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Abstract

BRST formulation of cohomological Hamiltonian mechanics is pre-
sented. In the path integral approach, we use the BRST gauge fixing
procedure for the partition function with trivial underlying Lagrangian to
fix symplectic diffeomorphism invariance. Resulting Lagrangian is BRST
and anti-BRST exact and the Liouvillian of classical mechanics is repro-
duced in the ghost-free sector. The theory can be thought of as a topolog-
ical phase of Hamiltonian mechanics and is considered as one-dimensional
cohomological field theory with the target space a symplectic manifold.
Twisted (anti-)BRST symmetry is related to global N = 2 supersymme-
try, which is identified with an exterior algebra. Landau-Ginzburg for-
mulation of the associated d = 1, N = 2 model is presented and Slavnov
identity is analyzed. We study deformations and perturbations of the the-
ory. Physical states of the theory and correlation functions of the BRST
invariant observables are studied. This approach provides a powerful tool
to investigate the properties of Hamiltonian systems.
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1 INTRODUCTION

Recently, path integral approach to classical mechanics has been developed by
Gozzi, Reuter and Thacker in a series of papers[1]-[10]. They used a delta func-
tion constraint on phase space variables to satisfy Hamilton’s equation and a sort
of Faddeev-Popov representation. This constraint has been exponentiated with
the help of Lagrange multiplier, ghost and anti-ghost fields so that the resulting
field theoretic Lagrangian appears to be BRST and anti-BRST invariant.

This is quite analogous to the usual path integral formulation of quantum
gauge field theories, in which BRST symmetry of the gauge fixed Lagrangian
has been originally found. Due to the standard Faddeev-Popov procedure, one
starts with a classical Lagrangian, which is invariant under the action of a gauge
group, and the gauge fixing yields additional (gauge fixing and ghost dependent)
terms in the Lagrangian. The BRST symmetry of the resulting gauge fixed
Lagrangian is well known to be a fundamental property providing, particularly,
renormalizability of the theory.

Wellknown alternative method to quantize gauge field theories is just based
on the BRST symmetry. Instead of implementing the gauge fixing constraint,
one simply insists on the BRST invariance from the beginning, by constructing
nilpotent BRST operator and BRST exact Lagrangian. The BRST quantization
scheme provides a simple geometrical basis for heuristic Faddeev-Popov method
and is known as a powerful tool to deal with not only gauge field theories but also
with much more complicated field theories. An important point is to identify
the symmetries to be fixed.

Trivial Lagrangians are known to be of much importance in the cohomo-
logical quantum field theories[11]-[15]. As it was realized, these theories can
be derived by an appropriate BRST gauge fixing of a theory in which the un-
derlying Lagrangian is zero. An extensive literature exists on the topological
field theories. Various topological quantum field theories, such as topological
Yang-Mills theories, two-dimensional gravity[16]-[22], four-dimensional confor-
mal gravity[23], non-linear sigma model[12], Landau-Ginzburg models[24], two-
dimensional BF models[25], WZNW models[26], W-strings[27] are investigated
within the BRST quantization scheme; see Ref.[14] for a review. We feel it is
worthwhile to broaden this effort and, in this paper, use the BRST procedure
to develop a model describing classical dynamical systems.

The model described by the partition function (6) is by construction one-
dimensional cohomological field theory, in the sense that the resulting La-
grangian is BRST exact, with trivial underlying Lagrangian. The theory (6)
can be thought of as a topological phase of Hamiltonian mechanics. The result-
ing Lagrangian is in effect the same one obtained by Gozzi, Reuter and Thacker
plus additional o dependent terms, which we drop in the subsequent considera-
tion. We should emphasize here that, stating that the theory is, as such, a sort
of topological one, they proved[4] that the partition function is proportional to
Euler characteristic of the phase space and studied 2n-ghost ground state sector



of the associated supersymmetric model. However, more elaborated analysis is
needed. In the present paper, we use the tools of topological field theory to fill
this gap.

The most close examples of cohomological field theory to the one considered
in this paper are topological nonlinear sigma model[12], in which a basic field is
the map from Riemannian surface to a fixed Kahler manifold as the target space,
and topological Landau-Ginzburg models[24]. Also, one-dimensional (d = 1)
sigma model with the target space a compact Kahler manifold having nontrivial
homotopy group m; has been considered recently by Cecotti and Vafa[28], in
connection with the Ray-Singer analytic torsion.

One of the themes underlying this paper is the notion that studying topolog-
ical field theoretic models has regularly proved useful in developing our under-
standing of field theories and physical phenomena more generally. For example,
studying cohomological content of d = 2, N = 2 supersymmetric model has
enhanced understanding of two-dimensional Ising model[28]. Despite the fact
that various topological field theories have been thoroughly studied, we think it
is useful to look closely at the specific model, which has its own significance in
the context of continued studies of classical dynamical systems. So, we apply
various tools and analyze the model in many directions.

Since we need to fix only one symmetry, the problem of giving the BRST
formulation itself of the cohomological classical mechanics which we develop
in this paper is drastically simpler than that of the forementioned topological
field theories, which are characterized by rich field content and a set of sym-
metries. Nevertheless, we give a systematic representation in order to provide
a self-consistent and precise description. Also, the theory is one-dimensional
that makes general structure of the theory less complicated than that of the
two- or higher dimensional topological field theories; for example, there are no
conventional ”instanton corrections” and the notion of spin is irrelevant. Fur-
thermore, it should be stressed that the resulting theory is essentially a classical
one despite the fact that we are using the BRST gauge fixing scheme, which
is usually exploited to construct quantum field theories. As the result, sharing
many properties with the usual topological quantum field theories, it differs
from those by absence of quantum (%) corrections. However, we should empha-
size that there arises a major distinction from the conventional topological field
theories studied in the literature since symplectic structure of the target space
rules out quadratic terms from the Lagrangian, leading to a first-order character
of the system. Such specific theories, describing Hamiltonian systems, are worth
to be studied exclusively.

In view of the above, cohomological classical mechanics represents perhaps
the simplest example of topological field theory. So, after constructing the
BRST invariant Lagrangian the focus of our paper is to study the implications
and novel aspects arising from the BRST approach and associated supersym-
metry. The work in this paper enables us to use supersymmetric field theory
as a way of deeper understanding of Hamiltonian systems. In general, this ap-



proach provides a powerful tool to investigate the fundamental properties and
characteristics of Hamiltonian systems such as ergodicity, Gibbs distribution,
Kubo-Martin-Schwinger condition[3], integrability, and Lyapunov exponents|8].
Particularly, we think it is illuminating and instructive to map out some iden-
tifications one can draw between the topological field theories and Hamiltonian
systems. This is, in part, to establish dictionary between the old and modern
techniques used in studying classical dynamical systems.

Another motivation of our study is that we consider the BRST formulation of
cohomological classical mechanics as providing a basis to give BRST formulation
of (cohomological) quantum mechanics and, from then on, apply topological
field theory methods to study quantum mechanical systems. The key to making
the connection between them lies in treating quantum mechanics as a smooth
h-deformation of the Hamiltonian one, within the phase space (Weyl-Wigner-
Moyal) formulation of quantum mechanics[60]. We hope, in this way, that one
might investigate quantum ergodicity and quantum chaos characteristics which
are now of striking interest.

In addition, there arises a tempting possibility to give a classification of
possible topologies of constant energy submanifolds of the phase space for the
case of reduced Hamiltonian systems. Of course, this idea is reminiscent of the
one of using BRST symmetry and supersymmetry to obtain various topological
results. Indeed, we already know that the instantons and Witten index serve
as the tool to obtain such quantities as the Donaldson invariants, Lefschetz
number, and Euler characteristic. The idea to combine the tools of topological
field theories and classical Morse theory might be productive here as well.

As to examples of field theoretic approach to Hamiltonian systems we notice
that the path integral approach to Euler dynamics of ideal incompressible fluid
viewed as Hamiltonian system has been developed recently by Migdal[29], to
study turbulence phenomenon in terms of the path integral over the phase space
configurations of the vortex cells. Hamiltonian dynamics has been used to find
an invariant probability distribution which satisfies the Liouville equation, with
topological terms in the effective energy being of much importance.

Also, more recently Niemi and Palo[32] considered classical dynamical sys-
tems using d = 2, N = 2 supersymmetric nonlinear sigma models. They followed
studies on the Arnold conjecture on the number of T-periodic trajectories[33] by
Floer[34], who proved the conjecture for the symplectic manifolds subject to the
condition that the integral of symplectic two-form over every two-dimensional
sphere is zero. Particularly, they used a generalization of Mathai-Quillen for-
malism, previously applied in the investigation of Witten’s topological sigma
model, and studied functional Hamiltonian flow in the space of periodic solu-
tions of Hamilton’s equation by breaking the (1,1) supersymmetry with Hamil-
tonian flow down to a chiral (1,0) supersymmetry to describe properties of the
action of the model in terms of (infinite dimensional) Morse theory.

The outline of the paper is as follows.

In Sec. 2, we start with a target space interpretation of Hamiltonian mechan-



ics and explore the BRST gauge fixing scheme to fix diffeomorphism invariance
of the trivial underlying Lagrangian (Sec. 2.1). The gauge fixing condition is
Hamilton’s equation plus some additional o dependent term. When both the
BRST and anti-BRST symmetries are incorporated there appears no room for
the o dependent terms in the Lagrangian, which exhibits Zs symmetry. The Li-
ouvillian of ordinary classical mechanics is reproduced by the associated Hamil-
ton function, in the ghost-free sector. The model reveals symplectic structure
represented by using of the cotangent superbundle over phase space naturally
supplied by the field content. Then we analyse Slavnov identity to demonstrate
that the model is perturbatively trivial and BRST anomaly free (Sec. 2.2).

