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Abstract

In this paper, we study a nonlinear two-dimensional two-particle quan-
tum tunnel effect with dissipation in diatomic H-H system. We use an
instanton technique based on path integral approach, and present analyt-
ical solutions, in a linearized reaction coordinates and harmonic potential
approximation. It appears that the tunnel effect leads to a specific cor-
relation between two electrons interacting with each other by Coulomb
potential. This effect can be viewed as a mechanism supporting the iso-
electronium recently proposed by Santilli and Shillady within the frame-
work of isochemical model of the hydrogen molecule. We show that, under
a condition of effective two-dimensional motion, contribution of the quan-
tum tunnel correlated configurations is essential in the electron dynamics.
Temperature dependence of the probability of the two-electron tunnel
transitions per unit time has been studied.
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1 Introduction

In a recent paper, Santilli and Shillady [1] suggested a new isochemical model
of the hydrogen molecule characterized by a bond at short distances of the
two valence electrons into a singlet quasi-particle state called isoelectronium
has been introduced. Namely, the isochemical model suggests introducing of
attractive short-range Hulten potential interaction between the electrons, in
addition to the usual Coulomb repulsive potential. An origin of the short-range
attractive potential has been assumed due to a deep overlapping of wavepackets
of the electrons giving rise to nonlinear and other effects.

Both the unstable and stable isoelectronium cases corresponding to the gen-
eral four-body and the restricted three-body problems, respectively, have been
analyzed, in Born-Oppenheimer approximation. Standard Boys-Reeves numeri-
cal three-body and four-body calculations [1], exact analytic three-body solution
based study [2], and analytic four-body Ritz variational study [3] of the model
have been carried out. The Hulten potential Vh, which contains two param-
eters, appeared to lead to rather complicated calculations so that the other
potentials, the Gaussian-screened-Coulomb potential Vg and the exponential-
screened-Coulomb potential Ve, have been used in the above papers, to mimic
the Hulten potential at long and short distance asymptotics. A comparison of
the obtained results with experimental data on H2 molecule showed that the ap-
proximation of stable pointlike isoelectronium (three-body problem) does not fit
the data while for the unstable isoelectronium case (the general four-body prob-
lem) exact representation of the experimental binding energy and bond length
of H2 molecule can be achieved by fitting the correlation length parameter of
the potential. The ground state energy based estimation [3] showed that the
contribution of the attractive interelectron potential Ve (i.e., contribution of the
isoelectronium related potential) should be about 1%...6% of that of the usual
repulsive interelectron Coulomb potential, to meet the experimental data. In
ref. [3] some relation between the two parameters of the Hulten potential was
used, thus only one parameter has been used for the fitting. This relation arose
from consideration of the two-electron system governed by the Hulten potential,
with the assumption that the electrons could form one-level bound state.

The effect of electron correlations made by the introduced attractive short-
range interelectron potentials (i.e., the unstable isoelectronium), with the cor-
relation length parameter value of about 0.01 bohr appeared to be helpful in
achieving exact representation of the experimental data on H2 molecule. Also,
within the Boys-Reeves framework the isoelectronium based approach appeared
to provide an essentially (at least 1000 times) faster computer calculations [1],
in comparison to a standard C.I. calculation. This approach has been extended
to the case of other diatomic molecules [1] and water molecule [4].

In the present paper, we study two-electron correlations arising from the
two-dimensional tunnel effect with dissipation which can take place in diatomic
molecules subjected to strong external electromagnetic field. More specifically,
we take H2 molecule as a simple example and assume that the three-dimensional
potential can be effectively reduced to a two-dimensional one under the action of
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the external field. Also, we assume that the H2 molecule is a part of molecular
association. Due to obtained results, the two-particle tunnel effect leads to a
contribution which resembles that of the above isoelectronium correlations in
two-dimensions. However, we should to emphasize that we do not introduce
any attractive interelectron potential. Namely, the characteristic two-electron
correlation arises naturally as a consequence of the two-dimensional two-particle
tunnel effect with dissipation.

