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Abstract

We present BRST gauge fixing approach to cohomological Hamil-
tonian mechanics. Considered as one-dimensional field theory, the
Hamiltonian mechanics appeared to be an example of topological field
theory, with the trivial underlying Lagrangian. Twisted (anti-)BRST
symmetry is related to an exterior algebra. Correlation functions of
the BRST observables are studied.

*Permanent address.



1 The BRST approach

We consider one-dimensional field theory, in which the dynamical variable is
the map, a’(t) : M' — M?"  from one-dimensional space M*, t € M, to
2n-dimensional symplectic manifold M2,

The commuting fields a’ = (p1,...,pn, ¢, ..., q") are local coordinates on
the target space, phase space of Hamiltonian mechanics equipped with the
closed non-degenerate symplectic two-form, w = %wzjdai Ndd?; wij = —wj; =

const, wi;w'* = 4t
We start with the partition function

Z = /Da exp(ily), (1)

where Iy = [dtLy, and take the Lagrangian to be trivial, £, = 0. This
Lagrangian has symmetries more than the usual diffeomorphism invariance.

Trivial Lagrangians are known to be of much significance in the cohomo-
logical quantum field theories[1]-[4], which can be derived by an appropriate
BRST gauge fixing of a theory in which the underlying Lagrangian is zero.

We use the BRST gauge fixing scheme|5, 6] to fix the symmetry in (1)
by introducing appropriate ghost and anti-ghost fields. The diffeomorphisms
of M?" we are interested in are the symplectic diffeomorphisms, which leave
the symplectic tensor w;; form invariant[7],

da' = lya', (2)

where ¢;, = h'0; is a Lie-derivative along the vector field h?. To garantee the
invariance of w;;, we take h' to be Hamiltonian vector field[8], h! = w9, H (a),
where we assume H to be Hamiltonian of classical mechanics.

By introducing the ghost field ¢‘(¢) and the anti-ghost field ¢;(¢) , we write
the BRST version of the diffeomorphism (2),

sa' =ic', sc' =0, s¢=gq, sq=0, (3)

where the BRST operator is nilpotent, s = 0, and ¢; is a Lagrange multiplier.
By an obvious mirror symmetry to the BRST transformations (3), we demand
the following anti-BRST transformations hold:

sa' =ic;, s¢;=0, s¢=g¢q, 5¢=0, (4)



Evidently, 52 = 0, and it can be easily checked that s5 + 55 = 0.
The partition function (1) then becomes

Z = / DX exp(il), (5)

where DX represents the path integral over the fields a,q,c, and ¢. The
action [ is trivial action Iy plus s-exact part,

I:IO+/dtsB. (6)

Since s is nilpotent, I is BRST invariant for any choice of B, with sB having
ghost number zero. We face with the restriction implied by antisymmetric
property of w;;, and choose judiciously B to be linear in the fields,

B = ¢(0ia' — h' + aa’ + yw"qj). (7)

where a and 7 are real parameters. The first two term in (7) give rise to the
terms of the form (Lagrange multiplier)x (gauge fixing condition) and the
ghost dependent part,

sB = qi(0ia' — h') +ic;(0yc" — sh') + a(ga’ + icic). (8)

As a feature of the theory under consideration, the v-dependent term vanishes
because w;; is antisymmetric. To evaluate sh’, we note that h = (9xh?)da”
and, therefore, sh’ = c*0,h'. Thus, the resulting Lagrangian becomes £ =
Lo+ ﬁg fs

L= Lo+ q(0a" — h') +1ic; (0,01 — Oph’) " + a(gia’ + icc). (9)

L is BRST invariant by construction, and it can be readily checked that it is
also anti-BRST invariant, s£ = 0.

In the delta function gauge, i.e. at a = 0, it reproduces exactly, up to
Ly, the Lagrangian, which has been derived in the path integral approach to
Hamiltonian mechanics by Gozzi and Reuter[9]-[11], via the Faddeev-Popov
method. Indeed, by integrating out the fields ¢, ¢ and ¢ we obtain from
(5) the partition function Z = [ Dad(a — ay)exp(ily), where a’, denotes
solutions of the Hamilton’s equation d,a’ = h, which had been used as a
starting point of the approach, with Iy = 0. The delta function constraint
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plays, evidently, the role of the Faddeev-Popov gauge fixing condition, which
is in effect the Hamilton’s equation.

Thus, the theory (5) represents an example of one-dimensional cohomo-
logical field theory, in the sense that the Lagrangian (9) is BRST exact,
with trivial underlying Lagrangian £,. The theory (5) can be thought as a
topological phase of the Hamiltonian mechanics.