With this set up, in Sec. 3 we study in some detail the associated supersym-
metric model and cohomology. Namely, we use topological twist of the BRST
and anti-BRST operators to obtain global N = 2 supersymmetry[3] (Sec. 3.1),
and relate the supersymmetry to an exterior algebra (Sec. 3.2). In so doing, we
are able to identify physical states of the theory. The link between the BRST
and anti-BRST symmetries is the supersymmetric ground state sector, i.e. the
Ramond sector, of the associated d = 1, N = 2 model. Due to the underlying
supersymmetry of the Hamilton function (20), only the Ramond states are of
relevance which are found to be in correspondence with cohomology classes of
the target manifold. The states can be in general treated as (cohomology classes
of) form valued classical probability distributions on the phase space M?". In
the ghost-free sector, they correspond to the probability distribution related[3]
to conventional ergodic Hamiltonian systems. Physically relevant (normaliz-
able) solutions of the supersymmetry equations are given specifically by the
Gibbs state form coming from the 2n-ghost sector. We stress that the super-
symmetry appears to be a strong constraint on the physics. Criterion for regu-
lar /nonregular motion regimes in Hamiltonian systems is related to the Witten
index known as a measure for supersymmetry breaking. Partition function eval-
uates Euler characteristic of the target space and the Witten index is equal to
Euler characteristic, too (not surpising result, certainly, obtained earlier in the
context of topological d = 2, N = 2 sigma models). Also, we find that Poincare
integral invariants can be naturally identified as homotopically trivial BRST in-
variant observables. Existence of homotopically nontrivial Poincare invariants
is a consequence of the field theoretic approach.

We discuss briefly on the connection of the model to Morse theory (Sec. 3.3)
observing that Hamiltonian may serve as a Morse function and then proceed
to obtain Landau-Ginzburg formulation of the d = 1, N = 2 model using a
superspace technique (Sec. 3.4). One of the results is that the model admits
Landau-Ginzburg desription so that its properties can be largely understood
in terms of superpotential. The lowest component of the superpotential has
been identified as Hamiltonian. The action appears to be in the form of a D-
term. The ring of chiral operators consists of polynomials modulo the relation
characterizing critical points of the Hamiltonian flow.

We show that the time reparametrization invariance of the model requires



the fundamental homotopy group 1 (M?") to be nontrivial.

Valuable information comes from studying possible deformations and per-
turbations of the action. We analyze deformations of the superpotential and
symplectic tensor (Sec. 3.5). What is most interesting is that the supersymme-
try preservation condition for the deformation of superpotential (Hamiltonian)
by analytic function is explicitly related to integrals of motion. This is another
step toward revealing connection between the supersymmetry and integrabil-
ity properties of the system. We also study a deformation of the coordinate
dependent symplectic tensor for which case slight modifications of the BRST
structure have been accounted. A remarkable result is that to preserve the su-
persymmetry Schouten bracket between the deformation tensor and symplectic
tensor must be zero. Also, we use a generalized Mathai-Quillen formalism to
construct the action in terms of an equivariant exterior derivative in the space
of fields (Sec. 3.6) to get a more clear geometrical meaning of the model and
to provide a possible set up for studying supersymmetry breaking. This result
may serve as a foundation for further work.

In Sec. 4, we study BRST invariant observables and its correlation func-
tions. The BRST invariant observables of interest are closed p-forms on sym-
plectic manifold and correspond to the de Rham cohomology classes (Sec. 4.1).
Elaborating connection between the BRST symmetry and supersymmetry, we
identify the BRST invariant observables with chiral operators of the d = 1,
N =2 model. The anti-BRST observables can be treated in the same manner.

Also, there arise naturally homotopy classes of classical periodic orbits (Sec. 4.2)
so that coefficients of the p-forms take values in the linear bundles of appropri-
ate representations of 7 (M?2"). This leads to consideration of the loop space
consisting of mappings S! — M?" which is a natural object in the topologi-
cal framework. We remark that periodic orbits are in many ways the key to
the classical dynamics. Using the above mapping and an integer valued closed
two-form, we construct a term which can be added to the original action and
provides a possible mechanism for symmetry breaking.

The correlation functions (Sec. 4.3) are found to be related to the intersection
number, with the two-point correlation function, in the homotopically trivial
sector, representing the standard intersection form in cohomology identified as
the topological metric. As it is in the topolological field theories, there are no
”local” degrees of freedom in the theory under consideration that means that
the correlation functions are not time dependent.

A certain kind of correlation functions interwines the BRST and anti-BRST
sectors and are known to be related to the Lyapunov exponents, positive values
of which are strong indication of chaos in Hamiltonian system. The p-form
sectors, Zp, p = 0,...,2n, of the partition function (6) for the periodic orbits
are evaluated via realizing M?" as a covering space and using monodromy.

In Sec. 5, we end the paper with some comments about what questions one
might address next.



2 BRST FORMULATION

A Hamiltonian dynamical system can be described geometrically by a phase
space manifold M?™ equipped by a symplectic form w and a Hamiltonian H[36].
The evolution of the system in time ¢ is given by a particular set of trajectories
on M?", parametrized by ¢, such that Hamilton’s equation holds.

On the other hand, Hamiltonian dynamical system can be described as one-
dimensional field theory, in which dynamical variable is the map, a’(t) : M* —
M?", from one-dimensional space M*', t € M', to 2n-dimensional symplectic
manifold M?".

The commuting fields a* = (py,...,pn, 2, ... ,2") are local coordinates on
the target space, the phase space M?", endowed with a nondegenerate closed
two-form w; w™ # 0, dw = 0. In terms of the local coordinates, w = %wijdai A
da’; wijw’k = §F. We take w;; to be constant symplectic matrix, i.e. use
canonical (Darboux) coordinates.

2.1 BRST APPROACH TO HAMILTONIAN SYSTEMS

Our starting point is the partition function
Z:/D[a] exp i1y, (1)

where Iy = [dtLy and the Lagrangian is trivial, £, = 0. This Lagrangian has
symmetries more than the usual diffeomorphism invariance.

The BRST gauge fixing scheme[14, 35] assumes fixing of some symmetry
of the underlying action by introducing appropriate ghost and anti-ghost fields.
The symmetry of the action (1) we are interested in is symplectic diffeomorphism
invariance, which leaves the symplectic tensor w;; form invariant,

sa' = lra'. (2)

Here, ¢, = h'0; is a Lie-derivative along the Hamiltonian vector field, h’ =
w9;H (a)[36]. The transformations (2) are canonical ones, which preserve the
usual Poisson brackets, {, }., defined by the symplectic tensor. Note, however,
that the symmetry under (2) can be viewed more generally as an invariance
under any diffeomorphism, with A treated as a vector field.
By introducing the ghost field ¢’(t) and the anti-ghost field &;(t), we write
the BRST version of the diffeomorphism (2),
sat =c¢', st =0, s =iq, sq =0, (3)
where the BRST operator s is nilpotent, s> = 0, and ¢; is a Lagrange multiplier.
The BRST transformations (3) represent a trivial BRST algebra for the BRST



doublet (a?,c'). By an obvious mirror symmetry to the BRST transformations
(3), we demand the following anti-BRST transformations hold:

_ i fin en i ij -
sa' =w'e¢;, 56, =0, 5" =iwq;, 5¢;=0, (4)

The definition (4) implies 32 = 0, and it can be easily checked that the BRST
and anti-BRST operators anticommute,

s§+ 8s = 0. (5)

By definition, s and § anticommute with d; = dtd;, so that (d; + s+ 5)? = 0.
To construct BRST invariant Lagrangian one proceeds as follows. The par-
tition function (1) becomes

7 = /D[X] expil, (6)

where the measure D[X] represents the path integral over the fields a, ¢, ¢, and
¢. The total action I is the trivial action Iy plus s-exact part,

1:10+/dt53. (1)

Since s is nilpotent, I is BRST invariant for any choice of B, with sB having
ghost number zero. Since w;; is antisymmetric, all terms quadratic in fields
are identically zero, and we choose judiciously the ”gauge-fermion” B to be
linear in the fields. The form of B is typical, namely, (antighost)x (gauge fixing
condition),

B =i¢;(0ya’ — h' — aa' — yw"q;). (8)

where o and 7 are parameters. Applying the BRST operator we find that the
first two terms in (8) give rise to the term of the form (Lagrange multiplier) x (gauge
fixing condition) and the ghost dependent part,

sB = q;(0;a’ — h') +ic;(9;c’ — sh') — aqia® — ic;ct). 9)

As a feature of the theory under consideration, the v dependent term vanishes
because w;; is antisymmetric. To find sh?, we note that 6k’ = (9xh')da*, and
hence sh’ = ck9h'. Thus, the resulting Lagrangian becomes £ = L + Lgr+
ﬁgh + Eom

L=Ly+ q,;(atai — hi) + z'a,;(ata;; - 8khi)ck - a(qiai - iEici). (10)

The total Lagrangian £ is BRST invariant by construction, s£ = 0.
In the delta function gauge, i.e. at @ = 0, it reproduces exactly, up to Ly, the
Lagrangian, which has been derived in [1]-[4], in the path integral approach to



Hamiltonian mechanics by the Faddeev-Popov method. Indeed, by integrating
out the fields ¢, ¢ and ¢ we obtain from (6) the partition function in the form

7Z = /Da&(a—acl)expilo, (11)

¢, denote solutions of Hamilton’s equation, d;a’ = h’. The partition
function (11), with Iy = 0, has been used in [1] as a starting point of the path
integral approach to classical mechanics.

The delta function constraint in (11) corresponds, evidently, to the Faddeev-
Popov gauge fixing condition and leads to integration over all paths with a delta
function concentrating around the integral trajectories of the Hamiltonian flow.
Since the underlying Lagrangian is zero the theory (10) is defined only by the
gauge fixing term. Thus, the partition function (6), with appropriate bound-
ary conditions, represents one-dimensional cohomological field theory describing
Hamiltonian systems[43].

We note that the o dependent terms in the Lagrangian (10) can be absorbed
by redefining time derivative by the shift, d; — d; — a. Notice that the latter
form is strongly reminiscent of a gauge covariant derivative.

The way to construct explicitly BRST and anti-BRST invariant Lagrangian
is to use both s and 5 operators, namely, £’ = Lo+ s5B’, with B’ being of ghost
number zero. With the choice

where a’

B’ = iw;pa’(0ya® — b, (12)
we find the Lagrangian in the form
L= Lo+ q:0a’ — a'dyq; +i(;0,¢" + ¢;0,E) — qih' + i;0phic”. (13)

We observe that the fields appear in a more symmetric way compared to (10).
We will see in Sec. 3 that this form of the Lagrangian arises in a superfield
treatment of the theory. It is straightforward to check that the two Lagrangians,
L, at a =0, and £, differ by the derivative term,

¢ Lattuica )

implying thus the same equations of motion. Also, we conclude that there is no
room for the o dependent terms, in this ss construction, so that in contrast to
(10) the Lagrangian (13) is invariant under the following Z5 symmetry:
t——t, a' —a', ¢ ——q, c—c, &G——¢, h'——h' (15)
Coupling the system to the ”gauge field” « spoils this symmetry.
In Table 1 we collect the fields of the cohomological classical mechanics for
the reader convenience (see also [2]).