Present consideration is strongly motivated by recent studies of a light gas
called MagneGasTM , consisting, due to a standard chemical analysis, mainly
of carbon monoxide CO (41%) and hydrogen H2 (48%) gases, produced by
the Santilli’s PlasmaArcFlowTM chemical reactor [5, 6]. Gas-chromatography
mass-spectrometry and infrared spectroscopy data obtained at room tempera-
tures clearly indicate presence of high molecular mass species (up to 1000 a.m.u.)
in MagneGas, in a macroscopic percentage. They have no strong infrared sig-
nature of conventional chemical bonds, except for that of carbon monoxide CO
and, also, carbon dioxide CO2, which is present in MagneGasTM in some small
percentage. The GC-MS/IR search results using a library of about 138,000
chemical species did not indicate any matches with these high molecular mass
species. The main hypothesis on the origin of these species called magnecules is
that they are formed from the usual molecules (CO, H2, etc.) bonded to each
other in some way, under the initial action of strong external electromagnetic
field produced by underwater arc in the Santilli’s PlasmaArcFlowTM reactor [5].
We refer the interested reader to refs. [5, 6] for more detailed information on
MagneGasTM and Santilli’s PlasmaArcFlowTM reactor, and their applications.

We conjecture that the two-dimensional tunnel effects play an essential role
at the stage of forming of the high molecular mass species (magnecules) inside
the reactor, where the influence of the strong external electromagnetic field takes
place. Main details of a rather complicated physico-chemical process inside the
reactor can be studied elsewhere. In general, an importance of studying of the
tunnel effects is grounded on the fact that a tunnel effect is known to be as a
mechanism in forming of formaldehyde (CH2=O) polymer structure.

In the present paper, we concentrate on the study of consequences implied by
the eventual ’magnetic freezing‘ (lowering of the effective temperature due to the
effect of external electromagnetic field) of the hydrogen molecule in molecular
association. The magnetic freezing is characterized by an effective reducing of
the three-dimensional potentials to some two-dimensional ones (‘polarizing of
orbits’). We should to emphasize that the system under study is not a separate
H2 molecule as such because of the effective two-dimensional treatment of it and
presence of the neighbor molecules in association; herebelow, the system under
study is referred to as H-H system.

We use oscillator potentials as an approximation to superposition of Coulomb
potentials in the H-H system in molecular association. Such an approximation
is naturally used in low-temperature chemical kinetics, with parameters of the
oscillator potential being adjusted to reproduce a ground state energy level. The
interelectron potential is taken as a Coulomb one. We note that the ground state
energy of the ”magnetically frozen” H2 molecule (the H-H system) is lower than
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that of the ordinary H2 molecule. As the result the binding energy of the H-
H system is bigger than that of H2 molecule. Detailed study of the effect of
external electromagnetic field will be made in a subsequent paper.

Set up of the model is the following. We consider two-dimensional (planar)
motion of two electrons around fixed nuclei of two H atoms. The electrons
thus move in a nonlinear potential U(q1, q2), where the reaction coordinates q1

and q2 of the electrons in the H-H system can be linearized in the first order
approximation as shown in Fig. 1. The linearization assumes introducing of four
centers, instead of the original two centers (protons).
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Figure 1: The linearized reaction coordinates q1 and q2.

The resulting approximate nonlinear potential U(q1, q2) represents two-di-
mensional potential surface modelling the two-dimensional potential of the orig-
inal system (two protons and two electrons moving in plane). This surface has
the highest points at a half proton-proton distance, and four lowest points at
the protons.

Dynamics of two interacting electrons in this two-dimensional potential is
due to the ordinary quantum mechanics to which the energy barrier lying be-
tween the protons makes specific contribution: two-dimensional quantum tunnel
effect of two-electron transitions. The tunnel component of the probability of
two-electron transitions becomes essential in the case when the ordinary over-
barrier two-electron transitions are suppressed.