The (anti-) BRST symmetry is an inhomogeneous part of larger symme-
try of the theory, inhomogeneous symplectic ISp(2) group symmetry, gen-
erated by the charges, Q@ = ic'q;, Q = icwq;, C = ¢, K = fw;;c'd,
and K = 1w"¢¢c;[9]. Here, Q and @ are the BRST and anti-BRST op-
erators, respectively. [Sp(2) algebra reflects the Cartan calculus on sym-
plectic manifold M?", with the correspondences, ¢! « da’ € TM?" and
q; «— —i0; € T*M*"[11].

2 Physical states

If we consider deformations da’ along the solution of the Hamilton’s equation,
then in order for a’+da’ to still be a solution it has to satisfy the deformation
equation 9;,6a’ = Jhi. This equation is the equation for Jacobi field, da’ €
TM?", which can be thought of as the ”bosonic zero mode”. This mode is
just compensated by anti-commuting zero-mode through the ghost dependent
term, in the Lagrangian (9), a = 0.

The Hamilton function H associated with (9),

H = ¢;h' +icc*oLht — adlq — iaC, (10)

covers, at o = 0, in the ghost-free part the usual Liouvillian L = —h%0; of
ordinary classical mechanics derived by von Neumann[12], in the operator
approach. H is the generalization of the Liouvillian to describe an evolution
of the p-form (p-ghost) probability distributions, p = p(a, ¢, t), instead of the
usual distribution function (zero-form), governed by the Liouville equation,
Oip(a,t) = —Lp(a,t).

In the following, we use the delta function gauge omitting the a-dependent
terms in (10), one of which is the ghost number operator C.

To study the physical states, that is the states which are BRST and anti-
BRST invariant, Qp = Qp = 0, we exploit the identification of ”twisted”
(anti-)BRST operator algebra with an exterior algebra[13]. Conventionally,
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twist is used to obtain BRST theory from a supersymmetric one[l]. Below,
we use a kind of twist to obtain, conversely, supersymmetry from the BRST
invariance. Defining the twisted operators[14]

Q,@ = eﬁHQe_ﬁHa Q,@ = e—ﬂHQeﬁH’ (11>

where § > 0 is a real parameter, one can easily find that they are conserved
nilpotent supercharges, and {Qs, Qs} = 2i3H. Consequently, these super-
charges, together with H, build up N = 2 supersymmetry, which has been
found[9] to be a fundamental property of the Hamiltonian mechanics. Par-
ticularly, this supersymmetry is related[16] to the regular-unregular motion
transitions in Hamiltonian systems. Also, it has been proven[14] that the
cohomologies of Q5 and Q5 are both isomorphic to the de Rham cohomology
S0 one can associate, in a standard way, some elliptic complex to them.

Thus, the following identifications can be made: dg < Qg, dj < Qp, Ap =
dady + diyds < {Qp,Qp} = 2ifH, and (—1)? — (—1)¢, where exterior
derivative dg acts on p-forms, p € AP, and C' is the ghost number. The coho-
mology groups HP(M?") = {ker dz/imdz N AP} are finite when M?" is com-
pact. According to the Hodge-de Rham theorem, canonical representatives
of the cohomology classes H?(M?") are harmonic p-forms, Agp = 0. They
are closed p-forms minimizing the functional £(p) = [y2n |p|?, i.e. dgp = 0
and djp = 0. One can then define B, as the number of independent harmonic
forms, i.e. B,(8) = dim{ker Az N AP}. Formally, B, continuosly varies with
0 but, being a discrete function, it is independent on 3 so that one can find
B, by studying the vacua of the Hamilton function, Hp = 0.

In the Hamiltonian mechanics, such an equation plays the role of the
ergodicity condi- tion[15, 17]. Thus, the extended ergodicity condition can
be thought of as the condition for p to be harmonic form, or, equivalently,
supersymmetric (Ramond) ground state.

To ensure the solution in the p-ghost sector to be non-degenerate one
therefore should have B, = 1. For the standard de Rham complex, B,’s
are simply Betti numbers, with >>(—1)? B, being Euler characteristic of M?".
Recent studies of the physical states[17, 18] showed that the only physi-
cally relevant solution comes from the 2n-ghost sector, and has specifically
the Gibbs state form, p = kK" exp(—(H). The other ghost sectors yield
solutions of the form p = kKPexp(+(3H), for the even-ghost sectors. In
two-dimensional case, analysis shows that p does not depend on f, for the
odd-ghost sectors (see Appendix).