Field Meaning Geometrical meaning | Ghost number
a map Mt — M?" coordinates on M?2" 0
c sdiffeomorphism ghost differential da* +1
c anti-ghost of ¢ 0/0c -1
q Lagrange multiplier —i0/0a" 0
h vector field symplectic vector field 0

Table 1: The fields of cohomological classical mechanics.

The (anti-)BRST symmetry is, in fact, an inhomogeneous part of larger
symmetry of the Lagrangian (13), namely, inhomogeneous symplectic ISp(2)
group symmetry, which is generated by the following charges[1]:
C = c'c, (16)

Q=icq, Q=itw’g,

1 . I
K = Ewijclcj, K = §w1]5¢5j.

Here, @ and Q are the BRST and anti-BRST charges respectively; sb’ = [Q, b']
and 8b° = [Q, b?] for a generic field b*. The generators (16) form the algebra of

ISp(2) group,

[C.Q] =@, [C,Q]=-Q,

[K.Q1=[K.Q] =0,
K.Q=0Q. [K.Q]=0q, (17)

(K. K] =C,

(C,K] =2K, [C.K]=-2K

As it has been found|[2]-[6] the ISp(2) algebra (17) reflects the full machinery
of the Cartan calculus on symplectic manifold M?", with the correspondences
given in Table 1. The (anti-)BRST operator Q (Q) is naturally associated with
an exterior (co-)derivative d (d*) on M?".

The ghosts ¢ form a basis for the tangent space TM?" and act by exterior
multiplication on the cotangent space T M?", for which the anti-ghosts & form

the basis dual to ¢!. They fulfill the Dirac algebra,
{Civcj}:{éiaéj}zoa {Cian}:(gj‘;

with the equal time anticommutators, and can be treated as the creation and
annihilation operators acting on a Fock space. The basic field o' and Lagrange
multiplier ¢; satisfy the following commutation relation:

(18)

[ai,qj] = iéji-, (19)



while the other equal time commutators between all the fields are identically
Zero.
Hamilton function, H, associated with the Lagrangian (10) can be readily
derived,
H = q;h' + ic;c*Opht + aa’q; + iaC, (20)

In the ghost-free part, it covers, at a = 0, the usual Liouvillian, L = —h%0;,
of ordinary classical mechanics derived in the operator formulation of classi-
cal mechanics by Koopman and von Neumann[37]. The Hamilton function H
is a generalization of the Liouvillian to describe evolution of the form valued
probability distribution, id;p(a,c) = Hp(a,c), instead of the usual distribu-
tion function (zero-form) governed by the Liouville equation, d;p(a) = —Lp(a).
Here, we mean p(a, ¢) is expanded in anticommuting variables ¢! giving a set of
p-ghost terms corresponding to a set of p-forms, 0 < p < 2n, on M?". From a
geometrical point of view, it is highly remarkable that H, at o = 0, is propor-
tional to a Lie derivative along the Hamiltonian vector field, H = —ify, applied
this time to p-forms|2, 6]. As we will see in Sec. 3, solving the generalized Liou-
ville equation, for stationary form valued distributions, is equivalent to solving
a cohomology problem.

It is worthwhile to note here that the p-form states and observables arise
naturally also in the supersymmetric quantum mechanics[38, 39] and in the
(Landau-Ginzburg) N = 2 supersymmetric models[24, 28, 40], which in vari-
ous aspects will serve, in Sec. 3, as a guide line for dealing with such an ex-
tention. Also, we note that the properties of the ground states in the two-
dimensional topological models are studied[40] also via dimensional reduction
to one-dimensional models.

Besides symplectic structure of the target space, the model (13) reveals sym-
plectic structure provided by the field content. Recall first that the phase space
M?" is usually considered as a cotangent bundle over configuration space M,
x® € M™. Analogously, let us consider cotangent bundle M4" over M?" en-
dowed by symplectic two-form Q with local cooordinates ¢ = (gi,ad’); ¢,d =
1,...,4n. Here, ¢; and o’ are canonical conjugates which is indicated by (19).
M*" can be thus viewed as the second generation phase space with a base space
M?" and natural projection p : M4 — M?" provided by (g;,a’) — (0,a7).
Enlarging the bundle M*" by a Grassmannian part with coordinates (c?, ¢;), we
define the cotangent superbundle M*"*" equipped by block diagonal supersym-
plectic matrix ||Qqs|| = diag(||Qeall, ||Eeal]), where E is 4n x 4n unit matrix,
with local coordinates y* = (Qd,ci,éj); a,b =1,...,8n. The graded Poisson
brackets in M*"*" has been introduced in [2, 60], and can be defined by using
Q in a standard way:

{F,GYq = (0. F)Q™(9,Q), (21)

where F and G are functions on M4*4" and 9, = 0/0y%; Qaazﬂa/b = (52.
Thus, the Hamiltonian (20) and charges in (16) can be treated as func-
tions on M*"*" acting by taking the graded Poisson brackets. It is a matter
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of straightforward calculations to verify that the ISp(2) algebra relations (17)
hold, with the graded commutators replaced by the graded Poisson brackets;
for example, {K,Q}q = . We note that this is, in fact, a nontrivial result
because of emerging of the supersymplectic structure 2 having no counterpart
in the Cartan calculus. The probability distribution forms p on M?" can be
viewed in general as functions on M*"*" with the graded Poisson bracket al-
gebra being the algebra of classical observables. The Hamilton function (20), at
a = 0, is ady operator acting on functions on M***" and represents horizontal
vector field in the fiber bundle. The Schrodinger-like equation for evolution of
the distribution form can be rewritten in a Hamiltonian form, id0;p = {H, p}aq.
In a sense, we can say that the model is twice symplectic.

Due to the structure of the Hamilton function (20) the partition function (6)
can be factorized into three different sectors: The Liouvillian sector, the ghost
sector, and the a dependent sector.

In the following, we use the delta function gauge omitting the o dependent
terms in (20), one of which is the ghost number operator C'

2.2 SLAVNOV IDENTITY

In order to draw further parallels with the topological quantum field theories,
the point of an immediate interest is to translate the BRST invariance of the the-
ory under consideration into Slavnov identity. Particularly, the Slavnov identity
technique is used[53] to study anomalies and renormalizability of a theory and
to incorporate all the symmetries and constraints of a model (BRST invariance,
vector supersymmetry, ghost equations, etc.). Since the theory under considera-
tion is linear and one-dimensional, its perturbative properties and anomalies can
be reliably derived from general arguments. It is instructive, however, to prove
explicitly that it is indeed perturbatively trivial and symplectic diffeomorphism
anomaly free.

In order to write down the Slavnov identity, we introduce a set of invariant
external sources (J¢, J9, J¢, J°) coupled to the BRST variations of the fields,

Tewy = /dt(J“sa + J9sq+ JCsc + J°sc). (22)
According to (3) the total action,
=T e = / dt(qi(Opa’ — h') + Cidpc’ + &0;h' S + TPt +idig;),  (23)

does not depend on J¢ and J? since sc = sq = 0, while the other BRST
transformations in (22) are linear. This linearity implies that there are no
"radiative corrections” to these transformations so that linear dependence of
the action (23) on the BRST sources is radiatively preserved.
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It is straightforward to check that the extended action (23) satisfies the
following Slavnov identity:

S(¥) =0, (24)
where 5% 6T 6% 6%
S(z) = /dt(wia = 5J§5€)' (25)

The corresponding extended BRST operator By is linear,

;0 .0
By, = /dt(c 50 +zqi6—éi), (26)

and provides no extension to the BRST sources. It is easy to verify that By
is nilpotent, B4 = 0. With the absence of the radiative corrections to this
equality we arrive at the conclusion that there are no ”quantum deformations”
(no surprise certainly).

In topological Yang-Mills field theories, nontrivial cohomology of an ex-
tended BRST operator in the space of integrated polynomials in fields and
BRST sources is refered to as a gauge anomaly[53]. So, anomaly may come
from nontrivial cohomology of the extended BRST operator By, in such a space.
However, it is easy to verify that its cohomology is trivial since the fields in (26)
appear only in BRST doublets. Note that one should take into account all sym-
metries of the theory to write down extended BRST operator. Since in our case
there are no additional symmetries to be incorporated, this completes the prove
that the Slavnov identity is symplectic diffeomorphism anomaly free.

3 PHYSICAL STATES AND TOPOLOGICAL
TWIST

Due to the BRST and anti-BRST invariance of the theory we will study in this
Section the BRST and anti-BRST invariant states. The possible physical states,
p = |phys), are then found as solutions of the system of equations consisting of
the BRST and anti-BRST cohomology equations[7, 41, 42],

They are equivalence classes of appropriate Q@ and @ cohomologies, p ~ p +

Q' +Qp".

31 d=1, N=2 SUPERSYMMETRIC MODEL

To study the physical states, we exploit the identification of the twisted (anti-
)BRST operator algebra with N = 2 supersymmetry which is usually perfomed
in topological quantum field theories[38]. Conventionally, the topological twist
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is used to obtain BRST theory from a supersymmetric one[11, 38, 44, 45]. Below
we use the twist to obtain, conversely, supersymmetry from the BRST and anti-
BRST symmetries.

Using the twisted BRST and anti-BRST operators

Qp = PHQe PH = Q — B9, H, Qp = e PHQePH = Q + Beiw 9, H, (28)

where 3 > 0 is a real parameter, one can easily find that they are conserved
nilpotent supercharges and their anticommutator closes on the Hamilton func-
tion,

{Qs,Qus} = {Qs, Qs} =0,
{Qﬁ7H} = {Qﬁ7H} =0, (29)
{Qﬁa Qﬁ} = 2ifH.

Consequently, these supercharges, together with the Hamilton function H, build
up global N = 2 supersymmetry. The supersymmetry transformations leaving
the Hamilton function H invariant are

bsa =¢t, 0,c' =0, 6,6 =iq — POH, b5q; = —ifc"0;0,H, (30)
Mige, 05" = iw™qr + Bw*OLH, 6.6, =0, b.q; = iﬁwjkéjaiakH.

(31)
It is important to note that the topological twist (28) does not change the
Lagrangian of the theory. It is well known that in the case of d > 2 topological
field theories a crucial property of the twist is that it changes statistics of some
fields. Apart from the case of the d > 2 theories, we are dealing with the fields
which have no spin because it makes no sense in d = 1 case. So, the problem of
changing of statistics is irrelevant.