Clearly, the tunnel transitions can greatly affect both the character and
strength of the chemical bond in diatomic molecule. As a consequence, they can
give an essential contribution to electron dynamics in the magnecules consisting
of such molecules.

We remark that usually a tunnel effect is considered for the case of one
particle in one dimension, which is a simplest case studied to much extent.
In this paper, we consider tunnel effect with dissipation for the case of two
interacting particles in two-dimensional potential.

The tunnel correlation of electrons is considered on the background of a
formed two-dimensional potential of the H-H system which is assumed to be a
part of molecular association (magnecule). So, we study temperature effects by
introducing interaction of the H-H system with a heat bath.
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2 The two-dimensional tunnel model

Details on using of the theory of quantum tunnelling with dissipation [7]-[14]
in chemical kinetics can be found in the literature [15]-[17]. Below, we turn
to determining of the two-dimensional nonlinear potential for two interacting
electrons.

For the case of non-interacting electrons the potential energies of first and
second electrons, as functions of the reaction coordinates, q1 and q2, are taken
in the following form:

U(q1) =
1
2
ω2(q1 + a)2θ(−q1) +

1
2
ω2(q1 − a)2θ(q1),

U(q2) =
1
2
ω2(q2 − a)2θ(q2) +

1
2
ω2(q1 + a)2θ(−q2), (1)

where 2a is distance between two nuclei in the H-H system (2a ' 1.40 bohr, for
H2 molecule in vacuum), mass of electron is m = 1, and ω is a frequency. In
Fig. 2, the potentials U(q1) and U(q2) are shown.
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Figure 2: The potentials U(q1) and U(q2) as functions of linearized coordinates.

The interaction between the two electrons is taken in the following form:

Vint(q1, q2) = −1
2
α(q1 − q2)2, (2)

where α is a positive constant, and (q1 − q2) is distance between the electrons.
Note that Vint has the form of attractive harmonic potential. Indeed, in the
xy-plane the x-component of the mutual distance of two interacting electrons
in two dimensions are much bigger than the y-component, q0 À a, as shown in
Fig. 3

So, the interaction potential can be expanded in small parameter (q1y −
q2y)2/q2

0 , where q1y and q2y are coordinates of tunneling. The Coulomb repulsion
potential between the electrons with electric charges −e is then

VC =
e2

ε0|q| =
e2

ε0

√
q2
0 + (q1y − q2y)2
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Figure 3: Transition of two interacting electrons.

' e2

ε0q0
− e2

2ε0q0

(q1y − q2y)2

q2
0

, (3)

where ε0 is dielectric constant. The negative (second) term in the series expan-
sion (3) is the effective attractive potential (2) so that the constant α is found
as

α =
e2

2ε0q0
. (4)

The first term, e2/(ε0q0), is responsible for repulsion between the electrons,
and is constant along the reaction coordinates so that it can be absorbed by
redefining U(q1) and U(q2). Obviously, in general the interaction potential VC

is always repulsive but one can see that only its effective attractive part given
by Eq. (2), as a function of the reaction coordinates, appears to contribute to
the reaction dynamics.

In general, the attractive character of the interelectron potential Vint(q1, q2)
resembles the attractive interelectron Hulten potential Vh(r) of the isochemical
model [1]. The difference is that Vint is formulated in terms of reaction co-
ordinates, has a harmonic form, and naturally arises as an effective long-range
potential in the two-dimensional approach. So, Vint can be viewed as a potential
essentially supporting the isoelectronium in two dimensions.

Thus, the general form of the total potential is a sum of U(q1), U(q1), and
Vint(q1, q2),

Ũ(q1, q2) = U(q1) + U(q2) + Vint(q1, q2),

which we redefine as

U(q1, q2) =
2Ũ(q1, q2)

ω2
= (q1+a)2θ(−q1)θ(q1)+(q2−a)2θ(q2)θ(−q2)−α∗

2
(q1−q2)2.