Note that in the limit § — 0, we recover the classical Poincare integral
invariants K?, p = 1,...n, as the solutions of Hp = 0. They are fundamental
BRST invariant observables of the theory, {Q, K?} = 0, since in the untwist-
ing limit, 8 — 0, the supersymmetry generators Qs and Qs become the
BRST and anti-BRST generators, respectively. Geometrically, this follows
from dK? = 0 since K? = wP and dw = 0. Similarly, KP’s are anti-BRST
invariant observables.

Also, it should be noted that there seems to be no relation of the super-
symmetric Hamilton function H to the Morse theory[13] due to the generic
absence of terms quadratic in h*. The reason is that the symplectic two-
form w is closed so that this does not allow one to construct, or obtain by
the BRST gauge fixing procedure, non-vanishing terms quadratic in fields,
except for the ghost-antighost. On the other hand, such terms, which are
natural in (cohomological) quantum field theories, would produce stochas-
tic contribution (Gaussian noise) to the equations of motion[19] that would,
clearly, spoil the deterministic character of the Hamiltonian mechanics.

3 Correlation functions

Let us now turn to consideration of the correlation functions of the BRST
observables. The BRST invariant observables of interest are of the form
Oa = Ajy.qp(a)c™ - - ¢, which are p-forms on M, A € AP. One can easily
find that {Q, 04} = 0 if and only if A is closed since {Q,Os} = Oga.
Therefore, the BRST observables correspond to the de Rham cohomology.

The basic field a’(t) is characterized by homotopy classes of the map
M' — M?". Clearly, they are classes of conjugated elements of the funda-
mental homotopy group m;(M?™), in our one-dimensional field theory, since
closed paths make M! = S' (M! = R! is homotopically trivial). Hence, we
should study (quasi-)periodical trajectories in M>" characterized by a period
7,t € S'. This case is of much importance in a general framework since it
allows one to relate the correlation functions to the Lyapunov exponents[20],
positive values of which are well known to be a strong indication of chaos in
Hamiltonian systems, and to the Kolmogorov-Sinai entropy.

If N is a closed submanifold of (compact) M?" representing some homol-
ogy class of codimension m (2n-m cycle), then, by Poincare duality, we have
m-~dimensional cohomology class A (m-cocycle), which can be taken to have



delta function support on N[21]. Thus, any closed form A is cohomologious
to a linear combination of the Poincare duals of appropriate N’s. The general
correlation function is then of the form,

(Oa,(t1) -+ O, (tm)), (12)

where A, are the Poincare duals of the N’s. Our aim is to find the con-
tribution to this correlation function on S* coming from a given homotopy
class of the maps S* — M?". The conventional techniques with the moduli
space M(1] consisting of the fields a'(t) of the above topological type can
be used here owing to the BRST symmetry. The non-vanishing contribution
to (12) can only come from the intersection of the submanifolds L, € M
consisting of a’s such that a'(t) € Ni, and we obtain familiar formula[22],
(O (t1) Oy, (tm))sr = #(Zm ﬂLk), relating the correlation function to
the number of intersections. As it was expected, the correlation function does
not depend on time but only on the indeces of the BRST observables. The
Poincare invariants, K?’s, as the BRST observables, correspond to homotopi-
cally trivial sector since w;; are constant coefficients, for which case a’s are
homotopically constant maps, a‘(t) = a‘(t), and, therefore, the correlation
function (12) can be presented as [y2n A1 A -+ A Ay
Particular kind of observables, we turn to consider, is of the form[20]

OA = Ezj T Eip(;(CL(to) - (lo)Cil ce Cip

. After normal ordering, this observable can be thought of as the operator
creating p ghosts (p-volume form in TM?") at some time t, and point ay €
M?", and then annihilating them at some later time ¢. Certainly, we should
introduce also time-ordering to define this operator correctly, but this will
not be a matter in the correlation function since we dealing with ¢t € S*.
Indeed, the correlation function (Oa(t))s1 = I'p(7,a0) does not depend on
specific time, and we indicate this fact analytically by labeling I', with the
period 7. An important result[20] is that the higher order largest Lyapunov
exponents are found to be related to this correlation function by

p
1
I,(ag) = > lim sup ;ln Ly (7, ap). (13)
m=1

T—00

The partition function (5), for the p-form sector, Z,(7) = Trg: exp(—iH,t),
takes the normalized form|[20]

Zy(1) =Trsil,(t,a)/Trs1, (14)
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where T'rg1 denotes integral over all the solutions a’ characterized by period
T.