The supersymmetry (29) has been originally found by Gozzi and Reuter[3],
who stressed that it is of fundamental character in Hamiltonian systems. Partic-
ularly, this supersymmetry has been used|[3] to derive the classical Kubo-Martin-
Schwinger condition justifying algebraically the preference of the Gibbs distri-
bution and has been related[5, 6, 7] to the regular/nonregular motion regimes
in Hamiltonian systems with Hamiltonian, which does not explicitly depend on
time.

In general, the supersymmetry garantees that there will be a set of ex-
actly degenerate ground states. More specifically, if the supersymmetry is exact
the Hamiltonian system is in the nonregular motion regime since, in this case,
there is only one conserved entity (energy) while if the system is in regular mo-
tion regime, i.e. there is at least one additional nontrivial integral of motion,
the supersymmetry is always broken. So, the condition of the supersymmetry
breaking is of much importance and it can be thought of as a criterion to dis-
tinguish between the regimes. We will see shortly that it is naturally related

0.a' = w
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to the Witten index. However, there is a subtlety to make one-to-one corre-
spondence. Namely, broken supersymmetry does not necessary imply regular
motion regime and, also, nonregular motion regime does not rule out broken
supersymmetry. It seems that the problem lies precisely in possible degeneracy
of the ground state, that is, ker H modulo cohomological equivalence may con-
sist of several elements'. The indication of this is that an ergodic Hamiltonian
system is characterized just by nondegenerate zero eigenvalue solution of the
Liouville equation. So, one is led to study physics coming from the degenerate
vacuum. In the following, we assume there is a discrete set of supersymmetric
ground states. This corresponds to the case of an elliptic operator on compact
manifold.

The relation of the BRST and anti-BRST symmetries of the original theory
to the N = 2 supersymmetry (29) is as follows. Usually, BRST exact theory
is refered to as a topological theory. Anti-BRST exact theory is viewed as its
conjugate, anti-topological theory. The crucial link between these two theories
is the supersymmetric ground state sector, —refered to as Ramond sector— of
the associated d = 1, N = 2 supersymmetric model, in accordance with the
topological-antitopological fusion by Cecotti and Vafa[40]. Namely, the physical
states of both the topological theories are in one-to-one correspondence with the
Ramond vacua, as it can be seen in Sec. 3.2.

It is instructive to note here that as it has been argued recently by Perry
and Teo[22], in the context of topological Yang-Mills theory, both the BRST
symmetry and anti-BRST symmetry should be taken into account on an equal
footing to get a clear geometrical meaning of the topological theory. It is worth
stressing that this argument is supported by the cohomological classical me-
chanics, in which all the symmetries and fields have clear geometrical meaning,
with both the BRST and anti-BRST symmetries being incorporated; see Table
1 and (17). In fact, this reflects canonical isomorphism between the tangent and
cotangent spaces, TM?" and T*M?", provided by the symplectic structure.

3.2 COHOMOLOGY

Our next step in studying the physical states is identification of the N = 2
supersymmetry (29) with an exterior algebra, in analogy with the identification
made in Witten’s supersymmetric quantum mechanics[38]. This allows us to
relate the supersymmetric properties of the model to topology of the target
space M?".

To begin with, we mention that it has been argued[6] that cohomology of
Qs is isomorphic to de Rham cohomology. In a strict consideration, to which
we are turning now, one should associate, in a standard way, an elliptic complex
to it. Namely, we make the following identifications:

dg < Qp, dg < Qp,

IThe space ker H is finite dimensional since H is identified with an elliptic operator.
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Ap = dpds + dgds + {Qp, Qp} = 2iBH, (32)
(—1)P & (-1)°,

where the exterior (co-)derivative dg = d + 8c'0;H (dg = d* — Be;w 9, H) acts
on p-forms, p € AP, and C' is the ghost number.
The dg cohomology groups,

HP(M?") = {kerdg/im dg N AP}, (33)

are finite when M?2" is compact. According to Hodge theorem, canonical rep-
resentatives of the cohomology classes HP(M?") are harmonic p-forms,

Agp =0. (34)

They are closed p-forms, -
dgp =0, dgp=0. (35)

One can then define B, as the number of independent harmonic forms, i.e.
B,(8) = dim{ker Ag N AP}. (36)

Formally, B, continuosly varies with 3 but, being a discrete function, it is, in
fact, independent on 8 so that one can find B, by studying the vacua of the
Hamilton function (20),

Hp = 0. (37)

This equation is, in fact, the only equation we need to study. Due to (29), it
can be rewritten as

Qsp=0, Qpp=0, (38)

and defines the Ramond sector. The equivalence between (37) and (38) needs a
comment. While it is obvious that (38) implies (37), vice versa may appear to
be problematic for spaces with a lack of a positive-definite scalar product. For
example, when proving that if an external differential form is harmonic then it
is closed and coclosed, one uses the fact that scalar product of forms is positive
definite. So, we define a scalar product in the space of p-forms in a standard
way, (p,p’) = [ p A *p/, which is positive definite, to ensure that (38) follows
from the harmonic condition (37).

One would expect that the spectrum of the theory is defined by the whole set
of the eigenvalues k; and eigenfunctions p; of the Hamilton function, Hp; = k;p;.
However, only the states with zero eigenvalue of H are nontrivial in the BRST
and anti-BRST cohomology since ‘H commutes with both the BRST and anti-
BRST charges. Indeed, by a standard argument all the states except for the
ground states are of no relevance due to the supersymmetry (the superpartners’
states give a net zero contribution). To be more specific, if we consider defor-
mations éa’ along the solution of Hamilton’s equation, then in order for a’ + da’
to still be a solution it has to satisfy the deformation equation 0,06a’ = Jh’.
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This equation is the equation for the conventional Jacobi fields, first variations,
which are tangent to the target manifold, da® € TM?", and can be thought
of as the "bosonic zero modes”. As it is common in topological field theories,
these modes are just compensated by anti-commuting zero modes through the
ghost dependent term, in the Lagrangian (13). Indeed, the associated equation
of motion for ghosts, d;¢* = Oyh'cF, represents BSRT variation of Hamilton’s
equation.

Thus, the physical states are those in the Ramond sector, i.e. satisfying
(38), which interwines corresponding BRST and anti-BRST symmetries. Topo-
logically, the relation of the supersymmetry equations (38) to the cohomology
equations (27) can be readily understood by taking into account the fact that
the twist (28) is a homotopy operation.

According to the identification (32) with the exterior algebra, the physical
states are harmonic p-forms on the target space M?". In the standard de Rham
complex, the B,’s are simply Betti numbers, with the alternating sum, x =
S *"(=1)?B,, being the Euler characteristic of the symplectic manifold M?2".
Due to the identifications (32), it is then straightforward to show that the Witten
index([39], Tr(—1), is just the Euler characteristic of M?" (cf.[10]). Here, the
conserved charge C'is identified with the Fermi number operator, F' = C. This is
a natural result due to the fact that the Witten index is completely independent
of finite perturbations of the theory for N > 1 supersymmetric theories in
any dimensions. So, we conclude that the criterion for the regular/nonregular
regimes in Hamiltonian systems which is related to the supersymmetry breaking
is the Witten index. To break supersymmetry the Witten index needs to be zero.
We arrive at the conclusion that the motion regimes are related to topology of
M2,

Equation (37) can be thought of as a generalization of the ergodicity con-
dition equation[46], Lp(a) = 0, of the usual Hamiltonian mechanics which is
now extended to the p-ghost (p-form valued) distributions, p = p(a,c). We re-
call that nondegenerate solution of the latter equation characterizes an ergodic
Hamiltonian system. It is wellknown that the general solution of this equation
is a function of Hamiltonian, p = p(H (a)), The supersymmetry strengthen this
statement by fixing dependence on H. Recent studies|[7, 41, 42] of the physi-
cal states (38) showed that physically relevant (normalizable) solutions to the
generalized ergodicity equation (37) come from the 2n-ghost sector and have
specifically the form of the Gibbs state characterizing thermodynamical equi-
librium,

p = kK" exp[~BH] < kexp[—BH]da' A --- A da®", (39)

where k is a constant. It is important to note that under the field redefinition
this state transforms as 2n-form rather than as a scalar. The reason of this
lies in the cohomology. The other ghost sectors yield solutions of the form
p = kKP exp[+8H], for the even-ghost sectors, p = 2,4, ...,2n—2, and those are
either trivial or not depending on 3, for the odd-ghost sectors. It is assumed that
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p(a, c) must be normalizable in each p-ghost sector, i.e. [ p(a,da)da*A---NdaP =
1, p = 0,...,2n. While the result for the even-ghost sectors is reliable and
quite clear, the odd-ghost sector solutions are a bit cumbersome. In Appendix,
we sketch analysis on solutions in simplest two-dimensional case[43], both to
illustrate emerging of the Gibbs distribution and to clarify the meaning of the
odd-ghost sector.

To summarize, we observe that the supersymmetry is helpful in obtaining
some important results on Hamiltonian systems so that it is worthwhile to study
features of the d = 1, N = 2 model more closely. We postpone this to Secs. 3.3-
3.6.

Our next observation is that, in the limit 3 — 0, we recover the classical
Poincare integral invariants[36] corresponding to K?, p = 1,...n, as the solu-
tions of (38), which are indeed invariants under Hamiltonian flow, HK? = 0.
In particular, the 2n-ghost K™, which we are viewing as cohomological repre-
sentative of the unit, corresponds to the volume form w™ of the phase space
conservation of which is statement of the Liuoville theorem. They are funda-
mental BRST invariant (topological) observables of the theory, {Q, K?} = 0,
and form the classical cohomology ring, K™™' = 0. Indeed, in the untwisting
limit, 3 — 0, the supersymmetry generators (Jg and Qﬂ become the origi-
nal BRST and anti-BRST operators, respectively. Geometrically, this follows
from dKP = 0 since K? < wP and dw = 0. Similarly, the conjugates of the
Poincare invariants, KP, are the anti-BRST invariant (anti-topological) observ-
ables, {Q, KP} =0, p=1,...n, which are powers of the Poisson bivector K.

The following comments are in order.

