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Abstract
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spinning particles, within the framework of hadronic mechanics, which
is used to account for nonpotential effects.
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1 Introduction

In this paper, we consider nonpotentital elastic scattering of spinning parti-
cles. When particles have spins their interactions are in general of noncentral
type, i.e., the potential of the interaction depends not only on the relative
distance but also on the mutual orientation of spins and on vector of the
relative distance, and the same holds for the nonpotential contribution. We
consider nonpotetial scattering of particles with spins s1 and s2.

Within the framework of non-potential scattering theory[1, 2], we use the
isotopically deformed Schrödinger equation, the iso-Schrödinger equation[3],
characterized by isotopic operator T is assumed to be responsible for the
non-potential part of the scattering. In the limit T → 1, the usual potential
scattering theory is recovered.

The isotopic lifting of the spin space giving rise to the isotopic spin
space[3] is made by the Lie-Santilli theory[4] with the use of operator R
acting on spin parts of the wave functions. In the limit R → 1, the usual
spin theory is recovered.

In the previous paper[5], we calculated the free iso-propagator in the co-
ordinate and momenta representations, to find the general solution of the iso-
Schrödinger equation, the nonpotential scattering amplitude, and represent
the solution and amplitude for particular choices of T . The iso-Lippmann-
Schwinger equation for the scattering matrix, its general on-shell solution for
a separable potential, and non-potential scattering length have been inves-
tigated. We presented computations of the (nonpotential) scattering length
for the Yamaguchi potential, and particular cases of the isotopic operator
T (k).

The present paper relies on the considerations and results of Ref.[5].
The paper is organized as follows.
In Section 2 we develop a formalism to describe T -isotopic (nonpotential)

scattering of spinning particle off spinless particle in vacuum.
In Section 3 we generalize the results of Sec.2 to the case of two spinning

particles.
In Section 4 we briefly review the eigenvalue problem of spin operators.

The generalization of ordinary spin theory is reached via a spin matrix R,
which is chosen diagonal.

Section 5 is devoted to T -isotopic scattering problem of spin-half particles.
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2 Scattering of spinning particle off spinless

particle

Let us consider the scattering of spinning particle off spinless particle.
The potential V entering the Hamiltonian of the system, H = H0 + V ,

depends both on the relative distance between the particles and on the spin,
i.e., V is an operator (matrix) in the spin space (see for example [6]).

Let us take the initial wave function of the system, ϕ̂+
0 , in the form of (T -

isotopic) product of the (iso-)free wave, characterizing relative motion with
momentum k, and spin function,

ϕ̂+
0kµ = exp{ikT (k)r} ∗ χ̂µ, (1)

where χ̂µ is the eigenfunction of the spin operators in isospace[3], ŝ2 and ŝz,
with µ being 3-projection of spin (see Section 4 for a review).

Then the wave function ψ̂+
kµ satisfying the iso-Schrödinger equation and

describing the scattering can be written as follows:

ψ̂+
kµ(r) = ψ̂+

0kµ(r) +
∫

dr′ Ĝ+(r − r′) ∗ V̂ (r′) ∗ ψ̂+
kµ(r′), (2)

or, in more details,

ψ̂+
kµ(r, σ) = ψ̂+

0kµ(r, σ) +
∑

σ′,σ′′

∫
dr′ Ĝ+

σσ′(r − r′) ∗ V̂σ′,σ′′(r
′) ∗ ψ̂+

kµ(r′, σ′′), (3)

where Ĝ+
σσ′(r− r′) is the iso-propagator, which in the coordinate representa-

tion has the form

Ĝ+
σσ′(r − r′) = −m

2π

exp{ikT (k)|r − r′|}
|r − r′| T (k)

∑

µ′
χ̂µ′(σ)Rχ̂+

µ′(σ
′), (4)

V̂ = V T and R is (2s + 1)× (2s + 1) matrix.
We assume that χ̂µ’s form a complete set of spin functions,

∑
µ

χ̂µ′(σ)Rχ̂+
µ (σ′) = δ̂σσ′ = Îδσσ′ . (5)

According to this, the propagator can be taken in a diagonal form,

Ĝ+
σσ′(r − r′) = −m

2π

exp{ikT (k)|r − r′|}
|r − r′| T (k)δ̂σσ′ . (6)
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Below, we follow [6] to derive the scattering amplitude and scattering
length.

