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Abstract 

A theory of second-order phase transition from a normal to a superdense 
state in compressed H-atom is presented, based on two analogies. Firstly, 
from an analogy between classical mechanics and thermodynamics, the 
Gibbs function of temperature and pressure (generated from the internal 
energy via Legendre’s transformation in classical thermodynamics) is 
related to the Birkhoffian function (characterizing a Hamiltonian with 
external velocity and acceleration terms) in Santilli’s Hadronic Mechanics 
(HM). Secondly, from an analogy between the Landau-Ginsburg equation 
for the order parameter ψ  (representing an electron-electron (Cooper) pair 

HMee )( ↓−↑ −−  wavefunction) in a superconductor and the 
isoschrodinger equation for the Rutherford-Santilli neutron as a 
compressed H-atom, HMpen )( +− −↓= , in Hadronic Mechanics, we 
deduce that the realization of electron-electron (Cooper) pairing in the 
form HM

z eCue )( ↓−−↑ −+−  around +zCu  in a cuprate superconductor 
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would be analogous to electron-spinion pairing HMepe )( 0 ↑−−↓ +−  
around  +p  in the compressed H-atom, where )( 0 ↑e  is an electron-like 
massive neutral spin- 2

1  particle (called spinion in superconductivity 
theory) overlapping the 1s electron )( ↓−e  wavefunction and interacting 
with the +p  via an effective Hulthen potential. As a result we arrive at a 
realization of the Rutherford-Santilli model of the neutron in the form 

HMepe )( 0 ↑−−↓ +−  which agrees with Barut’s representation of the 
physical neutron as a eeep νν   state, bound −+  being the electron-like 
antineutrino. The implications of the existence of the massive electron-
like spinion )( 0e as an elementary particle under appropriate conditions 
are discussed. 

PACS Nos. 74.65.+n, 67.50 Fi, 03.65.Bz 
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1. INTRODUCTION 

In 1920, Rutherford[1]  hypothesized  that a neutral particle, 
subsequently discovered twelve years later by Chadwick[2] as the 
neutron, could result by compressing hydrogen atom until the negatively 
charged orbital electron touches and neutralizes the positively charged 
proton. However, Rutherford’s hypothesis was later dropped because of 
the following inconsistencies among others: 

1. The neutron rest mass ( nm = 939.565 MeV) is greater than the sum 
of the rest masses of the proton ( pm = 938.273MeV) and the 
electron, ( em  = 0.511 MeV) thus requiring a positive binding 
energy which would be contrary to the laws of basic quantum 
mechanics. 

2. The neutron’s meanlife of 15 minutes is too large compared with 
other unstable elementary particles due to the inability of the very 
light electron to be bound inside the proton for such a long period 
of time. 

3. The neutron spin 2
1  would be inexplicable, because the quantum 

mechanical bound state of two spin- 2
1 particles can only produce 

an integer total spin. 
These objections prompted Santilli[3,4] to question the exact 

applicability of quantum mechanics for the physical conditions of 
compression envisaged by Rutherford and to propose a generalization of 
basic Quantum Mechanics to a new discipline called Hadronic Mechanics 
(HM). The argument runs briefly as follows: If one starts to compress 
normal hydrogen (gas) in an enclosure, one would expect the gas to go 
first into a liquid phase (which would behave like a liquid monovalent 
metal) and finally into a solid (amorphous or crystalline) phase. If the 
compression is continued, a superdense phase (believed to exist in the 
interior of stars) would result. Indeed, according to the schematic 
representation [5]of 1.4MS neutron star, MS being the mass of the Sun 
(see, Fig.1 ), the interior of a typical neutron star is usually divided into 
five regions, namely the surface where the properties of matter can be 
strongly affected by the temperature and the magnetic field; the outer 
crust consisting of solid lattice of nuclei embedded in a sea of degenerate 
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relativistic electrons; the inner crust consisting of that part interior to the 
neutron drip point (a superfluid phase in which neutrons exist outside the 
nuclei), so that one has a solid state lattice of nuclei immersed in a sea of 
electrons and neutrons; the liquid core consisting mainly  of neutrons but 
with some superconducting electrons, protons, and a few muons; and 
possibly a distinct plasma core which could consist of condensed pions, 
kaons, quark matter, etc.   

