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Abstract

Within the framework of recently proposed path integral approach
to Hamiltonian and Birkhoffian mechanics, arising naturally to a fun-
damental supersymmetry lying behind the properties of the dynami-
cal systems, we analyse BRS and anti-BRS invariant states. We found
that among the all ghost sectors only 2n-ghost sector provides non-
trivial physically relevant supersymmetric invariant solution, which
was found earlier to have the Gibbs state form. We identify an alge-
bra which is specific to Birkhoffian mechanics.
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Recently, Gozzi[1] proposed a path integral approach to Hamiltonian me-
chanics based on the formalism by Parisi and Sourlas [2][3] and Zinn-Justin[4]
originally applied to stochastic systems. In a series of papers, Gozzi, Reuter,
and Thacker [5]-[9] developed this application and found[5] that Hamiltonian
mechanics indeed reveals a BRS-like supersymmetry lying behind the dynam-
ical properties of the Hamiltonian systems. Conserved charges generating the
supersymmetry form the algebra of inhomogeneous symplectic ISp(2) group,
and reflects symplectic geometry of phase space[5][6]. Associated supersym-
metric invariant Hamilton function appeared to be a sum of the conventional
Liouvillian and a term containing anticommuting (odd) variables so in the
even part the formalism meets exactly the Liouvillian (operatorial) formula-
tion of Hamiltonian mechanics constructed earlier by Koopman[10] and von
Neumann[11]. States determined by probability density function, on which
the Hamilton function acts, are defined on the extended phase space, which
includes anticommuting variables - ghosts - in addition to the ordinary coor-
dinates of the phase space M2n. Two conserved supersymmetric charges of a
dynamical origin form, together with the Hamilton function, a supersymmet-
ric algebra[6]. This supersymmetry has a close relation to the ergodicity[12].
Namely, it has been shown[6] that the BRS and anti-BRS invariant state,
characterized by the ghost number 2n, is just a Gibbs state. So, when the
supersymmetry is exact the system described by 2n-ghost density is in er-
godic phase (chaos) while when the system is in regular motion phase the
supersymmetry is always broken[6][7][13]. This gives a new criterion to de-
tect transitions between chaotic and regular motion regimes in Hamiltonian
systems[14].

In Hamiltonian mechanics, one deals with a constant fundamental sym-
plectic 2-form ω. However, in general ω can be any closed and non-degenerate
2-form[15] [16]. The generalization of Hamiltonian mechanics based on gen-
eralized 2-form depending on coordinates of M2n is reffered to as Birkhoffian
mechanics [17]-[19]. Consistency of the Birkhoffian mechanics is provided by
the Lie-isotopic construction [19][21][22]. It has been shown[23] that super-
symmetry is still there, in the Birkhoffian generalization. In the 2n-ghost
sector, it has been found[23] that the BRS and anti-BRS invariant state has
the Gibbs state form. As it was mentioned[23] the solutions which are not
in 2n-ghost sector might be as universal and important as the Gibbs state.

In this letter, we present results of the analysis[24] of all the non 2n-ghost
sectors to find BRS and anti-BRS invariant solutions, both in Hamiltonian
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mechanics and the Birkhoffian generalization.
The associated Hamilton function has the form[5]

H = ωij∂jH∂i + ic̄i∂k(ω
ik∂jH)cj. (1)

Here, H is Hamiltonian, ωij is a symplectic tensor, ai = (qi, pi) are phase
space coordinates, ck and c̄i are anticommuting variables, ghosts and antighosts
respectively, i, j, . . . = 1, . . . , 2n. H is invariant under the supersymmetry
generated by the following supersymmetric conserved charges[5]:

Q = ici∂i, Q̄ = ic̄iω
ij∂j, C = cic̄i, K =

1

2
ωijc

icj, K̄ =
1

2
ωij c̄ic̄j. (2)

In addition to these charges, there are also two conserved nilpotent charges,
for conserved Hamiltonian H,

QH = eβHQe−βH = Q− βN, Q̄H = e−βHQ̄eβH = Q̄ + βN̄. (3)

where N = ci∂iH, N̄ = c̄iω
ij∂jH, and β is a real parameter. Their anti-

commutator closes on the Hamilton function[7][8], [QH , Q̄H ] = 2iβH. Su-
persymmetric invariant state ρ(a, c) is the state annihilated by both QH and
Q̄H ,

QHρ(a, c) = 0, Q̄Hρ(a, c) = 0. (4)

General representation of the density has the following form:

ρ(a, c) =
2n∑

k=0

ρi1...ik(a)ci1 · · · cik . (5)

Here, ρi1...ik(a) are totally antisymmetric functions. With the use of (3) and
(5), the eqs. (4) take the form

2n∑

k=0

cjci1 · · · cikD−
j ρi1...ik(a) = 0, (6)

2n∑

p=0

2n∑

k=0

α(p)ci1 · · · δip
j · · · cikDj

+ρi1...ik(a) = 0. (7)

Here, we have denoted D−
j = ∂j − β∂jH, Di

+ = ωij(∂j + β∂jH), and α(p) =
+1 (−1) for odd (even) p. Consistency of these two equations requires that
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to obtain non-trivial solutions one of the above equations should be satisfied
identically.

