Foundations of Hadronic Chemistry With Applications To New Clean Energies And Fuels

FOUNDATIONS OF HADRONIC CHEMISTRY With Applications To New Clean Energies And Fuels

RUGGERO MARIA SANTILLI Institute for Basic Research P.O. Box 1577, Palm Harbor, FL 34682, U.S.A. ibr@gte.net, http://www.i-b-r.org, http://www.magnegas.com

Kluwer Academic Publishers Boston/Dordrecht/London

This monograph is dedicated to

Professor **T. Nejat Veziroglu**, Director, Clean Energy Research Institute, University of Miami, Coral Gables, Florida, and Editor in Chief, International Journal of Hydrogen Energy, Elsevier Science, Oxford, England,

because his commitment to scientific democracy for qualified inquiries and his impeccable editorial processing have permitted the birth of the new discipline presented in this monograph.

Contents

	eface knowledg	ments	xii lii
1.	C	DUCTION	
		omatic Consistency of Quantum Chemistry	
		pe of These Studies	
		ifficiencies of Quantum Chemistry for Molecular actures	
4	4 Inst	ifficiency of Quantum Chemistry for Chemical	
	Rea	ctions	1
ļ	5 Inst	ifficiencies of Quantum Chemistry for Biological	
	Str	ictures	1
(6 The	e Central Topic of Study of This Monograph	1
,	7 Cat	astrophic Inconsistencies of Generalized Nonunitary	
	The	eories on Conventional Mathematics	1
8	8 Hao	lronic Mechanics	2
9	9 Hao	lronic Superconductivity	3
		NTS OF ISO-, GENO-, AND HYPER-MATHEMATICS	
	AND TH	EIR ISODUALS	Ę
	1 Intr	oduction	Ę
	2 Ele	ments of Isomathematics	6
	2.1	Isounits and Isoproducts	6
	2.2	Isonumbers and Isofields	6
	2.3	Isospaces and Isogeometries	6
	2.4	Isodifferential Calculus	6
	2.5	Isohilbert Spaces	7
	2.6	Isoperturbation Theory	7
	2.7	Isofunctional Analysis	7

	2.8	Isolinearity, Isolocality, Isocanonicity and	
		Isounitarity	75
	2.9	Lie-Santilli Isotheory	77
3	Elements of Genomathematics		81
	3.1	Introduction	81
	3.2	Main Structural Lines of Genomathematics	82
	3.3	Genounits and Genoproducts	88
	3.4	Genonumbers and Genofields	89
	3.5	Genospaces and Genogeometries	91
	3.6	Genodifferential Calculus	92
	3.7	Genohilbert Spaces	93
	3.8	Genolinearity, Genolocality, and Genounitarity	94
	3.9	Lie-Santilli Genotheory	95
4		nathematics	97
5	Isodua	1 Mathematics	99
FOI	UNDAT	IONS OF HADRONIC CHEMISTRY	107
1	Introdu		107
2		al Foundations of Hadronic Chemistry	111
4	2.1	The Historical Teaching of Lagrange and	111
	2.1	Hamilton	111
	2.2	The Inevitability of the Historical Teaching	112
	2.3	Problematic Aspects of External Terms	113
	2.4	Classification of Hamilton's Equation with External	
		Terms	114
	2.5	Hamilton-Santilli Isomechanics	115
	2.6	Classical Lie-Santilli Brackets	118
	2.7	Isoaction Principle	120
	2.8	Hamilton-Jacobi-Santilli Isoequations	121
	2.9	Examples of Classical Applications	121
	2.10	Connection Between Isotopic and Birkhoffian	
		Mechanics	122
	2.11	Hamilton-Santilli Geno-, Hyper-, and Isodual-	
		Mechanics	124
	2.12	Simple Construction of Classical Isochemistry	126
	2.13	Invariance of Classical Isochemistry	128
	2.14	Simple Construction of Classical Genochemistry	129
	2.15	Invariance of Classical Genochemistry	129
	2.16	Simple Construction and Invariance of Hyper- and	100
2	0	Isodual Mechanics	129
3	-	for Foundations of Hadronic Chemistry	130
	3.1	Introduction	130
	3.2	Naive Iso-, Geno, Hyper-, and Isodual	190
	<u></u>	Quantization	130
	3.3	Structure of Operator Isochemistry	132

3.

