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We present BRST gauge fixing approach to quantum mechanics in phase
space. The theory is obtained by h̄-deformation of the cohomological classi-
cal mechanics described by d = 1, N = 2 model. We use the extended phase
space supplied by the path integral formulation with h̄-deformed symplectic
structure.

1 Introduction

Recently, in a series of papers Gozzi, Reuter and Thacker[1] developed path
integral approach to classical mechanics. The physical states of the theory
has been analyzed[1, 5, 6]. This theory can be viewed as one-dimensional
cohomological field theory, in the sense that the resulting BRST exact La-
grangian is derived by fixing symplectic diffeomorphism invariance of the
zero underlying Lagrangian. The BRST formulation of the cohomological
classical mechanics has been given[7], and machinery of modern topological
quantum field theories has been used[8, 9] to analyze the physical states, as-
sociated d = 1, N = 2 supersymmetric model, BRST invariant observables,
and correlation functions. This field theoretic description provides a powerful
tool to investigate the properties of Hamiltonian systems, such as ergodicity,
Gibbs distribution, and Lyapunov exponents.

Further development can be made along the line of the phase space for-
mulation of ordinary quantum mechanics originated by Weyl, Wigner and
Moyal[12]. The key point one could exploit here is that it is treated[13]-[15]
as a smooth h̄-deformation of the classical mechanics. Indeed, there is an at-
tractive possibility to give an explicit geometrical BRST formulation of the
model describing quantum mechanics in phase space. The resulting theory

1In: Proc. of the XVIII Workshop on High Energy Physics and Field Theory, June
26-30, 1995, Protvino, Russia, eds. V.A. Petrov, A.P. Samokhin, R.N. Rogalyov (IHEP,
Protvino, 1996) pp.322-327.
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could be thought of as a topological phase of quantum mechanics in phase
space. The crucial part of the work has been done by Gozzi and Reuter[14]
in the path integral formulation, where the associated extended phase space
and quantum h̄-deformed exterior differential calculus in quantum mechanics
has been proposed. The core of this formulation is in the deforming of the
Poisson bracket algebra of classical observables.

The central point we would like to use here is that the extended phase
space can be naturally treated as the cotangent superbundle M4n|4n over
M2n endowed with the second symplectic structure Ω and (graded) Poisson
brackets (4). Besides clarifying the meaning of the ISp(2) group algebra,
appeared as a symmetry of the field theoretic model, it allows one, particu-
larly, to combine symplectic geometry and techniques of fiber bundles. The
underlying reason of our interest in elaborating the fiber bundle construction
is that one can settle down Moyal’s h̄-deformation in a consistent way by
using both of the Poisson brackets, {, }ω and {, }Ω. Namely, the two sym-
plectic structures and Hamiltonian vector fields coexisting in the single fiber
bundle are related to each other. Note that this relation is not direct since
{ai, aj}ω = ωij while for the projection of coordinates in the fundamental
Poisson bracket {λa, λb}Ω = Ωab to the base M2n we have {ai, aj}Ω = 0.
Also, Z2 symmetry of the undeformed Lagrangian can be used as a further
important requirement for the deformed extension. Naively, the problem
is to construct h̄-deformed BRST exact Lagrangian, identify BRST invari-
ant observables, and study BRST cohomology equation and corresponding
correlation functions. Also, having the conclusion that the d = 1, N = 2
supersymmetry plays so remarkable role in the classical case it would be
interesting to investigate its role in the quantum mechanical case.

In this way, one might formulate, particularly, quantum analogues of
Lyapunov exponents in terms of correlation functions rather than to invoke
to nearby trajectories, which make no sense in quantum mechanical case.
The case of compact classical phase space corresponds to a finite number
of quantum states. Also, we note that for chaotic systems expansion on the
periodic orbits constitutes the only semiclassical quantization scheme known.
Perhaps, this is a most interesting problem, in view of the recent studies of
quantum chaos.

However, we should to emphasize here that the geometrical BRST analogy
with the classical case is not straightforward, as it may seem at first glance,
since one deals with non-commutative geometry[16] of the phase space in
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quantum mechanical case (see Ref.[15] and references therein). Particularly,
quantum mechanical observables of interest are supposed to be analogues
of the closed p-forms on M2n, with non-commuting coefficients arising to
non-abelian cohomology.

In this paper, we present BRST gauge fixing approach to quantum me-
chanics in phase space.

The paper is organized as follows. In Sec. 2, we briefly present the BRST
construction of the d = 1, N = 2 model characterizing classical dynamical
systems. In Sec. 3, we introduce symplectic structure on the extended phase
space naturally supplied by the field content. In Sec. 4, we make the h̄-
deformation of the symplectic structures using graded Moyal’s brackets.