The operator Ĵ satisfies the equation

V̂ T (k)ψ̂+
kµ = ĴT (k)ϕ̂+

0kµ. (7)

It can be used in equation (2) to write down the initial wave function in the
form

ψ̂+
kµ(r) =

{
exp[ikTr] +

∫
dr′Ĝ+(r − r′)T ĴT exp[ikTr′]

}
T χ̂µ. (8)

Expression in curly brackets is an operator in spin space. Using (6) the
asymptotics of the wave function (8) can be presented as

ψ̂+
kµ(r)

r→∞−→
{
exp[ikT (k)r] +

exp[ikT (k)r′]
r

f̂µ(k, k′)
}
T (k)χ̂µ, (9)

where f̂µ(k, k′) is the nonpotential scattering amplitude; k and k′ are income

and outcome momenta respectively, in iso-Euclidean space with isometric δ̂ =
Tδ, δ = diag(1, 1, 1). The solution of the associated iso-Lippman-Schwinger
equation for the scattering matrix, Ĵ , in this case is similar to that of the
spinless case [6]. We do not repeat the derivation here and present the result.
Namely, the nonpotential scattering amplitude for the spinning particle is

f̂µ(k, k′) = −m

2π
〈k|T ĴT |k′〉 = −m

2π
〈k| ∗ Ĵ ∗ |k′〉 (10)

or, taking m = 1/2,

f̂µ(k, k′) = −〈k|T ĴT |k′〉
4π

. (11)

The scattering length, âµ = −f̂µ(0, 0), is then

âµ =
〈0|T ĴT |0〉

4π
. (12)

Note that the nonpotential scattering amplitude (11) as well as Ĵ are
operators (matrices) in the isotopic space. The function obtained as the
action of the operator f̂µ on the initial spin function,

χ̂′ = f̂µ ∗ χ̂µ. (13)
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can be considered as the spin function of the particle after the scattering, i.e.
the operator f̂µ transforms the spin state χ̂µ to the final spin state χ̂′.

The coefficients of the expansion of χ̂′ in terms of the complete set of
χ̂µ’s,

χ̂′ =
∑

µ′
f̂µµ′ ∗ χ̂µ′ . (14)

are the amplitudes of elastic scattering accompanied by changing of the pro-
jection of spin,

f̂µµ′ = −〈kµ| ∗ Ĵ ∗ |k′µ′〉
4π

. (15)

Here, µ and µ′ are projections of spin in the initial and final states respec-
tively.

It should be noted that when the interactions between the particles de-
pend on spin there is no an azimutal symmetry of the scattering. Namely,
the (potential or nonpotential) amplitude f̂µµ′ depends not only on the scat-

tering angle θ̂ but also on the azimutal angle ϕ̂, which is the angle between
the plane defining the quantization axis and the plane of the scattering.

Using equation (7), we can define the scattering amplitude in terms of
the potential (see Ref.[6] for details),

f̂µµ′(θ̂, ϕ̂) = − 1

4π

∫
drχ̂+

µ′Re−ik′T (k′)rT (k)V (r)T (k)ψ̂+
kµ(r), (16)

when θ̂ and ϕ̂ are isoangles[3].
The differential cross section at fixed values of the projections of spin can

then be written

σ̂(µ → µ′) = σ̃(µ → µ′)Î = |f̂µµ′(θ̂, ϕ̂)|2̂|f̂µµ′(θ̂, ϕ̂)|T |f̂µµ′(θ̂, ϕ̂)|Î , (17)

i.e.,
σ̃(µ → µ′) = |f̂µµ′(θ̂, ϕ̂)|2, (18)

or, in terms of the scattering length,

σ̂(µ → µ′) = 4π|âµµ′(θ̂, ϕ̂)|2̂. (19)