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Doubting the validity of the basic laws of quantum mechanics 

under such superdense conditions, Santilli proceeded in his 1978 memoir 
[3] to account for all the physical characteristics of the neutral pion )( 0π  
as a nonlocal-nonhamiltonian structure HMee ),(0 ↓↑= −+π  of a 

O 

inner core 
(condensed pions, kaons, 

quark matter, etc) 

                    outer core 
(superfluid neutrons, superconducting 

protons and electrons)

Outer (solid) crust
12 km 

11.5 km 

10 km 

8 km 

Fig. 1:     Schematic representation (Urama[5]) of the cross-section 
of    a 1.4MS neutron star based on an equation of state. 

                  inner crust 
(nuclei, electrons & superfluid neutrons)
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compressed positronium atom described by Hadronic Mechanics (see, Fig. 
2(a)). Subsequently, Santilli[4] presented and solved exactly a similar 
representation of the neutron (n) as a nonlocal-nonhamiltonian structure of 
a compressed hydrogen atom, HMepn ),( ↓↑= −  (see, Fig. 2(b)), 
hereunder referred to as the Rutherford-Santilli neutron.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Prompted by the similarity between Santilli’s concept of isotopic 

lifting transformation in Hadronic Mechanics and pseudopotential 
transformation in metal physics, Animalu[6,7] proposed in 1991 and 1994 
a similar nonlocal-nonhamiltonian structure HMee ),( ↓↑ −−  for the 
Cooper pair in superconductors. However, in setting up the basic 
equations for the Cooper pair in the Nambu representation, the presence of 
a +zCu  “trigger” was made evident in the structure model 

HM
z eCue )( ↓−−↑ −+−  shown in Fig. 3(a), which led to a prediction of 

the transition temperatures )( cT  of the family of cuprate materials in 
remarkably good agreement with experimental data. Animalu and 
Santilli[8]  subsequently verified the consistency of the 

HM
z eCue )( ↓−−↑ −+−  model with the axioms of Hadronic Mechanics.  

 
 
 
 

 

  ↑−e    ↓+e   
  (a) 

  ↑−e    ↑+p  
  (b) 

Fig.2: Models of (a) the neutral pion as compressed positronium atom and 
(b) the neutron as compressed H-atom showing mutual overlapping 
of the wavepackets of the constituent particles, as proposed by 
Santilli in refs.[3] and [4]. 
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Another feature that arose from the analysis of charge fluctuations 

within the Cooper pair in ref.[7] was the possibility of accommodating an 
electron-like massive neutral spin- 2

1  quasiparticle )( 0 ↑e , called 
spinion[9], in anologous structure models for pairing. For this reason, one 
can hardly avoid characterizing HMee ),( 0 ↑↓−  pairing in the form 

HMepe )( 0 ↑−−↓ +−  with the positively charge proton +p  as a “trigger” 
in a structure model of the neutron as a 2nd order (superfluid) phase of 
compressed H-atom shown in Fig. 3(b).This representation of the neutron 
will be explored in this paper. 

We shall start by reviewing in Sec.2, the recent paper by A.O.E. 
Animalu and C.N. Animalu[10] on an extension of the analogy between 
thermodynamics and classical mechanics, leading to an identification of 
Gibbs free energy function (of temperature and pressure) with the 
Birkhoffian function representing a Hamiltonian with external (velocity 
and acceleration) terms in Hadronic Mechanics. As a consequence, we 
shall identify the Landau-Ginsburg equation for order parameter 
(representing Cooper pair wavefunction) in superconductivity theory 
which is a 2nd order phase transition from a normal to a superfluid phase 

Fig.3: Models of (a) HMee ),( ↓↑ −− pairing in a cuprate 
superconductor and (b) HMee ),( 0 ↑↓− pairing in compressed 
H-atom, due to wave overlapping around the respective +zCu  
and +p  triggers” as indicated in the diagrams. 

  ↑−e      ↓−e  

triggerCu z −+ )(  

  (a) 

  ↓−e    ↑0e  

triggerp −+ )(   

  (b) 
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with the isoschrodinger equation for the system HMepe )( 0 ↑−−↓ +−  
representing a 2nd order (superfluid) phase of the compressed H-atom. In 
Sec.3 we shall discuss the solutions of the isoschrodinger equation for the 
Rutherford-Santilli neutron as a compressed H-atom, and in sec. 4, we 
shall present experimental verification of the physical characteristics of 
the neutron.  Finally, in Sec. 5, we shall draw the attendant conclusions. 

