.974399759209
E( 2) = -4.103304982059 E(27) = 28.974400079775
E( 3) = -1.621066945385 E(28) = 31.002613061833
E( 4) = -1.621066909587 E(29) = 31.002614578175
E( 5) = 0.735166320188 E(30) = 35.201145239721
E( 6) = 3.760295564718 E(31) = 38.003259639003
E( 7) = 3.760295673022 E(32) = 44.948398097510
E( 8) = 4.206194459198 E(33) = 44.94839B118458
E( 9) = 4.813241859203 E(34) = 52.259825531212
E(10) = 11.2330B0571453 E(35) = 57.732587951875
E(11) = 15.70B645318078 E(36) = 57.732589021798
E(12) = 15.708645469273 E(37) = 68.743644612501
E(13) = 18.535761604401 E(38) = 68.743644649428
E(14) = 18.535761951543 E(39) = 73.195648957615
E(15) = 19.329445299735 E(40) = 79.303486379907
E(16) = 19.329445306194 E(41) = 85.865499885249
E(17) = 19.644048052034 E(42) = 85.865531919077
E(18) = 24.002368034839 E(43) = 127.196518644932
E(19) = 24.002368621986 E(45) = 130.602186113463
E(20) = 24.076849036707 E(46) = 130.602190550265
E(21) = 24.076853269415 E(47) = 137.484863078186
E(22) = 24.574406183060 E(48) = 158.452350229845
E(23) = 26.836031180463 E(49) = 205.158233049979
E(25) = 27.860752485358 E(50) = 446.152984041077

epair Energy = -7.615091736818.
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Appendix 9.B
Isochemical Calculations for the Four-Body H2

Molecule

In this appendix we present a summary of the computer calculations con-
ducted in Ref. [5] for the four-body model of the hydrogen molecule, Eq. (9.1.33),
according to isochemistry by using only 6G-1s orbitals for brevity. The calcula-
tions are also based on the characteristics of the isoelectronium in Eqs. (9.1.25).
Note, again, the exact representation of the binding energy at −1.174447
Hartrees.

Gaussian-Lobe Program for Large Molecules
set up by D. Shillady and S. Baldwin
Virginia Commonwealth University

Richmond Virginia
1978-1997

Test of SASLOBE on H2

SANTILLI-RADIUS = 0.01184470000000.
Cutoff = (A/r)*(exp(-alp*r*r)), A = 0.20E+01, alp = 0.49405731E+04.

Atomic Core Nuclear Coordinates

X Y Z
1. 0.000000 0.000000 0.000000

Z1s = 1.200 Z2s = 0.000 Z2p = 0.000
Z3s = 0.000 Z3p = 0.000 Z3d = 0.000
Z4p = 0.000 Z4f = 0.000

1. 0.000000 0.000000 1.401100
Z1s = 1.200 Z2s = 0.000 Z2p = 0.000
Z3s = 0.000 Z3p = 0.000 Z3d = 0.000
Z4p = 0.000 Z4f = 0.000

Basis Size = 2 and Number of Spheres = 12 for 2 Electrons.

Distance Matrix in Angströms:
H H

H 0.00000 0.74143
H 0.74143 0.00000

The center of Mass is at: Xm = 0.000000, Ym = 0.000000, Zm = 0.700550.
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Spherical Gaussian Basis Set:

No. 1 alpha = 0.944598E+03 at X = 0.0000 Y = 0.0000 Z = 0.0000 a.u.
No. 2 alpha = 0.934768E+02 at X = 0.0000 Y = 0.0000 Z = 0.0000 a.u.
No. 3 alpha = 0.798123E+01 at X = 0.0000 Y = 0.0000 Z = 0.0000 a.u.
No. 4 alpha = 0.519961E+01 at X = 0.0000 Y = 0.0000 Z = 0.0000 a.u.
No. 5 alpha = 0.235477E+00 at X = 0.0000 Y = 0.0000 Z = 0.0000 a.u.
No. 6 alpha = 0.954756E+00 at X = 0.0000 Y = 0.0000 Z = 0.0000 a.u.
No. 7 alpha = 0.1944598E+03 at X = 0.0000 Y = 0.0000 Z = 1.4011 a.u.
No. 8 alpha = 0.7934768E+02 at X = 0.0000 Y = 0.0000 Z = 1.4011 a.u.
No. 9 alpha = 0.40798123E+01 at X = 0.0000 Y = 0.0000 Z = 1.4011 a.u.