If the projections are not fixed then the cross section (17) should be
averaged on the initial projections, and summed over the final projections,
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namely,

σ̂(θ̂) =
1

2s + 1
R

∑

µµ′
|f̂µ′µ(θ̂, ϕ̂)|2̂. (20)

Note that since the initial spin projections are averaged, the cross section
(20) depends only on the scattering isoangle θ̂.

3 Scattering of spinning particles

In this section, we generalize the results of the previous section to the case
when both particles have non-zero spins.

Let ŝ1 and ŝ2 denote spins of the incoming and target particles, respec-
tively. The initial wave function can be then written as

ϕ̂+
0kµ1µ2

= exp{ikT (k)r}T (k)χ̂s1µ1Rχ̂s2µ2 , (21)

where µ1 and µ2 are projections of spins s1 and s2 respectively.
Introduce the wave functions of the channel spin χ̂sµ with the help of

(T -isotopically lifted) sum rules,

χ̂sµ =
∑
µ1µ2

(s1µ1s2µ2|sµ)Rχ̂s1µ1Rχ̂s2µ2 . (22)

Inverting this relation, we have

χ̂s1µ1Rχ̂s2µ2 =
∑
µ1µ2

(s1µ1s2µ2|sµ)Rχ̂sµ. (23)

Inserting (23) into (22) and noting that the spin function of distinct chan-
nels are orthogonal to each other, one can see that the scatterings for the
distinct incoming channels are independent of each other. Thus, the scat-
tering of spinning particles can be described in terms of the scattering of
spinning particle off spinless particle which has been considered in the pre-
vious section.

Namely, the wave function for a fixed incoming channel can be written
as (cf. eqs. (8),(7),(4))

ψ̂+
ksµ(r) = eikTrRχ̂sµ − m

2π

∑

s′µ′
χ̂s′µ′T (k)

∫
dr′

exp[ikT |r − r′|]
|r − r′| R (24)
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×
(
χ̂s′µ′ , V̂ (r)T ψ̂+

ksµ(r′)
)
.

It should be emphasized that the channel spin is not conserved so that in
general s′ 6= s.

Starting with expression (24), we obtain after tedious but straightforward
calculations (cf. eq.(16)),

f̂s′µ′sµ(θ̂, ϕ̂) = −m

2π
T (k)

∫
drχ̂+

s′µ′Re−ik′T (k′)rT (k)V̂ (r)T (k)ψ̂+
ksµ(r). (25)

Since the projections of spins are observables while the channel spins are
not, the scattering amplitude (25) has no direct physical meaning. However,
the observable scattering amplitude, f̂µ′1µ′2µ1µ2

, can be readily expressed in
terms of (25) with the use of sum rules (23),

f̂µ′1µ′2µ1µ2
(θ̂, ϕ̂) =

∑

sµs′µ′
(s1µ1s2µ2|sµ)R(s′1µ

′
1s
′
2µ
′
2|s′µ′)f̂s′µ′sµ(θ̂, ϕ̂). (26)

In equation (26) the sum is over all allowed values of the channel spins s and
s′.