 

2. ANALOGY BETWEEN THERMODYNAMICS AND 
MECHANICS 

2.1 Equivalence of the Gibbs Function and the 
Birkhoffian 

In an extension of the analogy between thermodynamics and 
classical mechanics described in ref.[10], the thermodynamic variables 
(volume V, entropy S, temperature T, and pressure P) correspond to the 
dynamical variables of the classical mechanics of a one-dimensional 
system (coordinate (q), momentum (p), velocity )(q& , and acceleration )( p&  
respectively), while the internal energy (U), the Helmholtz free energy 
(H) and Gibbs free energy (G), which are related to one another by 
Legendre’s transformation, correspond to the Hamiltonian (H), the 
Lagrangian (L), and the Birkhoffian (B) respectively. We wish in this 
section to review the analogy between the Gibbs function and the 
Birkhoffian at the classical level, as a prelude for describing 2nd order 
phase transitions in a compressed hydrogen atom. 

At the classical level, the Gibbs free energy (and its associated 
thermodynamic differential relations), 

)/ ,/  ;(   ,),( TGSPGVSdTVdPdGTSPVUTPG ∂−∂=∂∂=−=−+=      
(2.1) 

correspond to the Birkhoffian (and its associated dynamical equations of 
motion) 

    )/ ,/  ;(   ,),( qBppBqqpdpqddBpqpqHqpB &&&&&&&& ∂−∂=∂∂=−=+−= ,      
(2.2a) 

It is thus evident that when the Birkhoffian system is described in terms of 
Hamilton’s equations of motion, one would obtain equations having the 
form 
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  / ,/ 21 fqHpfpHq +∂−∂=+∂∂= &&   (2.2b) 
where pfqf && −=−= 21 ,  represent the contributions from the external 
[velocity and acceleration] terms,  pqpq && +− . Thus, instead of the 
conventional Hamilton’s equations and the Liouville equation for the 
Hamiltonian system, 









−

≡
∂
∂

∂
∂

=
∂
∂

=
01
10

)( with  ,  , µν
ν

µν
µν

µνµ ωωω
a
H

a
AA

a
Ha &&   (2.3) 

where ),(),( 21 pqaa = , one obtains the generalization for the Birkhoffian 
system 

ν
µν

µν
µνµ

a
BS

a
AA

a
BSa

∂
∂

∂
∂

=
∂
∂

= &&   ,      (2.4a) 

in which the determinant of the inverse of the tensor µνS  generalizing 
µνω , 

det ,],[)( 1
cpq

p
q

q
p

p
p

q
qS &&

&&&&
≡

∂
∂

∂
∂

−
∂
∂

∂
∂

=− µν     (2.4b) 

is the non-zero classical Poisson bracket of ),( pq && .  Accordingly, if µνS  is 
rewritten in the form 

µνµννµµννµµνµν TSSSSS +Ω≡++−≡ )()( 2
1

2
1    (2.5) 

where µνΩ  is antisymmetric and µνT symmetric, then the generalized 
Liouville equation in (2.4) takes  the form 

*},{*],[ BABA
a
BT

a
A

a
B

a
AA +≡

∂
∂

∂
∂

+
∂
∂

Ω
∂
∂

= ν
µν

µν
µν

µ
& ,  (2.6) 

which involves the generalized Poisson bracket  *],[ BA  defining the 
generalized Lie-algebraic products used by Santilli[3] in his generalization 
of classical Birkhoffian mechanics to the new form of quantum mechanics 
known as hadronic mechanics. It is thus apparent [by comparing the 
Liouville equation in (2.3) and its generalization in (2.6)] that it is the 
symmetric tensor ( µνT ) part of  A&  that explicitly corresponds to the 
external temperature and pressure terms in the Gibbs free energy.  
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2.2 Equivalence of the Landau-Ginsburg equation and 
the Isoschrodinger equation for the Compressed 
H-Atom 

Suppose that the phase transition in the compressed H-atom is of 
2nd order so that it may be characterized classically by a free energy 

∫ rdTg 3),(ψ , where )(rψψ =  is a complex order parameter. Suppose 
further that the free energy density  ),( Tg ψ  has the Ginsburg-Landau 
form [see, Eq.(6.5.13) ref.[11] p. 462]: 

24
2
12

0   )( ψγψκψε ∇+++=
r

Tgg      (2.7) 