		3.4	Basic Equations of Operator Isochemistry	134
		3.5	Preservation of Quantum Physical Laws	135
		3.6	Simple Construction of Operator Isochemistry	139
		3.7	Invariance of Operator Isochemistry	142
		3.8	Gaussian Screenings as Particular Cases of	1.40
		2.0	Isochemistry	143
		3.9	Elements of Operator Geno-, Hyper-, and Isodual- Chemistry	144
		3.10	Simple Construction of Operator Geno-, Hyper-, and Isodual Chemistry	147
		3.11	Invariance of Operator Geno-, Hyper-, and Isodual Chemistry	149
		3.12	Classification of Hadronic Chemistry	149
4.	ISC	ISOCHEMICAL MODEL OF THE HYDROGEN MOLECULE1		E155
	1	Introd	luction	155
	2	Isoche	mical Model of Molecular Bonds	158
	3	The L	imit Case of Stable Isoelectronium	168
			mical Model of the Hydrogen Molecule with Stable	
			ctronium	174
	5		ly Solvable, Three-Body, Isochemical Model of the gen Molecule	177
	6		mical Model of the Hydrogen Molecule with Unstable etronium	180
	7		ian Approximation of the Isochemical Model of the gen Molecule as a Four-Body System	183
	8	-	ary of the Results	188
	9		uding Remarks	191
	-		A Isochemical Calculations for the Three-Body H_2	195
	Ann		I.B Isochemical Calculations for the Four-Body H ₂	130
	Арр	Molect		196
5.	ISC	CHEM	IICAL MODEL OF THE WATER MOLECULE	205
	1	Introd	luction	205
	2	Main	Characteristics of Water	211
	3		ly Solvable Model of the Water Molecule with Stable etronium	215
	4	Gauss	ian Approximation of the Isochemical Model of the Molecule with Unstable Isoelectronium	219
	5		fethod	213 223
	5 6		Iain Results	223 226
	7	Conclu	asions	228

6.	VARIATIONAL CALCULATIONS OF ISOCHEMICAL MOLECULAR MODELS		
	1	Introduction	233
	2	Aringazin-Kucherenko Study of the Restricted, Three-Body Isochemical Model of the Hydrogen Molecule	234
	3	Aringazin Variational Study of the Four-Body Isochemical Model of the Hydrogen Molecule	239
7.		PLICATION OF HADRONIC CHEMISTRY TO NEW AN ENERGIES AND FUELS	251
	1	Introduction	251
	2	Alarming Environmental Problems Caused by Gasoline and Coal Combustion	254
	3	Alarming Environmental Problems Caused by Natural Gas Combustion	257
	4	Alarming Environmental Problems Caused by Hydrogen Combustion, Fuel Cells and Electric Cars	258
	5	The Need for New, Environmentally Acceptable Primary Sources of Electricity	261
	6	Insufficiencies of Quantum Mechanics, Superconductivity, and Chemistry for the Solution of Current Environmental Problems	262
	7	The New Clean Primary Energies Predicted by Hadronic Mechanics, Superconductivity and Chemistry	263
	8	PlasmaArcFlow Reactor for the Conversion of Liquid Waste into the Clean Burning Magnegas	279
	9	Surpassing by Magnegas Exhaust of EPA Requirements without Catalytic Converter	283
	10	Anomalous Chemical Composition of Magnegas	288
	11	Anomalous Energy Balance of Hadronic Molecular	
		Reactors	291
	12	Concluding Remarks	298
	Appe	endix 7.A	300
8.	THI	E NEW CHEMICAL SPECIES OF MAGNECULES	303
	1	Introduction	303
	2	The Hypothesis of Magnecules	305
	3	The Five Force Fields Existing in Atoms	308
	4	Magnecules Internal Bonds	310
	5	Production of Magnecules in Gases, Liquids and Solids	316
	6	New Molecules Internal Bonds	322
	7	Main Features of Magnecules to be Detected	324

х

Contents

8	Necessary Conditions for the Correct Detection of Molecules		
	and M	Magnecules	326
	8.1	Selection of Analytic Instruments	326
	8.2	Unambiguous Detection of Molecules	328
	8.3	Unambiguous Detection of Magnecules	331
	8.4	Apparent Magnecular Structure of H_3 and O_3	333
	8.5	Need for New Analytic Methods	336
9	Expe	rimental Evidence of Gas Magnecules	337
	9.1^{-1}	Conventional Chemical Composition of Magnegas	
		Used in the Tests	337
	9.2	GC-MS/IRD Measurements of Magnegas at the	
		McClellan Air Force Base	338
	9.3	GC-MS/IRD Tests of Magnegas at Pinellas County	
		Forensic Laboratory	341
	9.4	Interpretations of the Results	347
	9.5	Concluding Remarks	352
10	Expe	rimental Evidence of Liquid Magnecules	354
	10.1	Preparation of Liquid Magnecules used in the	
		Tests	354
	10.2	Photographic Evidence of Magnecules in Liquids	355
	10.3	Spectroscopic Evidence of Liquid Magnecules at	
		the Tekmar-Dohrmann Corporation	358
	10.4	Spectroscopic Evidence of Liquid Magnecules at	
		Florida International University	363
11	Experimental Verification of Mutated Physical		
	Chara	acteristics	364
12	Conc	luding Remarks	375
Apr	pendix 8.A Aringazin's Studies on Toroidal Orbits of the		
PP	Hydrogen Atom under an External Magnetic Field		
	J		376
Index			393