(i) We recall that the physical states considered above are defined as the
BRST and anti-BRST invariant ones. We see that this requirement, which
is equivalent to unbroken supersymmetry, put strong limits on the possible
physical states restricting it in effect to the (highest) 2n-ghost sector (39). This
is, in fact, a physically acceptable result leading to non-zero expectation values of
scalar (ghost-free) observables, (4(a)) = [ Ap, whereas for the other p-ghost (p-
form valued) observables, 1 < p < 2n, we have that their averages are identically
zero. However, we should note that one can consider only the BRST invariant
theory, as the topological sector of the d = 1, N = 2 supersymmetric model.

(ii) Since the vacuum distribution forms, p, are annihilated by the super-
symmetry charges (28) the modified forms A = exp[—(3H]p and A= exp[BH]*p
are d-closed. Here, * denotes Hodge duality operator and according to even-
dimensionality of M?2" we have d = *d** and d* = — % dx. The forms X can
be viewed as representatives of the relative de Rham classes (see, for example,
Ref.[40]), HP(M?", D), with D C M?" being the region where SH is greater
than a certain large value. The forms A correspond to the dual cohomology of
the associated cycles, which form an integral basis for the Ramond vacua. A
remarkable feature of the relative de Rham cohomology is that it can be non-
trivial even if the usual de Rham classes of M?2™ are trivial; for example, when
M?" = R?. However, we will not discuss further on the relative cohomology
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here restricting consideration on compact M?2", for which case the usual de
Rham classes are nontrivial.

3.3 CONNECTION TO MORSE THEORY

Let us to note that there appears to be no relation of the d = 1, N = 2 model
(29) to Morse theory[47, 48, 52] quite analogous to that found in Witten’s
supersymmetric quantum mechanics[38], because of the absence of the term
quadratic in A, in the Hamilton function (20), which would play a role of the
potential energy.

An immediate reason is that the symplectic two-form w is closed so that
this does not allow us to construct, or obtain by the BRST procedure, non-
vanishing terms in the Hamilton function quadratic in fields, except for the
ghost-antighost term, which contains the Hessian, 0;0;H (a). Put differently,
this is due to the symplectic structure of the target space M?2" which has been
used as the only differential geometry structure to construct the cohomological
classical mechanics. On the other hand, quadratic term, which is natural in
(topological) quantum field theories when one uses Riemannian (or Kahler)
structure of the target space, would produce stochastic contribution (Gaussian
noise) to the equations of motion[49] that would, clearly, spoil the deterministic
character of the Hamiltonian mechanics. As a consequence, we can think of
linearity of the Lagrangian (13) in the commuting fields as a condition of the
classical deterministic behavior of the system?. It should be emphasized here
that the path integral approach to classical mechanics[2] relied basically on the
work by Parisi and Sourlas[49] who studied classical stochastic equations.

Due to the absence of a term quadratic in A% in the Hamilton function (20),
there are no localized states and solitons similar to that of supersymmetric
quantum mechanics which could be used to find a deeper connection between
the (twisted) d = 1, N = 2 model and Morse theory. Although the Hamilton
function (20) is linear in the commuting fields, it contains the Hessian of the
Hamiltonian H(a), which can serve as Morse function, the number of isolated
critical points of which are known to be related to Euler characteristic. This link
has been analyzed in detail in [4]. The critical points here are simply stationary
points of the Hamiltonian flow, h* = 0, with the number of critical points

> sign(det[|0;0;H(a)||). (40)
dH=0

We will mention a bit more on the connection to Morse theory in Sec. 4, in the
context of partition function.

2Liouvillian L is a linear differential operator.
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3.4 LANDAU-GINZBURG FORMULATION

As a preliminary observation, we note that the form of the definition (28) sug-
gests that the Hamiltonian H plays the role analogous to that of superpotential
in supersymmetric quantum mechanics (one-dimensional version of the Landau-
Ginzburg model). Namely, action of the supercharge Qg on forms can be casted
in the form Qgp = dp + dH A p, where we have rescaled H by 3 for a moment.

Due to the underlying N = 2 supersymmetry (29), it is instructive to give
a superfield representation of the cohomological classical mechanics which is
usualy used in the N = 2 supersymmetric models as well as in the topological
Yang-Mills theory[22], to write down the basic settings in a simple closed form.
Advantage of this formulation is that one could readily see whether the cohomo-
logical classical mechanics admits a kind of Landau-Ginzburg description[12, 24]
so that it could be largely understood in terms of superpotential. Since the su-
perpotential is, in effect, the ordinary classical Hamiltonian H(a), this arises
to possibility to classify integrable Hamiltonian systems, within the Landau-
Ginzburg framework.

Collection of fields composing a Landau-Ginzburg type system is the fol-
lowing: real field @, two anticommuting real fields ¢ and ¢;, real field ¢*, and
superpotential W solely responsible for the ”interaction” terms. We choose a
single superfield as follows (cf.[2]):

)(i(t7 01, 92) =a’ (t) — ielci (t) + i92wijéj (t) + i9192wijqj‘ (t), (41)

where 07, I = 1,2, are real anticommuting parameters, and the component
fields are nothing but a collection of the BRST doublets. Geometrically, the
components of the superfield form local coordinates of the tangent and cotangent
fiber bundles over the phase space M?" (see Table 1).

A manifestly covariant Lagrangian

L= /d01d92 {%wijxiplpﬂj +iW(X)}, (42)

can be written with the help of the covariant derivatives in the superspace with
local coordinates (t, 61, 62),
0 0] 9] 0
Di=— 40—, Dog=— +if;— 43
"= a0, e T e, T e (43)
D? = D% =0, {Dy, D2} = 2i0;, and the superpotential W (X), which is a real
analytic function of X. In terms of the component fields, we find the Lagrangian
(42) in the form

L = g0’ — a'dpq; + i(C;0pc' + ¢'0,E;) (44)
8W(a) ’L] . ’L’j* 62W(a) k
gt~ BT 0k pai €
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where W (a) is the lowest component of the superpotential. With the identifi-
cation W(a) = H(a), the Lagrangian (44) covers the original Lagrangian (13).
So, we conclude that one can start with the one-dimensional Landau-Ginzburg
N = 2 model (42) and obtain via topological twist the cohomological theory
(13) with already gauge fixing. Here, topological twist provides transition from
supercharges to BRST charges. Note that the Lagrangian (42) provides the
action to be of the form of a D-term.

For completeness, let us to note that the whole set of BRST and anti-BRST
transformations (3) and (4) takes the form of the following constraint (see also
[2)):

(s — i)xi =0 (45)
I 89[ — Y
where we have denoted s; = s, so = 5, saying that the BRST and anti-BRST
operators can be treated as derivatives in the odd coordinates of superspace.
Therefore, the topological invariance of the action is obvious in superspace be-
cause of supertranslation invariance, X(¢,01,62) — X(t,0;, + 0,02 + 65), of
the Berezin integration.

It is simple but important consequence of supersymmetry algebra that the
action with the Lagrangian (42), like any D-term since it is the highest compo-
nent, can be written both as I = {Qg, &} and I = {Qg, £}, where £ is some odd
field integrated over time. Note also that we were not forced to use a F-term,
which is defined as an integral over only half of superspace, to reproduce the
original action.

The above are the essential ingredients necessary for arguments in analyz-
ing implications of the supersymmetric structure of cohomological Hamiltonian
mechanics.

For example, it is wellknown that the symplectic two-form w can not be in
general defined to be constant globally on compact M?", so the question arises
as to cohomology classes of w in M?2". Two choices of the Lagrangian, for which
w are in different cohomology classes, differ by F-term. On the other hand, since
the action is of the form of a D-term we have no topological effect of changing
the classes which could be in principle considered by perturbing the action by
a F-term.

From such a general point of view, it may seem that the problem on coho-
mological class [w] of w in the theory is extrinsic. However, in fact it has a direct
link to time reparametrization invariance of the model.

Consider the time reparametrization t — e®t, where ¢ is a parameter (d = 1
Lorentz transformation). In the Lagrangian (42), the only effect it produces is
the scaling w — e ®w. This implies scaling of the volume of compact phase
space, V = fM% w" — e~™V so that with the factor 1/V1/" the Lagrangian
(42) becomes time reparametrization invariant. Without loss of generality, as-
sume that w is an exact two-form in some region U C M?", that is, w = dv,
where ¥ = 9;da’ is a symplectic one-form. The general consistency requirement
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is then that the Wilson loop integral exp[2mi fa 1 U] should not depend on the
disk D, for which 9D is its boundary. Hence, we must have |, g2 w = k, where
k is an integer number. The scaling of w demands k = 0, so we arrive at the
conclusion that unless the condition

/w =0, VS?*c M, (46)

S2

is satisfied, the time reparametrization invariance of the model is broken.

The condition (46) is known in mathematical literature[32, 34] in another
aspect, and essentially implies that the fundamental homotopy group must be
nontrivial, 71 (M?™) # 0. This can be seen as follows. As the symplectic two-
form is closed but in general is not exact, the condition (46) means that all
cycles S2 C M?" are contractible, [w]ma(M?") = 0. The class [w] is nontrivial
in H?(M?"), i.e. [w] # 0, since cohomology class of the volume form w™ is n
times the class [w] and it is nontrivial since V' # 0. If we let 71 (M?") = 0,
we have the isomorphism mo(M?") ~ Hy(M?", Z) according to the Gurevich
theorem. Therefore, according to the de Rham theorem the condition (46)
leads to [w] = 0, that contradicts to V' # 0.

In other words, necessary condition for unbroken time reparametrization
invariance of the model is that there should be non-contractible loops in M2"
for which, particularly, the Wilson loop integrals build up a representation.
In Sec. 4.3, we show how one can construct a term leading to broken time
reparametrization invariance for compact M?2™ with nontrivial 71 (M?").

Below, we turn to some basic notions of the supersymmetric model relevant
to subsequent consideration.

The most basic elements of the given d = 1, N = 2 theory are analogues
of the chiral and anti-chiral rings of the (topologically twisted) two-dimensional
N = 2 models[40]. Since we are originally interested in the topologically twisted
N = 2 model only the ground states are kept, so it is simple to make identifica-
tion of these with the operators. Namely, the chiral operators, ¢;, are defined
as the ones satisfying [Qs,¢:;] = 0, and the anti-chiral operators, ¢;, satisfy
[Qs,®i] = 0. They are irreducible representations of the supersymmetry alge-
bra. Then, we can make a correspondence between the Ramond ground states
defined by (38) and chiral fields by choosing a canonical ground state |0), with
the identification ¢;]|0) = |i) + Qg|\). Similarly, there is a natural isomorphism
between the anti-chiral fields and the adjoint states |7). In terms of the Landau-
Ginzburg formulation, the chiral ring consists of the polynomials modulo the
relation dW = 0, which defines critical points of the Hamiltonian vector field.