The generalization of the cross section (19) then reads

σ̃(µ1µ2 → µ′1µ
′
2) = |f̂µ′1µ′2µ1µ2

(θ̂, ϕ̂)|2, (27)

or, in terms of the scattering length,

σ̃(µ1µ2 → µ′1µ
′
2) = 4π|âµ′1µ′2µ1µ2

(θ̂, ϕ̂)|2.
Similarly, the generalization of cross section (20) reads

σ̃(θ̂) =
1

(2s1 + 1)(2s2 + 1)
R

∑

sµs′µ′
|f̂sµs′µ′(θ̂, ϕ̂)|2. (28)

4 Isoeigenfunctions of spin operators

The wave function ψ̂+(r, σ) of particle with spin s has (2s + 1) components,
while spin operators are (2s + 1)× (2s + 1) matrices. These dimensionalities
are preserved under isotopy[3]. Let us denote χ̂sµ the eigenfunctions of the
operators ŝ2 = sRs and ŝz, (see Chapter 6 of Ref.[3])

ŝ2Rχ̂sµ = s(s + 1) Rχ̂sµ, ŝzRχ̂sµ = µ Rχ̂sµ. (29)
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The matrix R is assumed to be invertible and detR > 0. Note that when R
is the usual unit matrix the ordinary eigenvalue problem and notion of spin
is recovered.

The functions χ̂sµ are orthogonal and normalized due to

∑
s

χ̂sµ′(σ)Rχ̂+
sµ(σ′) = δ̂σσ′ ≡ ÎRδσσ′ , ÎR = R−1. (30)

This is the isotopic generalization of the standard condition of completeness
of the set of eigenfunctions.

The representation for which the spin projection has a certain value we
have

χ̂sµ(σ) = δ̂µ,σ. (31)

This means that χ̂sµ(σ) can be presented as (2s+1) column with all elements
zero except for one, with σ = µ,

χ̂sµ(σ) =




0
0
...

ÎR
...
0




s
s− 1

...
µ
...
−s

, (32)

where ÎR = R−1 is the isounit operator; ÎRRχ̂ = χ̂. Due to this representaion
it is easy to check that the χ̂sµ(σ) form a complete set, i.e.

∑
µ

χ̂sµ(σ)Rχ̂+
sµ(σ′) = δ̂σσ′ , (33)

and can be considered as a basis in the (2s + 1)-dimensional spin space.
Therefore, any spin state χ̂ can be presented as the linear superposition,

χ̂(σ) =
s∑

µ=−s

âµRχ̂µ(σ), (34)

where the âµ’s satisfy the expresion

∑
mu

âµRâµ = ÎR. (35)
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5 Isoscattering of spin-half particles

In this section we specify the considerations made in the previous sections to
the spin-half case, s1 = s2 = 1/2 in isospace[3]

From equation (26) we see that the scattering amplitude for two spinning
particles can be expressed in terms of the scattering amplitude when one of
the particles is spinless. Indeed,

f̂µ′1µ′2µ1µ2
(θ̂, ϕ̂) =

∑

sµs′µ′
(s1µ1s2µ2|sµ)R(s′1µ

′
1s
′
2µ
′
2|s′µ′)T f̂0(θ̂, ϕ̂)Rχ̂+

s′µ′ . (36)

Introducing the notation

Ĉ =
∑

sµs′µ′
(s1µ1s2µ2|sµ)R(s′1µ

′
1s
′
2µ
′
2|s′µ′), (37)

equation (36) can be rewritten

f̂µ′1µ′2µ1µ2
(θ̂, ϕ̂) = Ĉf̂0(θ̂, ϕ̂)Rχ̂+

s′µ′ . (38)

where f̂0(θ̂, ϕ̂) is the nonpotential scattering amplitude for spinless particles.
To determing f̂ one should find Ĉ and χ̂+

s′µ′ while f̂0 has been found in
[5].