2 The BRST formulation

Starting point is the partition function[7]

Z =
∫

Da exp iI0, (1)

where I0 =
∫

dtL0, and the Lagrangian is trivial, L0 = 0. The basic field
ai(t) is the map from one-dimensional space M1 to 2n-dimesional symplectic
manifold M2n. The BRST fixing of the symplectic diffeomorphism invariance
yields[7]

Z =
∫

DX exp iI, (2)

where I = I0 +
∫

dtLgf , and DX represents path integral over the fields en-
tering the gauge fixing Lagrangian Lgf . The Hamilton function H associated
to Lgf has been found in the form

H = qih
i + ic̄i∂kh

ick − αaiqi − iαcic̄i, (3)

where ci and c̄i are ghost and antighost fields, respectively, qi is a Lagrange
multiplier, hi is Hamiltonian vector field, and α is a real parameter. The
Hamilton function (3) is BRST and anti-BRST exact. In the following, we
use the delta function gauge by putting α = 0 in (3). We refer the reader to
Refs. [7, 8, 9] for precise and detailed development of cohomological classical
mechanics and geometrical meaning of the fields qi, ci and c̄i.
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3 Symplectic structures

In order to prepare for the h̄-deformation, we need to identify geometrically
the phase space and algebra of observables supplied by the BRST procedure.

Symplectic manifold M2n can be viewed as cotangent fiber bundle
(M2n,Mn, T ∗

xMn, ω) with the base space Mn, fiber T ∗
q Mn, and fundamental

symplectic two-form ω, which in local coordinates, ai = (p1, . . . , pn, x
1, . . . , xn),

a ∈ M2n, x ∈ Mn, p ∈ T ∗
xMn, is ω = 1

2
ωijdai∧daj; ωij = −ωji, ωijω

jm = δi
m.

In Hamiltonian mechanics, M2n plays the role of phase space equipped by
standard Poisson brackets, {f, g}ω = f∂̄iω

ij~∂jg. We assume ωij to be a con-
stant matrix, i.e. use Darboux coordinates.

Taking the phase space M2n as a base space, we consider a cotangent
fiber bundle M4n over it, (M4n,M2n, T ∗

a M2n, Ω), where two-form Ω defines
symplectic structure on M4n, and is assumed to be closed, dΩ = 0, and
non-degenerate. In local coordinates on M4n, λa = (q1, . . . , q2n, a

1, . . . , a2n),
λ ∈ M4n, a ∈ M2n, q ∈ T ∗

a M2n, the two-form Ω is represented as Ω =
1
2
Ωabdλa ∧ dλb; Ωab = −Ωba, ΩabΩ

bc = δa
c .

The cotangent bundle M4n can be thought of as a second generation
phase space equipped by the Poisson brackets,

{F, G}Ω = F ∂̄aΩ
ab~∂bG, (4)

where ∂a = ∂/∂λa, in view of the sequence

Mn p−1
0→ (M2n,Mn, T ∗

xMn, {, }ω)
p−1→ (M4n,M2n, T ∗

a M2n, {, }Ω) (5)

Natural projection p is provided by p : (q, a) 7→ (0, a).
The ghost and antighost fields, as Grassmannian variables, can be natu-

rally added to the symplectic structure on M4n by enlarging M4n to super-
space M4n|4n, with coordinates λ̃k = (λa, c̄i, c

j), k, l = 1 . . . 8n, endowed with
supersymplectic structure defined by the block diagonal matrix
(Ω̃kl) =diag(Ωab, Icd), where Icd is unit 4n× 4n matrix.

4 h̄-Deformed symplectic structures

Next step is to implement the h̄-deformation. The h̄-deformed version of the
above symplectic structures is straightforward. Namely, we use the Moyal’s
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h̄-deformation[12] of the Poisson brackets which plays the role of algebra of
quantum mechanical observables,

{f, g}h̄ω =
1

ih̄
(f ∗ g − g ∗ f) = f

2

h̄
sin(

h̄

2
∂̄iω

ij~∂j)g, (6)

where the Moyal product is f ∗ g = f exp( ih̄
2
∂̄iω

ij~∂j)g. In the classical limit,
the h̄-deformed product and brackets cover the usual pointwise product,
f ∗ g = fg + O(h̄), and the Poisson brackets, {f, g}h̄ω = {f, g}ω + O(h̄2),
respectively.

The Lie-derivatives along the Hamiltonian vector field, `h = hi∂i, being
linear maps, obey the conventional commutation relation, [`h1 , `h2 ] = `[h1,h2],
i.e. form a Lie algebra. The underlying algebra of Hamiltonian vector fields,
[hf , hg] = h{f,g}h̄ω

, is also a Lie algebra due to anticommutativity of the h̄-
deformed brackets (6). Quantum mechanical properties of the theory are thus
encoded in these brackets, and the h̄-deformation preserves the Lie algebra
structure of the classical formalism, with the standard Lie-Poisson algebra
replaced by the Lie-Moyal algebra.