The inner product on the space of the ground states corresponding to the
fields ¢; and ¢; is g;; = (7]i), and geometrically plays the role of a metric
in the associated Hilbert space while (i|j) gives rise to the topological metric,
Nij = <¢i¢j>top, which will be discussed in Sec. 4, in the context of correlation
functions of BRST observables. The real structure matrix, M = gn~!, relates
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the ground states with its adjoints, (k| = <~7|M1%

3.5 DEFORMATIONS AND PERTURBATIONS

Within the Batalin-Vilkovisky formalism (see for a review Ref.[55]), recent gen-
eral analysis by Anselmi[54] of the predictivity and renormalizability of (re-
ducible and irreducible) topological field theories which are known to be entirely
determined by the gauge fixing (the classical action is either zero or topological
invariant), shows that any topological field theory is predictive. The central
point for that theories is thus the gauge fixing; for example, two gauge fixings
which can not be continuosly deformed one into the other give rise to inequiva-
lent theories.

In the case under study, the gauge fixing condition is Hamilton’s equation
whose deformations should be studied in order to garantee correctness of the
definition of observables of the theory. Also, it would be interesting to study
symmetry preserving perturbations of the action (7) in order to find metric of
the supersymmetric ground state space (see discussion in Sec. 5) and possible
deformations of the cohomology ring R of observables. However, there seems
to be no nontrivial deformations of the cohomology ring since at least there is
neither ”quantum” nor conventional instanton corrections to the linear d = 1
theory.

In general, the supersymmetry preserving F-term perturbation of the action
can be written using the chiral and anti-chiral fields,

1= 320t [ dtlQa @punl} + 3008 [t l@ndnl) (1)
k k

where 6t% and §t* are coupling parameters. Since we are interested in Hamil-
tonian systems, we leave the form of Hamilton’s equation unchanged, and it is
suffice for our purpose to look at the deformations of (i) Hamiltonian and (ii)
symplectic tensor entering Hamilton’s equation, to identify which type of them
preserves the symmetries of the theory.

(i) Let us consider deformation of the Hamiltonian,

H(a) — H(a) — dtpP(a), (48)

where P(a) is a local polynomial, and dtp is a coupling constant parametrizing
the deformation. This leads immediately to the following perturbation of the

action (7):
/dt£—>/dtﬁ+(5tp/dt0p, (49)

Op = iqiw0;P(a) — &;w" d),0; P(a)c”. (50)

where
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Direct calculations show that Op is BRST and anti-BRST closed, sOp = sOp =
0; see (52) below, with 8 = 0.

The matter of an immediate interest is whether the possible deformations of
the superpotential are in one-to-one correspondence with the possible topolog-
ical perturbations of the theory, as it is, for example, in the Landau-Ginzburg
formulation of d = 2, N = 2 superconformal field theories. Non-trivial topolog-
ical perturbation may have place only if the deformation term is not a BRST
exact cocycle. It can be readily checked that, in our case,

Op = s{éiwijajP(a)}, (51)

so that there are no nontrivial topological perturbations coming from the de-
formation of the superpotential. In other words, nothing is changed in the
topological sector when one deformes the superpotential by local polynomial.
This result confirms our remark concerning the homotopical character of the
topological twist (28).

However, supersymmetry appears to be sensitive to the deformation. We
now examine the condition for the deformation Op to be supersymmetry pre-
serving. Using the definitions (28) and (50) we find directly

(Qs,0p] = —iBc* 0, (W70;HO; P), [Qp,Op] = iBw™" Ep0n(w0; HO; P).
(52)
Sufficient condition to both the commutators in (52) vanish is that the Poisson
bracket N
(0;H)w" (0;P) = {H, P}, = const, (53)

or, more precisely, is equal to a locally constant function. For the case of
linearly connected M?", equation (53) is necessary and sufficient condition for
the Hamiltonian flows defined by the functions P and H to commute, with P
viewed as another Hamiltonian®. We note that, in general, when one knows a
Hamiltonian flow commuting with the flow under study it is possible to construct
an integral of motion[36]. Hence, the equations (52) represent a link between
the supersymmetry and integrability.

When examining the formal evolution of P, we see that P linearly changes
with time, dP/dt = const. For compact connected M?" polynomial P(a) is
bounded so that the constant must be zero, i.e. P is an integral of motion,
{H,P}, = 0. It has been argued[3, 7] that the existence of an additional
nontrivial integral of motion leads to broken supersymmetry. This argument is
based on analysis made on the form of the supersymmetric ground state (39).
In view of this, polynomial P should be a trivial integral of motion to preserve
the supersymmetry.

For noncompact M?2", the polynomial P is not necessarily bounded so that
we are left with the general condition (53). The same is true for M?" with

3For the phase space with nontrivial 71 one should use here local Hamiltonian flows.
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nontrivial m; and also when P is an analytic function. However, in general, if
(polynomial or analytic function) P is in involution with H it must be a trivial
first integral.

From the above analysis we conclude that the symmetries do not fix the
Lagrangian uniquely, with nontrivial supersymmetry preserving perturbation
term (50), where P satisfies (53) with non-zero constant, can be added to the
action. However, in the case of compact connected M?" there are no nontriv-
ial supersymmetry preserving perturbations supplied by the deformation with
polynomial.

(ila) Let us turn to considering of deformation of the constant symplectic
tensor. Under an infinitesimal change w;; — w;; + €;;, one sees from (28) that
Qg is invariant whereas Qg changes by

8Qp = [Qp, K] = e (ig; + BO; H), (54)
with )

KE = iﬁijéiéj, (55)
where ¢;;e/* = ¢F. Using (29) and (54) one finds that the Hamilton function
changes by
_ 1
-~ 2i3

In order to preserve the N = 2 supersymmetry algebra, K. must commute with

Qs,

oH {Qg, [Qﬁ, RE]} = qieijﬁjH + i@@k(eikajH)cj. (56)

_ 1 .
[Qp, K] = 5&16[6”@@@, (57)

where we have used ¢; = —i0;. The r.h.s. of (57) vanishes if and only if €;;
are antisymmetric and constant so that it appears to be the case of a variation
of the symplectic structure. As a consequence, this variation preserves also the
BRST and anti-BRST symmetries. We notice that the form of Eqgs.(55) and
(56) is very suggestive to represent the Hamilton function in the form

_ 1
28

This representation stemms naturally from combination of supersymmetry al-
gebra (29) and ISp(2) algebra (17), and thus is specific to the model.

(iib) When one attempts change by non-constant tensor, €;; = €;;(a), the
previous arguments break down because the second equality in (54) does not
hold, and, even more, the anti-BRST operator receives non-nilpotent contri-
bution. This case, however, is important since, as it was mentioned above,
constant symplectic tensor can not be in general globally defined on a sym-
plectic manifold. For instance, on a compact one, for which case one uses a

H {Qs,1Qs, K1} (58)
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covering by local chartes with constant w;; owing to Darboux theorem telling
us that in some neighborhood of any point one can find local coordinates such
that w = dz® A dp,. Also, a reasonable expectation is that this might yield a
mechanism for supersymmetry breaking.

So, we are led to consideration of the model with a coordinate dependent
symplectic structure, w;; = w;j(a), so called Birkhoffian mechanics, in which
one does not use the Darboux coordinates and attempts to treat symplectic
structure in a full generality. Analysis made on this generalized model[6, 41, 42]
has shown that with the following modification of the anti-BRST operator,

Q =icw (a)g; — %&Cw”(a)ckéiéj, (59)
obtained by virtue of [K,Q] = Q, the ISp(2) algebra (17) is regained, with all
the basic results of the constant symplectic structure case being reproduced.

The BRST approach to this generalized model can be readily developed
in the same fashion as it for the case of Darboux coordinates. Besides slight
modifications, which do not influence the algebraic structure of the original
model, we encounter the following remarkable difference. According to the
modification (59) the supercharge in (28) can be brought to the form

Qp =D’ — §fklm0m5k5lv (60)
where ) g
D' = w (a)(d; + 50, H) (61)
and N ] ) ) )
FiR = 5™ (@) Bmw® (@) — W™ (0)Omw™ (a). (62)

Our observation is that, in the BRST approach to gauge field theories, the op-
erators placed similarly as D in (60) play the role of generators of Lie group
characterizing gauge symmetry of the theory, and f*! are the structure con-
stants. It is easy to check that D? fulfills the commution rule

(D', D7) = f9* Dy, (63)

and, owing to Jacobi identity of the Poisson bracket algebra, w'™d,,w’* +
W 0,,w 4 WO, Wkt = 0, f9F satisfies

JUE 4 fri 4 ik =g, (64)

so that the operators D? constitute a Lie algebra®. Note that the algebra defined
by (63) is degenerate in Darboux coordinates of Hamiltonian mechanics, in
which case we have identically f¥* = 0.

4We assume that f*7%’s are local constants.
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Now, with the infinitesimal change, w;;(a) — wi;(a) + €;;(a), the first equal-
ities in Egs. (54) and (56), where H and Qg are defined by (58) and (59)
respectively, are still valid while (57) becomes

Qo K = 3@ (@) + ()01 ()it (65)

with the result is that, again, closeness of the two-form ¢ is sufficient for the
r.h.s. of (65) to be zero, and thus the N = 2 supersymmetry to be preserved.

It is highly remarkable, however, that the above condition is equivalent to
the one that the following Schouten bracket[30] is zero,

([w, e]]* = 3" (WM o€ + e ow') = 0, (66)
(ki)

which is necessary and sufficient condition for w and € to be a Poisson pair[31],
i.e. for kyw + kqe to be a two-parameter family of tensors defining a Poisson
bracket on M?2™.

So, the general result both for (iia) and (iib) is that the N = 2 supersymme-
try is preserved under the deformation when Schouten bracket between w and
€ is zero.

The following comments are in order.

(i) We see that the supersymmetry imposes nontrivial condition (66) for de-
formation e of the original Poisson bracket. Indeed, locally or globally, there
may be both trivial and nontrivial deformations. Clearly, the class of global non-
trivial deformations is related to topology of M?™ and, thus, is most interesting
to investigate.