5.1 Isotopy of Clebch-Gordan coefficients

Introducing the notation

Ĉ1 = (s1µ1s2µ2̂|sµ) = Ĉs1s2(sµ; µ1µ2), (39)

Ĉ2 = (s′1µ
′
1s
′
2µ
′
2|̂s′µ′) = Ĉs′1s′2(s

′µ′; µ′1µ
′
2),

we rewrite (36) in the more convenient form

Ĉ =
∑

sµs′µ′
Ĉ1 ∗ Ĉ2 ≡

∑

sµs′µ′
Ĉ1RĈ2. (40)

Using the isotopy[3] of Clebch-Gordan coefficients[6] we have

Ĉ1 = (s1µ1s2µ2̂|sµ) = 〈s1µ1s2µ2̂|sµ〉 (41)
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≡ 〈s1j1, s2j2; s1µ1s2µ2|R|s1j1, s2j2; sµ〉
and

Ĉ2 = (s′1µ
′
1s
′
2µ
′
2|̂s′µ′) = 〈s′1µ′1s′2µ′2 |̂s′µ′〉

≡ 〈s′1j′1, s′2j′2; s′1µ′1s′2µ′2|R|s′1j′1, s′2j′2; s′µ′〉
where

R = diag(gkk) = ±bkbk, gkk > 0, bk = bk(t, r, ṙ, . . .), k = 1, 2, 3. (42)

In equation (40), the sum runs over four indeces, s, µ, s′, and µ′. However,
we note that since the sum over the primed indeces is the same as the sum
over the unprimed indeces, we can perform the sum over s′ and µ′,

Ĉ =
∑

sµs′µ′
Ĉ1 ∗ Ĉ2 →

∑
sµ

Ĉ1RĈ2. (43)

To rewrite (40) in an explicit form, one needs an explicit form of the ortho-
honality condition of the iso-Clebch-Gordan coefficients[3, 6],

∑
µ1

∑
µ2

Ĉs1s2(sµ; µ− µ1 µ1)gµs1s2µ1µ2µ′s′1s′2µ′1µ′2Ĉs′1s′2(s
′µ′; µ′ − µ′1 µ′1) = δss′gkk,

(44)∑
s1

Ĉs1s2(sµ; µ−µ1 µ1)gsµ1µ2s1s2µ′1s′1s′2µ′2s′Ĉs′1s′2(s
′µ′; µ′−µ′1 µ′1) = δµµ′gkk, (45)

∑
s2

Ĉs1s2(sµ; µ− µ1 µ1)gs1s2µ2µsµ′s′s′1s′2µ2
Ĉs′1s′2(s

′µ′; µ′ − µ′1 µ′1) = δµ1µ′1gkk,

so that

∑
s1

∑
s2

Ĉs1s2(sµ; µ− µ1 µ1)RĈs′1s′2(s
′µ′; µ′ − µ′1 µ′1) = δµµ′δµ1µ′1gkk. (46)

Combining equations (45) and (46) we finally have

∑

sµs′µ′
Ĉ1RĈ2 = δ2

ssδ
2
µµ′δ

2
µ1µ′1

g5
kk. (47)
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5.2 Spin-half case

Let us define spin isoeigenfunctions for the case of spin-half particles. For
triplet state S1 there are three symmetric triplet spin functions,

χ̂1
1(1, 2) = α̂(1) ∗ α̂(2),

χ̂0
1(1, 2) =

1√
2
[α̂(1) ∗ β̂(2) + α̂(2) ∗ β̂(1)], (48)

χ̂−1
1 (1, 2) = β̂(1) ∗ β̂(2).

For the singlet state S0, we have the antisymmetric spin function

χ̂0
0(1, 2) =

1√
2
[α̂(1) ∗ β̂(2)− α̂(2) ∗ β̂(1)], (49)

where

α̂ = χ̂
1/2
1/2 =

(
g
−1/2
11

0

)
, β̂ = χ̂

−1/2
1/2 =

(
0

g
−1/2
22

)
. (50)

With (50) we have for (48) and (49) explicitly

χ̂1
1(1, 2) =

(
g
−1/2
11

0

) (
g
−1/2
11

0

)
,

χ̂0
1(1, 2) =

1√
2

(
g
−1/2
11

0

)

(1)

(
0

g
−1/2
22

)

(2)

+
1√
2

(
0

g
−1/2
22

)

(1)

(
0

g
−1/2
22

)

)

(2)

,

(51)

χ̂−1
1 (1, 2) =

(
0

g
−1/2
22

)

(1)

(
0

g
−1/2
22

)

(2)

,

χ̂0
0(1, 2) =

1√
2

(
g
−1/2
11

0

)

(1)

(
0

g
−1/2
22

)

(2)

− 1√
2

(
0

g
−1/2
22

)

(1)

(
0

g
−1/2
22

)

)

(2)

.