κε ,  being functions of the temperature T, andγ  is defined as 

m
b

2

22 −

≡
hγ , with  ,111  i.e.,  ,

pepe

pe

mmmmm
mm

m +=
+

≡   (2.8) 

where b  is a parameter characterizing compression so that 2* bmm ≡  
may be interpreted as an effective reduced mass. Then, if this free energy 
is minimized with respect to variations in the order parameter by requiring 
that 

0),(
*

3 =
∂
∂
∫ rdTg ψ

ψ
      (2.9) 

and the divergence theorem is applied, one would get the Schrodinger-like 
equation:  

 εψψψκψ −=+∇− 22
2

*2m
h ,     (2.10) 

which is the Ginsburg-Landau equation. In superconductivity theory, this 
has the significance that it provides the temperature dependence of the 
coherence length (ξ ) given by (Eq.(6.5.17) of ref.[11] p. 463) 

.)(
*2

2
1

2
1

2
1 22

TT
m

b
c −∝








−=






=

−

εε
γξ h     (2.11) 

as well as the temperature dependence of the density, sn , of Cooper pairs 
which is just the square of the order parameter (Eq.(6.5.16) of ref.[11] p. 
462): 

)(2 TTAn cs −=∝ψ        (2.12a) 
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Since Cooper pairs are bosons, such a temperature dependence of 
sn would arise from an expansion of a Bose-Einstein distribution function 

in the following way: 

       )(
)(

1
1)( )(/ TT

E
TTk

e
Tn c

cB
TTkEs cB

−∝
−

≈
−

=
−

  (2.12b) 

  Moreover, suppose that the dependence of sn∝2ψ  on inter-
particle separation can be determined, as in the Ornstein-Zernike theory of 
direct and total correlation functions of fluid particles in liquids, by an 
integral equation of the convolution type (cf, Eq.(4.5.73) of ref.[11] p. 
300): 

 , ')'()'()()(
0

3
0 ∫ −+=

r

sss rdrrnrnrnrn rrrρ   (2.13) 

which can be solved by Laplace transformation. To this end, we multiply 
both sides of this integral equation by rqe

rr.  and integrate over rd 3 , using 
the definition of the Laplace transform of )(rns  as follows, 

rdrnrqqn ss
3)().exp()(~ ∫≡

rr , 
to find 

 ').exp()'(~)'(~)(~)(~ 33
00 ∫∫ −+= rdrdrqrrnrnqnqn ss

rrrrrrρ . 
Thus 

)(~)(~)(~        

].exp[)(~']'.exp[)'(~)(~        

')'.(exp[)(~)'(~)(~)(~

00

3
0

3
0

33
00

qnqnqn

dqnrdrqrnqn

drdrqnrnqnqn

s

s

ss

ρ

ξξξρ

ξξξρ

+=

+=

++=

∫ ∫
∫∫

rrrr

rrr

 

i.e.,               ),(~)(~)(~)(~
00 qnqnqnqn ss ρ+=  

and hence,  
)](~1/[)(~)(~ 00 qnqnqns ρ−=     (2.14) 

Accordingly,  if we use as input, the point-particle number density, 
)'()(0 rrrn rr

−= δ , so that  

qr
r

erdrrrqqn −=−≡ ∫ ')'()'.exp()(~ 3

0
0

rrrr δ   (2.15) 

then, on substituting for )(~
0 qn  in Eq.(2.14) we find the result 
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]1/[)(~ 2 qrqr
s eeqn −− −=∝ ρψ .   (2.16) 

This enables us (by setting 1=ρ ) to replace the potential energy term 
2ψκ  in  Eq.(2.10) by a Hulthen potential: 

qr

qr

H e
erV

−

−

−
∝=

1
)( 2ψκ      (2.17) 

leading to the isoschrodinger equation proposed by Santilli[4] for the 
compressed H-atom in Hadronic Mechanics[4]: 

εψψψ −=+∇− HV
m

2
2

*2
h .       (2.18) 

Having arrived at this equation from our analogy between 
thermodynamic and classical mechanics, the stage is now set to search, in 
the next section, for a microscopic interpretation of the order 
parameter )(rψψ =  as a pair wavefunction in the compressed H-atom 
analogous to the order parameter for Cooper HMee ),( ↓↑ −−  pairing in 
superconductors. We shall show in the next that just as the Cooper pairing 
occurs in the form, HM

z eCue )( ↓−−↑ −+−  , around +zCu  “trigger” in a 
cuprate superconductor so also will the analogous pairing occur in the 
form , HMepe )( 0 ↑−−↓ +− , around  +p  “trigger” in the compressed H-
atom, where )( 0 ↑e  is an electron-like neutral elementary excitation in the 
outer core of a neutron star, (see, Fig.1) containing superfluid neutrons 
and superconducting electrons and protons. 