(ii) Also, one can study the anomalies,

vae]] =T, (67)

where antisymmetric rank-three tensor I' measures supersymmetry breaking.
We emphasize that, in general, this provides very attractive mechanism for
supersymmetry breaking.

(iil) In some cases such anomalies may come naturally. Namely, it is known
that some of nonlinear Poisson brackets describing dynamics of physical systems
can be made linear by appropriate deforming original w. Generally, it looks like
one attempts a deformation inside the usual Poisson bracket so that we have
not to extend our study for nonlinear Poisson bracket case. Note that such
deformations are not trivial, at least locally. Particularly, in some cases they
are parametrized by a set of parameters, and, as the supersymmetry is related
to the motion regimes, one can use criterion I' = 0 to find critical values of the
parameters distinguishing between the regular and nonregular regimes. We will
not discuss here specific examples which can be made elsewhere.
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3.6 EQUIVARIANT EXTERIOR DERIVATIVE

In this Section, we briefly present construction of the model under study by the
use of a generalized Mathai-Quillen formalism[32].

Clear geometrical meaning of the model suggests that its constructing can be
refined using an equivariant exterior derivative. The generalized Mathai-Quillen
formalism appeared to be useful[32] in analyzing supersymmetry properties of
models describing classical dynamical systems, in an exterior calculus frame-
work. Particularly, this technique can be used to construct the supersymmetric
models for Hamiltonian systems which are not necessarily of cohomological type.
Also, it provides a relevant basis to attempt breaking of supersymmetry, which
appeared to be concerned to motion regimes discussed in Sec. 3.5. However,
we will not try to use it for this purpose here, restricting our investigation on
setting up the formulation.

Since the fields a’ and &; can be viewed as local coordinates of the cotangent
bundle T*M?" the corresponding basic one-forms can be identified with ¢’ and
q; respectively; see Table 1. The nilpotent exterior derivative on the exterior
algebra in the space of mappings from circle S* to T*M?2" is thus given by

d:/dt(cia‘zi *ql'aaai)' (68)

Comparing (68) with (3) we see that the exterior derivative d and the BRST
operator [dt s are equivalent to each other (herebelow, we omit ¢ factors for
simplicity).

By introducing the interior multiplication operator along the vector field v,

v = (0wa" — h', OyCp, + Ejakhj), (69)

namely,
iy = / i (@a’ — )7 + (Byes + 5007 ). (70)
where 7; and 7 form the basis of contractions dual to ¢’ and ¢; respectively, i.e.
i = 6k5(t —t'), wiq=0Lo(t —t), (71)

we define the following equivariant exterior derivative

.0 o . ) o
= - i Y i piyo G479 b\t
Q, =d+ 1, /dt(c " + q; z + (0ra" — h*) T + (0¢C; + €00 )T ) (72)

Note that the second component of the vector field v is Jacobi variation of the
first one. The corresponding Lie derivative is given by

0=Q3, (73)
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so that according to (72)

; 0 _ 0 i i
0= [at(0' 5+t + 01T+ Duaim +11), (74)

and hence ¢ = [dt (0; + £3), where ¢ is a Lie derivative along k', and it is
obvious that

Eqgs.(73) and (75) constitute a superalgebra. We see that (74) is the operator
corresponding to the Liouville equation of classical mechanics. Action of the
equivariant exterior derivative (72) on contraction of the basic one-forms,

B" = c'q, (76)

yields the action,
I = QUB/I = /dt(ql(atal - hl) + Eiatci + EzajthJ - 8t(EiCi)), (77)

where (71) has been used. It is equivalent to the original action with the La-
grangian (13). Zeroth of the 7; component of the vector field in (72) are solutions
to d;a® = h' so that the action (77) describes these field configurations. Com-
paring the derivation of (77) with the one of the BRST scheme, we see that the
trick provided by this technique is that the gauge fixing condition, 8;a’ —h? = 0,
is encoded in the equivariant exterior derivative @), rather than it is described
by the "gauge fermion” B” and thus, in contrast to s, the operator @, itself
carries information on the dynamical system.

4 BRST OBSERVABLES AND CORRELATION
FUNCTIONS

4.1 BRST OBSERVABLES

In general, observables of interest are of the form

OA = Ail"'i (a)c“ R Cip7 (78)

P

which are p-forms on M?", A € AP.

In general, the space of p-forms on a manifold equiped by Poisson bracket
has a structure of Lie superalgebra in respect to the following Karasev bracket
(supercommutator) between the forms[31]:

[A, Blk = dw(A, B) + w(dA, B) 4+ (=1)%9W+1,(A dB), (79)
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where
W(AaB)il---ieran = Z (_1)e(i/17m7iin+”72)Ari/1~~-i;n_1w7-sBsi£n--~iin+n_27
(i/l’.“’i;n,+7l—2)

(80)
the sum is over all cyclic permutations, and e(- - -) denotes index of permutation.
This is an algebra of observables in our case®.

However, one can easily find that for the BRST invariant observables {Q, 04} =
0 if and only if A is closed since {Q, 04} = Oqa. Consequently, the BRST
observables correspond to the de Rham cohomology and form a classical coho-
mology ring R of M?" which corresponds to the ring of chiral operators ¢;. So,
for the BRST observables on a symplectic manifold the Lie superalgebra defined
by (79) is trivial since for closed w, A, and B we have identically [A, B]x = 0.

The BRST observables are related immediately to the BRST invariant states,
via construction analogous to that of relating the chiral fields to the supersym-
metric ground states made in Sec. 3.4. The distribution forms are identified
with differential forms as

Ay g (@)c™ - P |0) & Ay (a)da™ A Ada', (81)

In terms of the vacuum distribution forms, the isomorphism between the chiral
fields and states in the Ramond sector becomes more explicit. Namely, the
Hilbert space of the model consists of all square summable p-forms, |4;) = |4),
with coefficients taking value in some linear bundle F on which the operators
¢; corresponding to the cohomology classes act by wedge product.

We note that since the flow equation is real the complex conjugate of the
vacuum distribution form A; should be again a vacuum distribution form, and
thus can be expressed as a linear combination of the vacuum distribution forms.

4.2 HOMOTOPY CLASSES OF THE FIELDS

The basic field a’(t) is characterized by homotopy classes of the map M! —
M?". Clearly, these are in general classes of the map S! — M?", that is
the classes of conjugated elements of the fundamental homotopy group. These
classes can be weighted with different phases and controlled by some coupling
parameter. Namely, let us consider the space &(ag,ay) of the fields a’(t) coin-
ciding with a} at t = to and with ai at ¢t = ¢;. The functional integral (6) is
performed over histories £(ag, a1), and can be presented as

Z =2 e / D[X]exp i, (82)

&(ao,a1)

5Note that Karasev bracket (79) for forms corresponds to Schouten bracket for associated
antisymmetric tensors.
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where g,, is the phase and « runs over components of £ (ag, a1). The case ag # a1
can be reduced to the case ap = a; since € (ag, a1) is either homotopically empty,
or homotopically equivalent to £ = &(ag,ap). Consequently, the components
of &(ag,a1) are in one-to-one correspondence with elements of mi(M?", ag).
Furthermore, since the spaces of fields a’(t) at different fixed t are trivially
equivalent to each other, the groups 7 (M?", ag) at different a}) are isomorphic
to each other. So, we are led to consider closed paths, a‘(tg) = a’(t1), which are
elements of the loop space & or, equivalently, fields on a circle, t € S', with the
index « in (82) running over 71 (M?")5. Physically, as the energy of the system
is finite, different homotopical classes of the fields can be thought of as they are
separated by infinitely high energy barriers.

The fields are thus characterized by appropriate representations o of the
group 71 (M?"), which we assume to be nontrivial, partially for the reason men-
tioned in Sec. 3.4. Therefore, the coefficients of the cohomology ring R take
values in the linear bundles F, associated to the representations o.

Thus, we should study specifically periodic orbits in M?2" characterized by
period T = |t; — to|. The T-periodic solutions to Hamilton’s equation are
elements of the loop space of Hamiltonian system which is a subject of recent
studies[32, 33, 34] on infinite dimensional version of Morse theory. We remark
that periodic orbits are presumably dense in phase space and at finite time scale
may mimic typical dynamics arbitrary well. Moreover, the families of periodic
orbits have the unique property that they continue smoothly across the fractal
boundary between the regular region and the chaotic region, with stable and
unstable character in these regions respectively, being thus the only unifying
agents between these two disparate regions.

When necessary one can replace circle by the real line by taking the limit
T — oo. This procedure is useful from a general point of view, and, particularly,
it allows one to extract[8] Lyapunov exponents, positive values of which are
wellknown to be a strong indication of chaos in Hamiltonian systems, from
correlation functions.

4.3 CORRELATION FUNCTIONS

Let us now turn to consideration of the correlation functions of the BRST in-
variant observables (78). If NV is a closed submanifold of (compact) M?" repre-
senting some homology class of codimension m (2n-m cycle), then, by Poincare
duality, we have m-dimensional cohomology class A (m-cocycle), which can be
taken to have delta function support on N[50]. Thus, any closed form A is co-
homologious to a linear combination of the Poincare duals of appropriate N's.
The general correlation function is then of the form,

(Oa,(t1) -+ Oa,,(tm)), (83)

SFor a complete definition, appropriate boundary condition for ghosts should be specified
as well.
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where Ay, are the Poincare duals of the N’s. Our aim is to find the contribution
to this correlation function on S! coming from a given homotopy class of the
map S' — M?". The conventional techniques with the moduli space M|11]
consisting of the fields a’(t) of the above topological type can be used here
owing to the BRST symmetry. Namely, the non-vanishing contribution to (83)
can only come from the intersection of the submanifolds L; € M consisting of
a’s such that a’(t) € Ni, and we obtain familiar formula[51],

(O, (8) - O (tm))sn = # (3 ML), (84)

relating the correlation function to the number of intersections. As it was ex-
pected, the correlation functions do not depend on time but only on the indeces
of the BRST observables. These results are typical for all topological field the-
ories. Now we turn to some specific results following from this consideration.
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Homotopically trivial sector.