No. 10 alpha = 0.11519961E+01 at X = 0.0000 Y = 0.0000 Z = 1.4011 a.u.
No. 11 alpha = 0.37235477E+00 at X = 0.0000 Y = 0.0000 2 = 1.4011 a.u.
No. 12 alpha = 0.12954756E+00 at X = 0.0000 Y = 0.0000 Z = 1.4011 a.u.

Contracted Orbital No. 1:
0.051420*(1), 0.094904*(2), 0.154071*(3), 0.203148*(4), 0.169063*(5), 0.045667*(6).
Contracted Orbital No.2:
0.051420*(7), 0.094904*(8), 0.154071*( 9), 0.203148*(10), 0.169063*(11),
0.045667*(12).

***** Nuclear Repulsion Energy in au = 0.71372493041182. *****

Overlap Matrix:

# at-orb 1 2

1 H 1s 1.000 0.674
2 H 1s 0.674 1.000

S(-1/2) Matrix:

# at-orb 1 2

1 H 1s 1.263 -0.490
2 H 1s -0.490 1.263

H-Core Matrix:

# at-orb 1 2

1 H 1s -1.127 -0.965
2 H 1s -0.965 -1.127

Initial-Guess-Eigenvectors by Column:

# at-orb 1 2

1 H 1s 0.546 1.239
2 H 1s 0.546 -1.239

One-Electron Energy Levels: E(1) = -1.249428797385, E(2) = -0.499825553916.
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(1,1/1,1) = 0.75003658795676
minus (1,1/1,1) = 0.08506647783478
total (1,1/1,1) = 0.66497011012199

(1,1/1,2) = 0.44259146066210
minus (1,1/1,2) = 0.02960554295227
total (1,1/1,2) = 0.41298591770983

(1,1/2,2) = 0.55987025041920
minus (1,1/2,2) = 0.01857331166211
total (1,1/2,2) = 0.54129693875709

(1,2/1,2) = 0.30238141375547
minus (1,2/1,2) = 0.01938180841827
total (1,2/1,2) = 0.28299960533720

(1,2/2,2) = 0.44259146066210
minus (1,2/2,2) = 0.02960554295227
total (1,2/2,2) = 0.41298591770983

(2,2/2,2) = 0.75003658795676
minus (2,2/2,2) = 0.08506647783478
total (2,2/2,2) = 0.66497011012199

Block No. 1 Transferred to Disk/Memory. The Two-Electron Integrals
Have Been Computed.
Electronic Energy = -1.88819368266525 a.u., Dif. = 1.8881936827,
Electronic Energy = -1.88819368266525 a.u., Dif. = 0.0000000000.
Energy Second Derivative = 0.00000000000000.

e1a = -2.499 e1b = -2.499
e2a = 0.611 e2b = 0.611 e2ab = 0.611

Iteration No. = 2, alpha = 0.950000.
Electronic Energy = -1.88819368266525 a.u., Dif. = 0.0000000000.
Total Energy = -1.17446875 a.u.
One-Electron Energy Levels: E(1) = -0.638764885280, E(2) = 0.561205833046

Reference State Orbitals for 1 Filled Orbitals by Column:
# at-orb 1 2

1 H 1s 0.546 1.239
2 H 1s 0.546 -1.239

Dipole Moment Components in Debyes:
Dx = 0.0000000, Dy = 0.0000000, Dz = 0.0000000.
Resultant Dipole Moment in Debyes = 0.0000000.
Computed Atom Charges: Q(1) = 0.000, Q(2)= 0.000.
Orbital Charges: 1.000000, 1.000000.

Milliken Overlap Populations:
# at-orb 1 2

1 H 1s 0.597 0.403
2 H 1s 0.403 0.597
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Total Overlap Populations by Atom:

H H

H 0.597222 0.402778
H 0.402778 0.597222

Orthogonalized Molecular Orbitals by Column:

# at-orb 1 2

1 H 1s 0.422 2.172
2 H 1s 0.422 -2.172

Wiberg-Trindie Bond Indices:

# at-orb 1 2

1 H 1s 0.127 0.127
2 H 1s 0.127 0.127

Wiberg-Trindie Total Bond Indices by Atoms:

H H

H 0.127217 0.127217
H 0.127217 0.127217
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