3.  SOLUTION OF THE COMPRESSED H-ATOM 
PROBLEM 

In order to obtain a microscopic interpretation of the order 
parameter ψ  as a pair wavefunction for the compressed H-atom, we 
introduce the isotopic lifting operator of Hadronic Mechanics[6,7]:  

,1ˆ *
↑↑−= ψψT        

 (3.1) 
where  1* =↑↑ ψψ  but 0* ≠≡↓↑ Zψψ , so that ,1ˆ* ZT −=↓↓ ψψ  

while 0ˆ* =↑↑ ψψ T . These properties of T̂  imply that the charge on the 

particle ↓ψ  is depleted by an amount Z whereas the charge on the particle 
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↑ψ  appears to vanish altogether. Accordingly, we may identify ↓ψ  with a 
down-spin fractionally-charged electron )( ↓−e , called anyon, and ↑ψ  
with an up-spin neutral particle )( 0 ↑e , called spinion (in 
superconductivity theory[9]), and unify them into a two-component 
(Nambu) spinor  field, 

],[, *
* ↓↑

+

↓

↑ =Ψ







=Ψ ψψ
ψ
ψ

.     (3.2) 

The Ψ  field obeys an iso-Lurie-Cremer[12] wave equation replacing 
Eq.(2.18): 

,ˆ
*2

ˆˆ   ,),(ˆ),( 3

22

τ







−=≡Ψ=Ψ

∂
∂

r
e

m
pTHSHtrHtr

t
i rr
h     (3.3) 

where,  ,ˆ0
01

ˆ3 







−

≡
TS

τ and ⇒S  scale transformation of space-time 

coordinates: ),(),( 040 rbtcbrtc rr
→ , such that isorelativistic transformation 

law holds in the form: 
)'''(' 222222

4
2
0 dzdydxbdtbc ++−  )( 222222

4
2
0 dzdydxbdtbc ++−=  (3.4) 

),( 4 bb being parameters representing the effects of external pressure and 
temperature, and 0c  the speed of light in vacuum. Eq.(3.3) reduces to the 
pair of explicit equations:  

)()(
2
1 2

2
2

2

rEr
r

e
dr
dr

dr
d

rm ↓↓↓ =







−− ψψh    (3.5a) 

  )()()(
2

**2
2

22

rErrV
dr
dr

dr
d

rm
b

H ↑↑↑

−

=







+− ψψh   (3.5b)

  
where the Hulthen potential )(rVH is defined via the replacement: 

)(
)/exp(1

)/exp(
)(
)(

  2
0*

**
2

rV
Rr

RrMc
r
r

E
br
e

H≡
−−

−
−→−−

↑

↓
↓↑↓ ψ

ψ
ψψ . (3.6) 

  
The pair of Eqs.(3.5) characterizing motions of the electron )( ↑−e  and 
the spinion )( 0 ↓e relative to the proton )( +p  constitute our structure 
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model of the neutron as HMepe )( 0 ↓−−↑ +−  bound state. This is an 
exactly soluble non-relativistic model of the neutron which we are after. 

The exact solutions of Eq.(3.5a) for ↓ψ  and Eq.(3.5b) for ↑ψ  with 
appropriate boundary conditions for a bound state have the forms (p. 175 
of ref.[13]): 

)/exp()( ee
RrAr −=

↓−
ψ      (3.7a) 

,/)1(),12,1,12( )( ///
120 reeennFr RrRrRr

e
−−−

↑
−+−++= ββψ       (3.7b) 

 
while the spectra of energy eigenvalues are given for (3.5a) by the 
Rydberg formula, 

  ,...2,1  ,
2 2

2

=−=
−

↓ n
nR

eE
e

n  ,     (3.8a) 

where 2

2

em
R

e

h
=−  is the Bohr radius; and for (3.5b) by the formula  

 ,...2,1   ,
)(

4
)(

2

2

22
0

22

=







−−=

−

↑ nn
n

bRMcm
m

bREn
h

h   (3.8b) 

where  22 )( −
↑=

bR

Em n

h
β  .  