(5)
Here, we have denoted

α∗ =
2α

ω2
,
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which is a dimensionless parameter, α∗ < 1. In Fig. 4 section of the potential
(5), at some energy level, is schematically depicted. In Figs. 5 and 6, three-
dimensional plots of the potential, at different values of the renormalized inter-
electron coupling parameter, α∗ = 0.1 (weak coupling) and α∗ = 0.5 (strong
coupling), are shown. Here, the ovals corresponding to sections of the potential
by a horizontal plane at some energy level are depicted for the reader conve-
nience. We recall that q1 and q2 are the reaction coordinates (not coordinates
of real configuration space of the system).
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Figure 4: Level lines (1,2,3,4) of the potential U(q1, q2); α∗ is the renormalized
coupling parameter.

3 Probability of the two-electron transition

Since the hydrogen molecule is assumed to be a part of an association of
molecules (magnecule), we introduce interaction of the H-H system with ex-
ternal oscillators, a heat bath. Dynamics of the heat bath is defined by the
oscillator Hamiltonian

Hhb =
1
2

∑

i

(pi + ω2
i Q2

i ). (6)
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Figure 5: A three-dimensional plot of the potential U(q1, q2); α∗ = 0.1, a = 0.7.

We assume that each of the electrons linearly interacts with the oscillators,
namely, the interaction potentials are

V
(1)
e−hb(qi, Qi) = q1

∑

i

CiQi, V
(2)
e−hb(qi, Qi) = q2

∑

i

CiQi, (7)

The probability of the two-electron transition per unit time is given by

Γ = 2T
ImZ

ReZ
, (8)

where, as usual, the most important part is the exponential part of Γ. At zero
temperature, for the case of metastable levels we have

Γ = −2ImE, E = E0 − i

2
Γ, (9)

from which Eq. (8) follows as the generalization to the case of finite temperature
T . Indeed,

Γ =
2

∑
i

exp(−E0i/T )ImEi

∑
i

exp(−E0i/T )
=

2T Im
∑
i

exp(−Ei/T )

Re
∑
i

exp(−Ei/T )
= 2T

ImZ

ReZ
. (10)

Here, i runs over energy levels of the metastable states, and Z is statistical sum
of the total system. The imaginary part of Z corresponds to a decay of the
energy levels.

To calculate Γ it is convenient to represent Z as a path integral [7]-[14]

Z =
∏

i

∫
Dq1Dq2DQi exp[−S(q1, q2, Qi)], (11)
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Figure 6: A three-dimensional plot of the potential U(q1, q2); α∗ = 0.5, a = 0.7.

where S is the action of the total system. An imaginary part of Z corresponds
to decay of the initial energy levels. One can perform functional integral over
Qi exactly, and obtain

Z =
∏

i

∫
Dq1Dq2 exp[−S(q1, q2)],

where

S(q1, q2) =

β/2∫

−β/2

dτ
{1

2
q̇2
1 +

1
2
q̇2
2 + V (q1, q2))+ (12)

1
2

β/2∫

−β/2

dτ ′D(τ − τ ′)(q1(τ) + q2(τ))(q1(τ ′) + q2(τ ′))
}

,

where

D(τ) =
1
β

∞∑
n=−∞

D(νn)eiνnτ (13)

is Green function for the oscillators, with

D(νn) = −
∑

i

C2
i

ω2
i + ν2

n

, (14)

β = h̄/kBT is the inverse temperature parameter, and νn is Matsubara’s fre-
quency.

