
Chapter 5

HYPERSTRUCTURAL BRANCH OF HADRONIC
MECHANICS AND ITS ISODUAL

5.1 IN PREPARATION - NOVEMBER 1, 2005
In this author’s opinion, the biggest scientific imbalance of the 20-th century

has been the treatment of biological systems (herein denoting DNA, cells,
organisms, etc.) via the mathematics, physics and chemistry developed for
inanimate matter, such as that of classical and quantum mechanics.

The imbalance is due to the fact that conventional mathematics and related
formulations are inapplicable for the treatment of biological systems for various
reasons.

To begin, biological events, such as the growth of an organism, are irre-
versible. Therefore, any treatment of biological systems via reversible mathe-
matics, physical and chemical formulations can indeed receive temporary aca-
demic acceptance, but cannot pass the test of time.

Quantum mechanics is ideally suited for the treatment of the structure of
the hydrogen atom or of crystals, namely systems that are fully reversible.
These systems are represented by quantum mechanics as being ageless. Re-
call also that quantum mechanics is unable to treat deformations because of
incompatibilities with basic formulations, such as the group of rotations.

Therefore, the rigorous application of quantum mechanics to biological struc-
tures implies that all organisms from cells to humans are perfectly reversible,
rigid and eternal.

Even after achieving the invariant formulation of irreversibility outlined in
the preceding section, it is easy to see that the underlying genomathematics
remains insufficient for in depth treatment of biological systems.

Recent studies conducted by Illert [56] have pointed out that the shape of
sea shells can certainly be represented via conventional mathematics, such as
the Euclidean geometry.
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However, the latter is inapplicable for a representation of the growth in time
of sea shells. Computer simulations have shown that the imposition to sea
shell growth of conventional geometric axioms (e.g., those of the Euclidean
or Riemannian geometries) causes the lack of proper growth, as expected,
because said geometries are strictly reversible, while the growth of sea shells
is strictly irreversible.

The same studies by Illert [56] have indicated the need of a mathematics
that is not only structurally irreversible, but also multi-dimensional. As an
example, Illert achieved a satisfactory representation of sea shells via the dou-
bling of the Euclidean reference axes, namely, a geometry which appears to be
six-dimensional.

A basic problem in accepting such a view is the lack of compatibility with
our sensory perception. When holding sea shells in our hands, we can fully
perceive their shape as well as their growth with our three Eustachian tubes.

In particular, our senses are fully capable of perceiving deviations from the
Euclidean space, as well as the possible presence of curvature.

These occurrences pose a rather challenging problem, the achievement of
a representation of the complexity of biological systems via the most general
possible mathematics that is:

(1) is structurally irreversible (as in the preceding section);
(2) can represent deformations;
(3) is invariant under the time evolution;
(4) is multi-dimensional; and, last but not least,
(5) is compatible with our sensory perception.
A search in the mathematical literature revealed that a mathematics veri-

fying all the above five requirements did not exist and had to be constructed
from the main features of biological systems.

As an example, in their current formulations hyperstructures (see Ref. [96]
lack a well defined left and right unit even under their weak equalities, they
are not structurally irreversible, and they lack invariance. Consequently, they
are not suitable for applications in biology.

After numerous trials and errors, a yet broader mathematics verifying the
above five conditions was identified by Santilli in Ref. [14] (see also Refs.
[13,47] monograph [57]; it is today known under the name of Santilli hyper-
mathematics; and it is characterized by the following hyperunits here expressed
for the lifting of the Euclidean unit
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with corresponding ordered hyperproducts to the right and to the left

A > B = A × T̂> × B, A < B = A ×< T̂ × B, (3.6.83a)

Î> > A = A > Î> = A, <Î < AA << Î = A, (3.6.83b)

Î> = (<Î)† = 1/T̂>, (3.6.83c)

the only difference with genoforms is that hyperproduct are now multivalued,
where all operations are ordinary (and not weak as in conventional hyperstruc-
tures).

As one can see, the above mathematics is not 3m-dimensional, but rather
it is 3-dimensional and m-multi-valued.

Such a feature permits the increase of the reference axes, e.g., for m = 2
we have six axes as used by Illert [56], while achieving compatibility with our
sensory perception because at the abstract, realization-free level hypermathe-
matics characterized by hyperunit is indeed 3-dimensional.

The various branches of hypermathematics (hypernumbers, hyperspaces,
hyperalgebras, etc.) can be constructed via mere compatibility arguments
with the selected hyperunit (see monograph [57] for brevity).

A main difference of hypermathematics with the preceding formulations is
that in the latter the product of two numbers is indeed generalized but single-
valued, e.g., 2 > 3 = 346.

By comparison, in hypermathematics the product of two numbers yields,
by conception, a set of values, e.g.,

2 > 3 = (12, 341, 891, ...). (3.6.84)

Such a feature appears to be necessary for the representation of biological
systems because the association of two atoms in a DNA (mathematically rep-
resentable with the hypermultiplication) can yield an organ with an extremely
large variety of atoms.

This feature serves to indicate that the biological world has a complexity
simply beyond our imagination, and that studies of biological problems con-
ducted in the 20-th century, such as attempting an understanding the DNA
code via numbers dating back to biblical times, are manifestly insufficient.

The isodual hypermathematics can be constructed via the use of isoduality.
The following intriguing and far reaching aspect emerges in biology. Until now
we have strictly used isodual theories for the sole representation of antimatter.
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As shown in the qupted literature, the complexity of biological systems
is such to require the use of both hyperformulations and their isodual for
consistent and quantitative representations, as it is the case of bifurcations.

In turn, the above occurrence implies that the intrinsic time of biological
structure, here referred to as hyperbiotime, is expected to be of a complexity
beyond our comprehension because not only multivalued, but also inclusive of
all four directions of time.

In conclusion, the achievement of invariant representations of biological
structures and their behavior can be one of the most productive frontiers
of science with far reaching implications for other branches, including mathe-
matics, physics and chemistry.

As an illustration, the achievement of a mathematically consistent repre-
sentation of the non-Newtonian propulsion of sap in trees up to big heights
will automatically provide a model of geometric propulsion, namely propulsion
caused via the alteration of the local geometry without any external applied
force.