Our aim is to exploit the symplectic structure Ω on M4n introduced above
which appears to be crucial in finding the h̄-deformed Hamilton function Hh̄.

Following the definition of the extended Moyal brackets[14], we use the
symplectic structure on M4n to define the h̄-deformed Poisson brackets,

{F,G}h̄Ω = F
2

h̄
sin(

h̄

2
∂̄aΩ

ab~∂b)G, (7)

with the underlying h̄-deformed product F ∗G = F exp( ih̄
2
∂̄aΩ

ab~∂b)G. Then,
under the h̄-deformation the sequence of maps (5) remains the same, with
the Poisson brackets replaced by the h̄-deformed Poisson brackets (6) and
(7), respectively. Since the h̄-deformed product of functions, f(a) ∗ g(a)
and F (λ) ∗G(λ), is non-commutative, we deal in fact with non-commutative
cotangent fiber bundles M2n and M4n, which can be studied in terms of
non-commutative geometry[16].

Note that by rescaling qi one has {F,G}h̄Ω = {Fh̄, Gh̄}1Ω, where Fh̄(a, q) ≡
F (a, h̄q), so that the deformation parameter h̄ can be assigned, equivalently,
to functions on M4n instead of the brackets. With the aid of the Grassman-
nian piece, the brackets (7) become the graded brackets

{F,G}h̄Ω̃ = F
2

h̄
sin(

h̄

2
∂̄kΩ̃

kl~∂l)G, (8)
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where ∂k = ∂/∂λ̃k. Here, the functions F, G, . . . are defined on the superspace
M4n|4n, and correspond to antisymmetric tensor fields and exterior forms on
M2n, which are (candidates to) observables of the theory.

The commutator of the Lie-derivatives on M2n, together with the under-
lying h̄-deformed algebra of Hamiltonian vector fields, can be represented as
the h̄-deformed Poisson brackets on M4n, [`h1 , `h2 ] ↔ {`h1 , `h2}h̄Ω̃, for hori-
zontal Hamiltonian vector fields on M4n, hi(λ), i.e. the fields orthogonal to
the fibers T ∗

a M2n.
Due to coexistence of two symplectic structures, (M2n, ω) and (M4n, Ω),

the main point is to provide consistency between them. We require symplec-
tic diffeomorphisms of the bundle (M4n, Ω) to preserve symplectic structure
on the base (M2n, ω). That is, under the natural projection, (i) p : {, }h̄Ω̃ →
{, }h̄ω and (ii) p : ha(λ) → hi(a). Here, the Hamiltonian vector field on M4n

is ha(λ) = Ωab∂bH(λ) so that p : H(λ) → H(a).
The condition (i) in the form p : {Hh̄, ρ(a)}1Ω → {H(a), ρ(a)}h̄ω has

been solved[14] to find the ghost-free part of Hh̄, where the projection p
provides so called horizontal condition, qi = c̄i = ci = 0. We see that this
condition naturally arises from the consistency requirements (i)-(ii). The
ghost-dependent part of Hh̄ is fixed uniquely due to the BRST invariance.
Namely, the result is (cf.[14])

Hh̄(q, a) = qih
i
h̄ + ic̄i∂kh

i
h̄c

k, (9)

where

Hh̄(q, a) =
f(x)

x
H(a) ≡

∫ 1

−1
du exp[−h̄xu]H(a) ≡

∫ 1

−1
duH(ai − h̄qjω

iju)

(10)
is h̄-deformed classical Hamiltonian, f(x) = sh(x), x = h̄qiω

ij∂j, and hi
h̄ =

ωij∂jHh̄(q, a) is h̄-deformed Hamiltonian vector field.
The Hamilton function (9) is explicitly h̄-deformed version of the Hamil-

ton function (3), and plays the same role in the cohomological quantum
mechanics as H in cohomological classical mechanics[8]. It can be readely
verified that in the ghost-free part it reproduces Wigner operator[15].

Generally, the states are defined by the p-ghost Wigner density ρ =
ρ(a, c, t), and the flow equation is ∂tρ = {ρ,H}h̄ω = Hh̄ρ. In the classi-
cal limit, h̄ → 0, the Hamilton function (9) reduces to the Hamilton function
(3), and the flow equation reduces to the conventional Liouville equation, in
the ghost-free part.
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Due to the (anti-)BRST symmetry of the underlying classical theory (3),
we should study the associated symmetry of the h̄-deformed Hamilton func-
tion (9). The only difference from the classical case may arise from the BRST
transformation of hi

h̄. Namely, δhi
h̄ = ∂hi

h̄/∂akδak + ∂hi
h̄/∂qkδqk, and since

sai = ci, sqi = 0, we have shi
h̄ = ∂kh

i
h̄c

k. This means that the BRST sym-
metry survives the h̄-deformation, and calH h̄ is BRST invariant, sHh̄ = 0.
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