8



The quasiclassical trajectory minimizing the action S in two-dimensional
space is defined by the equations of motion,

−q̈1+Ω2
0q1+α1q2+

β/2∫

−β/2

dτ ′K(τ−τ ′)(q1(τ ′)+q2(τ ′))+ω2aθ(−q1)−ω2aθ(q1) = 0

(15)
and

−q̈2+Ω2
0q2+α1q1+

β/2∫

−β/2

dτ ′K(τ−τ ′)(q1(τ ′)+q2(τ ′))−ω2aθ(q2)+ω2aθ(−q2) = 0.

(16)
Here, the kernel K is defined by

K(τ) =
1
β

∞∑
n=−∞

ξneiνnτ , (17)

where ξn is determined from the redefined Eq. (14), namely,

D(νn) = −
∑

i

C2
i

ω2
i

+ ξn. (18)

This redefinition has been made in order to extract a zero mode term.
We seek for solutions of the set of Eqs. (15) and (16) in the form of Fourier

series expansions in frequencies νn,

q1 =
1
β

∞∑
n=−∞

q(1)
n eiνnτ , q2 =

1
β

∞∑
n=−∞

q(2)
n eiνnτ . (19)

The renormalized frequency, Ω0 and renormalized coupling constant α1 are de-
fined by

Ω2
0 = ω2 −

∑

i

C2
i

ω2
i

− α, α1 = α−
∑

i

C2
i

ω2
i

. (20)

Inserting Eqs. (19) into the set of equations (15) and (16), we get the
following equations:

q
(1)
0 + q

(2)
0 =

4ω2aε

Ω2
0 + α1

,

q
(1)
0 − q

(2)
0 = − 2ω2aβ

Ω2
0 − α1

+
8ω2τ0

Ω2
0 − α1

, (21)

for the case n = 0, and

q(1)
n + q(2)

n =
4ω2a(sin νnτ1 − sin νnτ2)
νn(ν2

n + Ω2
0 + α1 + 2ξn)

,

q(1)
n − q(2)

n =
4ω2a(sin νnτ1 + sin νnτ2)

νn(ν2
n + Ω2

0 − α1)
, (22)
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for the case n 6= 0. Here, we have denoted

ε = τ1 − τ2, τ0 =
1
2
(τ1 + τ2), (23)

and τ1 and τ2 are the values of time τ at which first and second electron,
respectively, passes through the maximum of the potential barrier. Namely, τ1

and τ2 are determined from the following equations:

q1(τ1) = 0, q2(τ2) = 0. (24)

These two equations can be used to change arguments of the above θ-functions.
As the result, the θ-functions become depending on the time values τ1 and τ2,
instead of the coordinates q1 and q2, and the Eqs. (15) and (16) take a linear
form. Note that, quasiclassically, the time values ±τ1 and ±τ2 correspond to
the times when first and second electron, respectively, are at the top of the
potential barrier.

Inserting the trajectories defined by Eqs. (19), (21), and (22) into Eqs. (12),
we obtain the quasiclassical (instanton) action in the form

S =
8ω4a3τ0

Ω2
0 − α1

− 4ω4a2ε2

β(Ω2
0 + α1)

− 16ω4a2τ2
0

β(Ω2
0 − α1)

−32ω4a2

β

∞∑
n=1

[
sin2 νnτ0 + cos2 νnε/2

ν2
n(ν2

n + Ω2
0 − α1)

+
sin2 νnε/2 + cos2 νnτ0

ν2
n(ν2

n + Ω2
0 + α1 + 2ξn)

]
. (25)

The quasiclassical action S describes probability of a two-particle tunnel tran-
sition per unit time, with an exponential accuracy. For the case of antiparallel
motion of the electrons, the above instanton action S, at ξn = 0 (no heat bath),
takes the form

S = −2ωa2

{
|ε|(1− 1

1− α∗
) +

sinh(|ε|√1− α∗)
(1− α∗)3/2

− sinh |ε|

+
cosh(|ε|√1− α∗) + 1

(1− α∗)3/2
· cosh((β∗ − τ)

√
1− α∗)− cosh(β∗

√
1− α∗)

sinh(β∗
√

1− α∗)
(26)

+
(cosh ε− 1)(cosh(β∗ − τ) + cosh β∗)

sinhβ∗

}
.