(a) Even-ghost sector. There are only two possibilities to satisfy one of
the eqs. (6)-(7) identically: (i) For k = 0, the eq. (7) is satisfied identically
so that the solution of the eq. (6) is ρ(a, c) = κexp(+βH). This solution
is evidently not physically reasonable (β > 0). (ii) For k = 2n, the eq. (6)
is satisfied identically so that the solution of the eq. (7) is of the Gibbs
form (cf. [6][7]), ρ(a, c) = κexp(−βH)c1 · · · c2n. In the even-ghost sector, it
appears to be useful to present the density ρ(a, c) in the explicitly covariant
form, ρ = ρm(a)Km, m = 0, . . . , n. Km is invariant under Hamiltonian
flow[15][23], HKm = 0. With the aid of some algebra it is straightforward to
calculate the commutators

[K, N̄ ] = N, [K,N ] = 0, [Km, QH ] = 0, [Km, Q̄H ] = mKm−1(Q+βN), (8)

so that the eqs. (4) take the form

Km(Q− βN)ρm(a) = 0, mKm−1(Q + βN)ρm(a) = 0. (9)

The solution is of the Gibbs state form

ρ(a, c) = κe−βHKn. (10)

(b) Odd-ghost sector. There is no any possibility to satisfy identically one of
the eqs. (6) and (7) in this case. Therefore, we are leaved only with trivial
solution ρ(a, c) = 0.

As the result, only 2n-ghost sector provides non-trivial physically rele-
vant solution for BRS and anti-BRS invariant state which appears to be the
Gibbs state (10).

To construct path integral approach to Birkhoffian mechanics one need to
rerun the procedure[5] of evaluating the Hamilton function (1) but starting
with the Birkhoff’s equations[19], ȧi(t) = ωij(a)∂jH(a(t)), instead of Hamil-
tonian ones. The dynamical supercharge Q̄H has to be slightly modified
[23]

Q̄H = ic̄iω
ij(a)∂j − 1

2
(∂kω

ij(a))ckc̄ic̄j + βc̄iω
ij(a)∂jH. (11)

This charge can be casted into the following form:

Q̄H = c̄iD
i
+ −

1

2
fkl

mcmc̄kc̄l, (12)
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where f ijk = ωim∂mωjk. In the field theoretical BRST technique, the oper-
ators placed similarly as Di

+ in (12) play the role of the generators of some
Lie group characterizing symmetry of the theory. It is easy to verify that the
operators Di

+ satisfy the commutation rule, [Di
+, Dj

+] = f ijkD+
k , so that they

constitute a Lie algebra. Note that this algebra is specific for Birkhoffian
mechanics since f ijk = 0, in the Hamiltonian case.

It should be noted that there are cohomology classes of the solutions of
the eqs. (4) that are characterized by different ghost numbers, due to nilpo-
tency of the BRS and anti-BRS charges. The most interesting to identify
are 0-, 1-, and 2n-ghost states: (i) Obviously, 0- and 2n-ghost state are, re-
spectively, anti-BRS and BRS invariant. (ii) For 1-ghost state, the condition
Q̄Hρ = 0 is equivalent to Di

+ρ = 0. This means that 1-ghost state is anti-
BRS invariant if and only if it is Di

+-invariant. However, it should be stressed
that since it may occur that ρ = Q̄Hχ (χ has the ghost number two) there
is no one-to-one correspondence between the space of Di

+-invariant 1-ghost
states and the space of cohomology class of 1-ghost states.

With the use of (11) and (5), the second eq. in (4) takes the form

2n∑

p=0

2n∑

k=0

α(p)ci1 · · · δip
j · · · cikDj

+ρi1...ik(a)

−1

2
cl

2n∑

p 6=q

2n∑

k=0

α(p)α(q)ci1 · · · δip
i · · · δiq

j · · · cikωij
,lρi1...ik(a) = 0. (13)

Again, we are leaved in effect to satisfy identically the first eq. in (4) because
it implies itself the physically irrelevant solution. This can be done only with
the choice k = 2n. It is a matter of tedious calculations to show that all
the commutators (8) are still valid in the Birkhoffian case so that in the
even ghost sector we have the only relevant solution, the Gibbs state (10).
Furthermore, since Kn is still invariant under Hamiltonian flow the solution
(10) is defined only by the factor exp(−βH) so that it is indeed a Gibbs state
(cf. [23]).
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