Consequently, assuming a helium-like 21s  configuration of ↓−e  
and ↑0e  around +p , the total energy TE  of the bound system, 

HMepe )( 0 ↑−−↓ +− ,  is: 

][][     

][][
2
0

2
4

22
0

2

02
0

2
4

22
0

02

↑↓

↑↑↓↓

++++≡

−+++−+=

−−

−−

BepBoe

kinepkinoeT

EcbbmcmEcm

EEcbbmcmEEcmE
 (3.10) 

where 
↑↓

== −− 0 
eee

mmm  , (
↑↓− 0 ,

ee
mm  being the rest masses of  ↓−e  and 

↑0e in the uncompressed system), and their ground state energies are 
given by:  

−

−=↓
e

R
eE

2

2
0 ,  

2

2

22
0

22
0 1

)(
4

)(








−−=

−

↑ h

h bRMcm
m

bRE . (3.11a) 

while their kinetic energies are given formally by: 
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m
R

E e
kin 2

22 −

↓

−

=
h

 , 
m

bREkin 2
)( 22 −

↑ =
h    (3.11b) 

In terms of the dimensionless quantities, 1k  and 2k ,  defined as follows 
222

02
22

01 /)(   ,2)(/ hhh bRMcmkmbRRck == − ,  (3.12) 
the binding energies for the  electron ↓−e  and the spinion ↑0e  are given 
by 

.)1)(8/(])[2/()2/( 

 );2/()/(])[2/()2/(
2

211
0

00

0
2

1
0

00

−+=−≡

+=−≡

↑↑↑

↓↓↓

kkkEEcREcR

RRbmRRkEEcREcR

kinB

eekinB

hh

hh α

 (3.13) 
Altogether, ↑↓ BB EE ,  and TE  involves five parameters, namely the 

+− − pe separation −e
R , the +− pe0  separation, R, and the parameters, 

Mbb  and  , 4  which we now proceed to determine from experimental data 
as a verification of the model. 
 

4.  EXPERIMENTAL VERIFICATION 

The simplest way to carry out an experimental verification of our 
model of the neutron as an HMepe )( 0 ↑−−↓ +−  bound state is to 
compare its total energy in Eq.(3.10) with that of Rutherford-Santilli 
model of the neutron as an ),( +− ↓ pe  bound state given by: 

↑↑↑ ++≡−++= −− Bepkinep
S
T EcbbmmEEcbbmmE 2

0
22

4
02

0
22

4 )(][)(  .(4.1) 
It follows by subtracting Eq.(4.1) from Eq.(3.10) that essentially,  

ekinoeBoe
S
TT ReEcmEcmEE 2/222 −+≡+≅− ↓↓ −− .   (4.2) 

 
Here, we observe that there is a fortuitous cancellation of the electron rest 
mass  energy  with the (H-atom) binding energy of ↓−e , i.e., 

.02/22
0 =−− ee

Recm       (4.3) 

at +− − pe separation −e
R  given by a coherence length ξ  of the order of 

the Compton wavelength of the pion: 
fmcmcmRe 110/ 13

0 ==≈≡ −
− πξ h .   (4.4) 

This follows from the fact that 
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2
0

0
2
00

22
0

222
cm

cmcme
R
eE e

e

−

−

≈







=







==↓

αππ

h
.  (4.5) 

We also note (see, Fig. 4) that  

( )02
1

0
2
0

2

2
0

2

2
0

2

  ,1  )
22

(
2

 απ
π

mm
cm

fm
cm

e
cm

e
cm

eR e
pe

e
==≈+≡=−

h  (4.6) 

implies occurrence of contact between the classical electric charge spheres 
of the electron and the proton, and ultimately mutual interpenetration of 
the electron and the proton  as  envisaged in the Rutherford-Santilli 
model[4]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 

 
Accordingly, if the kinetic energy of  ↓−e  is presumed to vanish upon the 
contact of its classical electric charge sphere with that of the proton at rest, 
then we would have 0≈↓kinE  in Eq.(4.2), leading to the result, 

0≈− S
TT EE . 

 However, a naïve substitution of 0/ cmR
e πξ h≈≡−  in the 

expression for ↓kinE  in Eq.(3.11b) would have resulted in a rather large 
value: 

Fig. 4:  Configuration of HMpe )( +− −  when the sum of the 
classical electric charge radii of the electron and the proton is 
(a) greater than  1 fm  (in absence of compression) and (b) 
equal to 1 fm (under compression). 