Here, we have denoted

α∗ =
2α

ω2
, β∗ =

βω

2
, ε = (τ1 − τ2)ω, τ = (τ1 + τ2)ω,

and the parameters ε and τ obey the following set of equations:

− sinh ε[coth β∗+cosh τ cothβ∗−sinh τ ]+
1

1− α∗
sinh(ε

√
1− α∗)[coth(β∗

√
1− α∗)

− cosh(τ
√

1− α∗) coth(β∗
√

1− α∗) + sinh(τ
√

1− α∗)] = 0,
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−1− 1
1− α∗

+ (cosh ε− 1)(sinh τ cothβ∗ − cosh τ) + cosh ε (27)

+
1

1− α∗
{
[cosh(ε

√
1− α∗) + 1][sinh(τ

√
1− α∗) coth(β∗

√
1− α∗)

− cosh(ε
√

1− α∗)]− cosh(ε
√

1− α∗)
}

.

Solution of the Eq. (27) is

ε = (τ1 − τ2)ω = 0, α <
1
2
ω2, ∀β, (28)

τ1 = τ2 =
τ

2ω
=

β

4
.

At low temperatures, ωβ À 1, we then have

e−τ
√

1−α∗ ' α∗(1− α∗)γ

{
1− (1− α∗)γ(

α∗

1−√1− α∗
− 1)

}−1

, (29)

eε ' 1
1− α∗

(α∗ − e−τ
√

1−α∗)
e−τ

√
1−α∗

,

where

γ =
√

1− α∗

1−√1− α∗
.

The approximate solution (29) is valid at

1
4

<
2α

ω2
< 1

and β > βc, where the critical temperature is

βc = − 1
ω
√

1− α∗
ln

{
α∗(1− α∗)γ

1− (1− α∗)γ( α∗
1−√1−α∗ − 1)

}
. (30)

As one can see, a characteristic critical temperature, βc = h̄/(kBTc), of the
system arises and it depends mainly on the value of the interelectron coupling
parameter α∗.

At ε = 0, for the case of symmetric two-dimensional potential the solution
(28) yields

S =
4ωa2

(1− α∗)3/2
tanh

ω
√

1− α∗

4
β (31)

At ε 6= 0, the resulting expression for the action S is cumbersome so that we do
not represent it here. However, it can be shown that, at β > βc,

S(ε=0) < S(ε6=0) (32)

so that the value ε = 0 minimizes the action. As the result, the values ε 6= 0
correspond to splitted trajectories which appear to be unstable; see Fig. 7.
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Figure 7: A schematic picture of the tunnel trajectories at ε = 0 (solid line) and
at ε 6= 0 (dash lines).

The instanton solution with ε = 0 corresponds to a strongly correlated an-
tiparallel motion of the two tunnelling electrons. Namely, the two electrons
simultaneously pass the tops of the potentials. This correlation of the two elec-
trons depends on value of the electron-electron (attraction) coupling constant
α∗ naturally arising within the framework of the model.

Such a correlation resembles the isoelectronium correlation introduced in
ref. [1] where the correlation is governed by the short-range attractive electron-
electron (Hulten) potential.

4 Conclusions

At β > βc, the basic single trajectory is splitted to two degenerated trajectories
as shown in Fig. 7 (dash lines). In contrast to the case of parallel transition, this
splitting (bifurcation) takes place at any values of the parameters of the potential
U(q1, q2). Also, at β > βc, we have S(ε 6=0) > S(ε=0) so that the trajectory with
ε = 0 make a leading contribution. At β < βc, the two degenerated trajectories
become a single basic trajectory characterized by q1 = −q2.