The problem in computing Z,(7) arises due to the fact that the integral
over all the a’s is obviously abandoned. The finite value can be obtained by
realizing that the integral can be replaced with a sum over all the homotopy
classes of a’s mentioned above. Explicit computation can be performed, for
example, by realizing M?" as a covering space, f : M?" — Y27 of a suitable
lineary connected manifold Y?* having the same fundamental group as S1,
T (Y2 tg) ~ w1 (S, tg). Since Y*" has my(Y?",ty) = 0, the set of preimages
is discrete, f~'(ty) = {ag,as,...}. The number of elements of f~!(t) and
of the monodromy group G' = 71 (Y?",ty)/fami(M?* ay) coincides due to
canonical one-to-one correspondence between f~!(¢y) and G, and does not
depend on t, due to m(Y?",ty) = 0. Hence,

Zy(1) = 3 Tp(T, aq). (15)
aclG
which is finite if G is a finite group. Clearly, Z,’s are topological entities,
which can be used to define topological entropy[20] of the Hamiltonian sys-
tem, with >?"(—1)?Z, being Euler characteristic of the symplectic manifold
M*11].

4 Concluding remarks

After having analyzed the main ingredients of the construction, we make few
comments.

Note that the a-dependent terms in the Lagrangian can be absorbed by
slightly generalizing of the time derivative, 0, — D; = 0; + «, which looks
like a covariant derivative, in one-dimensional case.

As we have already mentioned, the symmetries of the resulting Hamil-
tonian (10) appeared to be even more than the (anti-)BRST symmetry we
have demanded upon. So, the reason of the appearence of these additional
symmetries, K, K, and C, should be clarified, in the context of the BRST
gauge fixing approach. Surely, these symmetries are natural, and establish
the Poincare integral invariants, its conjugates, and the ghost-number con-
servation.

We note that there is a tempting possibility to start with a non-trivial
topologically invariant action I, if exist, instead of the trivial one. The
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problem is to construct an appropriate topological Lagrangian Ly, for which
Iy will not be dependent on the metric on M', a positive definite function
of time, g = ¢(t), that is, dg = arbitrary, 61y = 0. In this way, by the use
of the BRST gauge fixing scheme, which is presently known to be the only
method to deal with topologically invariant theories, one would construct a
kind of topological classical mechanics.

Also, it is interesting to make BRST gauge fixing for the theory, with
an explicit accounting for the energy conservation. Due to the fact that
the (2n — 1)-dimensional submanifold, M?"~1 C M?", of constant energy,
H(a) = E, is invariant under the Hamiltonian flow, and the p-forms evolve
to p-forms on M?"~1[20], one deals in effect with a "reducible” action of the
symplectic diffeomorphisms, for which case more refined Batalin-Vilkovisky
gauge fixing method[23] should be applied, instead of the usual BRST one
used in this paper.

Appendix

Two-dimensional phase space, n = 1, is characterized by the coefficients of
the symplectic tensor w'? = —w?! = 1; a! = p, a? = ¢q. The general expansion
of the distribution reads

pla,c) = po + pict + poc® + prac'c®.

The general system of the ground state equations, Qsp = Qgp = 0, reduces,
in this case, to (see Ref.[18] for details)

¢' (O — Bhy)po =0, (92 — Bha)po = 0,

¢ (01 + Bhi)pia =0, (02 + Bha)piz =0,
(D1 — Bha)pa — (92 — Bha)pr)] = 0,
(01 + Bhi)pa — (02 + Bha)p1 = 0.

Here, 0; = 0/0a’ and h; = 0H (a',a?)/0a* (i = 1,2). This system of equa-
tions immediately implies, for the ghost-free sector py and the two-ghost

sector pia,

+8H

—BH
Po = Ko€ y P12 = ke 7



These ghost sectors define scalar distributions, with commuting coefficients

po and pis.
The equations for the ”vector” distribution, p'= (p1, p2), can be rewritten
in the following form:

O1p2 — Oop1 =0,  2B(h1p2 — hap1) = 0,
or, taking 3 > 0,

hg hg hg
78 - a - - a I - .
hl 1P1 2P1 P1 1h1a P2 hl P1

The characteristic equations for the non-homogeneous first-order partial dif-
ferential equation above are

d(]J1 . h/2 da2 . 1 dpl hg

©@eo 22t 92
ds  hy ds C o ds Py

from which one can easily find the first and the second integrals

h
U, = /(hldal +hada?), U= 2pi.
1

The general solution then is of the form ®(U;, Us) = 0, that is, we can write

hy
_Mrw
p1 hzf( 1),

and, accordingly, po = f(Uy), where f is an arbitrary function. We see that
the solutions for the one-ghost (odd-ghost) sector, p; and py, characterizing
the vector distribution p, do not depend on the parameter § > 0. This
remarkable property might go beyond the two-dimensional case.
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