(52)
Straightforward calculations lead to the following final form of the spin func-
tions:

χ̂1
0(1, 2) =

(
g−1
11

0

)
, χ̂−1

1 (1, 2) =

(
0
0

)
, (53)
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χ̂0
1(1, 2) =

1√
2

(
0

(g11g22)
−1/2

)
,

χ̂0
0(1, 2) =

−1√
2

(
0

(g11g22)
−1/2

)
. (54)

5.3 Scattering amplitudes

By using the results obtained for the spin functions above we can then eas-
ily write the triplet and singlet non-potential amplitudes, f̂(θ̂, ϕ̂)trpl and

f̂(θ̂, ϕ̂)sngl, respectively.

5.3.1 Triplet and singlet states

The triplet non-potential amplitude (S = 1) is

f̂(θ̂, ϕ̂)trpl =
1√
2

(
(g9

11/g22)
1/2

0

)
δ2
ss′δ

2
µµ′δ

2
µ1µ′1

f̂0(θ̂, ϕ̂). (55)

Singlet non-potential amplitude (S = 0) is

f̂(θ̂, ϕ̂)sngl =
−1√

2

(
(g9

11/g22)
1/2

0

)
δ2
ss′δ

2
µµ′δ

2
µ1µ′1

f̂0(θ̂, ϕ̂). (56)

Comparing the amplitude (56) with (55) we arrive at the conclusion that the
triplet and singlet isoscattering amplitudes coincide in isospace, i.e.,

f̂(θ̂, ϕ̂)trpl = −f̂(θ̂, ϕ̂)sngl. (57)

We see that the non-potential scattering amplitudes for the triplet and sin-
glet states differ only by the overal minus sign, as it is in the usual potential
theory. However, we note that this result follows from the choice of diag-
onal form (42) of the matrix R. Off-diagonal terms in R may spoil such a
correspondence between the amplitudes for the triplet and singlet states.

Using the definition of the non-potential scattering length, â = −f̂(0, 0),
we find from (55)-(57),

âtrpl =
1√
2

(
(g9

11/g22)
1/2

0

)
δ2
ss′δ

2
µµ′δ

2
µ1µ′1

â0, (58)

11



âsngl =
−1√

2

(
(g9

11/g22)
1/2

0

)
δ2
ss′δ

2
µµ′δ

2
µ1µ′1

â0, (59)

and
âtrpl = −âsngl. (60)

5.3.2 Elastic np-scattering

We now present the application of preceding analyzis to the triplet and singlet
scattering amplitudes for the elastic np-scattering, with three specific choices
of the isotopic element T (k).

The basic formulas are (58)-(60) while the forms of the scattering length
â0 for a specific T (k) have been calculated in the previous paper[5].

(a) T (k) = T0 = const.

âtrpl =
1√
2

(
(g9

11/g22)
1/2

0

) −2(1 + κ)2

β(1 + κ0T0)2
, (61)

âsngl = −âtrpl. (62)

(b) T (k) = 1 + α2k2, α = const.

âtrpl ==
1√
2

(
(g9

11/g22)
1/2

0

) −2(1 + κ)2

β(1 + κ2)2(1 + αn)
, (63)

âsngl = −âtrpl. (64)

(c) T (k) = 1 + cos(αk)n, α = const, n ≥ 2.

âtrpl ==
1√
2

(
(g9

11/g22)
1/2

0

) −2(1 + κ)2

β(1 + κ2)2(1 + 4 sin(iα)n)
, (65)

âsngl = −âtrpl. (66)
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