. −e  . +p  

 →← fm2  

. (b) 

. →← −      
ce

R  

. −e  . +p  

 →>←    2    fm  

. (a) 

.  
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GeVGeVcmmE ekin 4.38]511.0/)140[()/( 22
0

2 === −↓ π . (4.7) 
This, it so happens, is the value of the empirical mass M characterizing the 
Hulthen potential which is determined by the requirement that a minimum 
size of the potential hole is required before a bound state can be formed, 
i.e. from Eq.(3.11b), 

01
)(

2

22
0 =








−

h

bRMcm
,     (4.8) 

giving, for 0/ cmRb πξ h== , the value, emmM /2
π= . This result is 

consistent with the fact that the Hulthen potential defined by Eq.(3.6) is 
proportional to ↓E , and therefore,  appears to have absorbed ↓kinE  in the 
characteristic mass parameter, M.  Moreover,  

2
0

2
2
12 /38)2/(/ cGeVGemmM Fe === π    (4.9) 

where FG  is the Fermi coupling constant for weak interactions; and we 
may interpret an optimum value of the Hulthen potential (by analogy with 
our HM

z eCue )( ↓−−↑ −+−  model of  Cooper pairing in superconductors) 
as a transition temperature (related to the mass of +zCu  in the cuprate 
superconductors) or mass of the proton in HMepe )( 0 ↑−−↓ +−  and given 
quite accurately by 

02
1 3/12

2
1/ )2/( α−− ≅= eGeMem F

Rr
p

e .   (4.10) 
 In effect, therefore, we have a repetition of the parallelism between 
Santilli’s HMee ),(0 ↓↑= −+π  and Animalu’s Cooper pairing, 

HM
z eCue )( ↓−−↑ −+−  on one hand, and between Rutherford-Santilli 

neutron, HMpen ),( +− ↓=   and our new pairing, HMepe )( 0 ↑−−↓ +−  on 
the other hand.  The advantage of the new pairing scheme is that, apart 
from the spin and charge fluctuations associated with the isotopic lifting 
transformation defined in Eq.(3.1), the spin-statistics theorem is 
applicable to the system HMepe )( 0 ↑−−↓ +− , in agreement with 
Barut[14] representation of the neutron as eeep νν   state, bound −+  being 
the electron-like antineutrino. Following Barut[14], one can hardly resist 
proposing a similar model for another electrically neutral member of the 
SU(3) baryon octet, HMp )( 00 ↑−−↓=Ξ +− µµ  , where −µ   is the muon 
and 0µ  a muon-like spinion analogous to the electron-like spinion, 0e .  
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5.  CONCLUSION 

In this paper, we have reformulated the theory of the non-local-
nonhamiltonian structure of the Rutherford-Santilli neutron as a 
compressed H-atom from both classical thermodynamics (Ginsburg-
Landau equation) and hadronic mechanics (isoschrodinger equation) 
points of view. The new model is exactly soluble and, therefore, has not 
only provided a framework for physical interpretation of the theoretical 
results but also elucidated the origins of the Hulthen potential from an 
Ornstein-Zernike-like integral equation for the superfluid density in the 
former and from an isotopic lifting (transformation) operator in the latter. 
The existence of a neutral spin- 2

1 quasiparticle (called spinion, 0e ) 
associated with the charge structure of the isotopic lifting transformation 
which first arose in ref.[7] and in superconductivity theory[9] appears to 
have resolved the question of the proper role for a neutral spin- 2

1  particle 
usually identified with the neutrino as a constituent of matter. We have 
also shown that the neutron mass can be accounted for, in a self-consistent 
manner, as the total energy of the HMepe )( 0 ↑−−↓ +−  system as 
previously demonstrated by Santilli[4] while the proton mass,  like the 
critical temperature cT  for the superconducting phase transition, is 
predicted in Eq.(4.10) as the critical mass for the second-order transition 
from normal to the superfluid (neutron) phase of the compressed H-atom 
which occurs in the interior of a neutron star. 
 It is, therefore, our hope that the model presented in this paper 
should be investigated further by theoreticians and experimentalists as a 
prelude to establishing it as a viable structure of all other baryons, as 
hadronic bound states of the types HMlpl )( 0 ↑−−↓ +−  where 

,...,, τµel = . Experimental evidence for the existence of spinions ( 0l ) is 
already provided by the observation of the fractional quantum Hall effect 
in supercodncutors[9] which we have discussed in ref.[7]. 
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