We see that in contrast to the case of one tunnelling particle at which only
one trajectory (instanton) is realized, in the case of two tunnelling particles in
the two-dimensional potential the situation is more complicated. As we have
shown in general there are two types of trajectories, a single basic trajectory and
splitted degenerated trajectory, both making contribution to the tunnel effect.
The splitted trajectory is characterized by nonsimultaneous (τ1 6= τ2) transition
of the two particles through the top points of the barriers, so that the time
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correlation between the particles’ motion is lost. It is highly remarkable that
in the case of symmetric two-dimensional potential such splitted trajectories in
both the cases of parallel and antiparallel motion of the two particles are unsta-
ble. At small α∗ and β < βc, the splitted degenerated trajectory is not realized
so that there is only the basic single trajectory (q1 = −q2). This trajectory is
characterized by simultaneous (τ1 = τ2) transition of the two particles through
the top points of the barriers, so that there is a strong correlation between the
particles’ motion.

The chosen form of the interelectron interaction does not affect the motion
of the center of mass (q1 = q2). So, for the parallel transition along the basic
trajectory (q1 = q2) the quasiclassical (instanton) action does not depend on
the coupling parameter. In this case,

S = 4ωa2 tanh
ωβ

4
. (33)

Since the motion with maximal value of the relative coordinate, i.e. q1 = −q2,
is energetically preferable it becomes clear why for the parallel transition along
the degenerate trajectory the action decreases with increase of the coupling
parameter while for the antiparallel transition along the degenerate trajectory
the action increases with increase of the coupling parameter.

Thus, in the case of antiparallel tunnel transition of two interacting electrons
the preferable trajectory is a single basic one which is characterized by strong
(isoelectronium-like) correlation between the electrons (τ1 = τ2). Here, the
uncorrelated motion (”decay” of the isoelectronium-like state) is suppressed
because it makes bigger contribution to the instanton action.

As to a heat bath, it appears to be possible to study analytically the effect of,
for example, one local mode ωL to the two-electron transition probability. The
result is that the heat bath does not change the qualitative conclusions made
above. Temperature dependence of the action S for the antiparallel motion case
(ε = 0) at two different values of the renormalized coupling parameter, α∗ = 0.1
and α∗ = 0.5, is shown in Fig. 8

6

-

S/4ωa2

1

2

βω/40 1 2 3 4 5 6 7

◦
◦ ◦ ◦ ◦ ◦ ◦ ◦ (a)

•
•

•
• • • • • (b)

Figure 8: The action (ε = 0, antiparallel motion) as a function of inverse tem-
perature β = h̄/kBT ; (a) α∗ = 0.1, (b) α∗ = 0.5.

13



In this paper, we used the assumption that dynamics of the two interacting
electrons can be taken approximately as a two-dimensional. This is due to the
viewpoint [1] that strong external electromagnetic field confines, to some degree,
the usual three-dimensional motion of the electrons so that consideration of two-
dimensional effects in molecules, as well as in associations of molecules, becomes
highly important. The main two-dimensional effect, namely, the two-electron
tunnel effect with dissipation, for the antiparallel transition, has been studied
in this paper.

Within the one-instanton linearized reaction coordinates approximation and
using an ideal gas of instanton-antiinstanton pairs (βω ¿ 16Ubarrier/ω), we
have shown that the correlated isoelectronium-like motion of the two tunnelling
electrons in two-dimensional H-H system with dissipation takes place and ap-
pears to be the most stable configuration. Thus, the tunnel correlations can be
viewed as a mechanism supporting the isoelectronium configurations introduced
by Santilli and Shillady.

Detailed study of the effect of strong external electromagnetic field, as well
as the implications of the results of this paper, will be made in a subsequent
paper.

Application of the formalism presented in this paper to carbon monoxide
molecule CO is of much interest as well. Study of the transition rates, Γ = e−S ,
for the case of association of molecules (intramolecular tunnelling) could be
important in investigating electron charge distribution and bonds in magnecules.
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