This sector is characterized by a’s which are homotopically constant maps,
[a’(t)] = [a’(to)], and, therefore, the correlation function (84) can be presented
as

/Al/\-~-/\Am. (85)

The standard Poincare integral invariants, KP?, identified in Sec. 3.2 as funda-
mental BRST observables correspond to this homotopically trivial sector since
they have been originally formulated in the Darboux coordinates, in which w;;
are constant coefficients. Also, two-point correlation function can be used to
define the topological metric, 7;; = (A;|A;) = [ A; A A;, which is just the inter-
section form in the cohomology (cf. Ref.[28]). Particularly, it is easy to check
that in canonical basis of the forms, the action of the real structure matrix M
reads xA7 = g;5A;, and the topological metric is 7;; = d;;.

Note that circle S* is mapped by a’(t) to some one-dimensional cycle, C(a) C
M?" associated to the field. Using this cycle and a closed two-form, 1), one can
construct a multivalued term which can be added to the action of the model.
Namely,

I, =2r / ¥, (86)
v(a)

where y(a) is an arbitrary two-dimensional surface, for which C(a) is its border,
0v(a) = C(a). In general, such a surface may not exist since the cycle C(a)
may not be homological to zero. So, we restrict our consideration to the case
when such a surface exists. This may be done either by imposing topologi-
cal restriction 71(M?") = 0 on the phase space that we still avoid to accept,
or by considering homotopically trivial class of fields a’(t), for which C(a) is
homologically zero.

Clearly, the value of I, may depend on the choice of vy(a). However, when
1 is an integer valued two-form, i.e.

fw — &y C H(M,Z), (87)
Yy

where v is an arbitrary two-dimensional cycle and k is an integer number, then
any two choices of y(a) in (86) differ by 27k so that exp il is univalued.

Thus, from the point of view of a functional formulation of field theory, for
integer valued closed two-form v the term (86) is well defined. Such a term
can be added to the original action, and may play important role when analyz-
ing symmetries of the model. Particularly, we expect that with an appropriate
choice of the cocycle ¥ it can be used to break some of the symmetries. For
example, in the case of low-energy limit of QCD inclusion of such a topologi-
cal term provides breaking of excessive symmetry of Goldstone fields to meet
experimental data.
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One of the candidates for 1 is properly symplectic two-form w. One can
show that in this case time reparametrization invariance of the model for com-
pact M?" is necessarily broken. Indeed, I, with ¢ = w breaks the time
reparametrization invariance unless the condition ﬁy w = 0 is satisfied because
w should obey both of (87) and (46). The latter condition entails that the coho-
mological class of w is zero. However, for compact M?2" this class is necessarily
nonzero.

Homotopically nontrivial sectors.

Existence of homotopically nontrivial Poincare invariants, K?, follows from
the fact that, globally, w;;(a) may not be chosen constant, and there are nontriv-
ial homotopy classes of a’. Nontrivial character of these invariants comes from
the fact that cohomology class of w on compact M?" is necessarily nontrivial.

Let us turn to a particular kind of observables interwinning the BRST and
anti-BRST ones. The BRST observable (78) can be naturally understood as
(p, 0)-form corresponding to the general (p, ¢)-form,

Uy = Aﬁ;j (a)c' - c'%ey, - 85,]0) Aﬁ;ﬁ (a)da™ A---Ada'™dj, N+ NDj,,
(88)
which can be viewed as a function on M*"14" where the anti-ghosts represent
the anti-BRST sector. Accordingly, we associate the (0, g)-forms to the anti-
BRST observables, which can be treated in the same manner as the BRST
ones.
A particular kind of the observable (88) interwining the BRST and anti-
BRST sectors has been studied recently by Gozzi and Reuter[8],

Ua = d(alto) — ag)c™ (t) -+ ™ (t)ci, (to) -~ &, (£0)[0)- (89)

After normal ordering, the observable (89) can be thought of as the operator
creating p ghosts from the Fock vacuum (p-volume form in TM?") at some
time to and point ag € M?", and then annihilating them at some later time ¢.
Certainly, we should arrange also time-ordering to define this operator correctly.
However, we have not to specify the time in the associated correlation function
since we dealing with ¢t € S'. Indeed, the correlation function for (89),

(Ua)sr = (A(t)A(to))top = Tp(T, ap), (90)
does not depend on specific time, and I', depends only on the period T

A nice result[8] is that the higher order (p > 1) largest Lyapunov exponents
can be extracted from this correlation function, namely,

p
1
lp(ag) = Z Tlgx;o sup Tln T (T, ag). (91)

m=1
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The p-form sector of the partition function (6) with appropriate periodic
boundary conditions and the fields defined on circle,

Zp(T) = Trg exp[—iHpt], (92)
can be expressed in terms of I';, in the following normalized form:
Zy(T) =TrgiTp(t,a)/Trgi1, (93)

where Trg: denotes the path integral over all the a’s, which are T-periodic
solutions to Hamilton’s equation.

The problem in computing Z,(T") given by (92) arises due to the fact that the
integral over all the a’s does not converge. Finite value can be evaluated when
realizing that the integral receives contributions from the homotopy classes of
the a’s mentioned above so that we need to subtract excessive degrees of freedom
due to (93).

Below, we perform explicit computation by realizing M?2™ as a covering space,
f: M?" — Y?2" of asuitable linearly connected manifold Y2" having the same
fundamental group as it of S, 71 (Y 2" tg) =~ m1(S, tp). Since mo(Y?",tg) =0
the set of preimages is discrete,

fﬁl(to) = {ao,al,...}. (94)
The number of elements of f~*(tg) and of the monodromy group given by the
factorization,

G:7T1(Y2n,t0)/f*71'1(M2n,a0), (95)

coincides due to canonical one-to-one correspondence between the set f~1(tg)
and the monodromy group G, and does not depend on to due to mo(Y?",¢y) = 0.
Hence,
Zy(T) = Z [y (T ay), (96)
geqG
which is finite if G is a finite group.

Clearly, the Z,’s are topological entities, which can be used to define topo-
logical entropy|[8] of Hamiltonian systems. Also, in terms of Morse theory it has
been shown[4, 10] that the partition function Z(T') at T — 0 localizes to critical
points of H the number of which is given by (40) so that the sum > (—1)PZ,
is the number of T-periodic solutions to Hamilton’s equation and is equal to
Euler characteristic of M?". Moreover, recent studies[32] showed that if Hamil-
tonian H is a perfect Morse function on M?", for which case one has to have
H2k+1(M?2™) = 0, it saturates the lower bound in the Arnold conjecture, which
states that the number of nondegenerate contractible T-periodic solutions of
Hamilton’s equation is greater or equal to sum of Betti numbers of M?".

In regard to the case of the symplectic tensor w;; depending on phase space
coordinates considered in Sec. 3.5, we have every reason to believe that the
BRST observables and the correlation functions will remain essentially of the
same form because they are intimately related to topology, which is insensitive
to the implemented differential (symplectic) structure.
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5 DISCUSSION

After having analyzed the main ingredients of the construction we make com-
ments on the obtained results and discuss briefly on the open problems and
further developments.

As we have already mentioned in Sec. 2, the symmetries of the resulting
Hamilton function (20) appeared to be even more than the BRST and anti-
BRST symmetries we have demanded upon. Indeed, the action I is invariant
under the ISp(2) symmetry generated by the charges (16). So, the reason of
the occurance of the additional symmetries, K, K, and C, should be clarified,
in the context of the BRST approach. For sure, these symmetries are natural
and establish the Poincare integral invariants, as the fundamental topological
observables, its conjugates, and the ghost-number conservation. Supersymmetry
and also some of the above symmetries might be broken by the term (86), the
role of which should be investigated in a more detail.

There are many directions worth pursuing. Probably the most interesting
are the following.

(i) It is interesting to develop BRST approach to the theory with explicit
accounting for conservation of Hamiltonian, H = 0. Due to the fact that
the (2n — 1)-dimensional submanifold, M?"~! C M?"  of constant energy,
H(a) = FE, is invariant under the Hamiltonian flow, and the p-forms evolve
to p-forms on M2"~1[8], one can treat this as a "reducible” action of the sym-
plectic diffeomorphisms, for which case more refined Batalin-Vilkovisky gauge
fixing formalism (see for a review Ref.[55]) can be applied, instead of the usual
BRST one used in this paper. In general, the problem is to construct cohomo-
logical theory for reduced phase space of the model.

The submanifolds M?2"~!, forming a one-parameter family, have a rich set of
possible topologies, depending on the value of E, so that more refined analysis
can be made on generic Hamiltonian systems, for example, on bifurcations (of
invariant Liouville tori) in the system. Indeed, this approach having a great
deal of cohomology might yield information regarding topology and topology
changes of the submanifolds. Studies on classifying topologies of the constant
energy submanifolds are known in the mathematical literature. Particularly, in
four-dimensional case (n = 2), the submanifolds for Hamiltonian systems having
Bott integral of motion defined on the submanifold has been studied by Fomenko
et al.[57], who succeeded in complete classification of possible topologies of the
three dimensional submanifolds for this case.

Particular way to construct the effective theory is that one can start with
the theory with M?2" as a target space. Next, implement the energy conserva-
tion constraint 6(H(a) — E) to the path integral, that gives rise to additional
Lagrange multiplier, and introduce an auxiliary field to constrain the flow to
be tangent to the appropriately embedded hypersurface M??~ !, together with
accompanying ghost and anti-ghost fields. More geometrical way to account for
the energy conservation might be to extend the phase space by local coordi-
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nates z"T! = ¢ and p"*!' = E, and define the extended symplectic two-form
w' = w —dt ANdE. Then, the associated Hamilton’s equation for the extended
Hamiltonian H' = H — E, on the hypersurface defined by the equation H' = 0,
is equivalent to the ordinary Hamilton’s equation on M2 plus two equations,
i = —0H'/OF and E = §,H. Having such an extended formulation one might
rerun appropriately modified BRST procedure made in Sec. 2.

One of the remarkable points we would like to note here is the following.
The constraint in the form H(a) — AE = 0 with A viewed as a gauge parameter,
can be accounted for to obtain the theory with gauge fixed symmetry in respect
to transformation dA. This corresponds exactly to the so called scaling systems,
e.g. billiards, that have the same dynamics at all energies and have received
most of the attention so far because they are easier to analyze and in many
cases display hard chaos.

(ii) More general approach to the above problem is to develop a general
functional scheme for Poisson manifold instead of symplectic one by relaxing
the closeness and nondegeneracy conditions for two-form w. The reason is that
Poisson bracket, which is a central point of consideration in this case, may
be degenerate, for example, for constrained systems, so one is led to study
symplectic shelves of Poisson manifold[31] on which Hamiltonian dynamics is
well defined and easier to treat. Classical Lie-Cartan reduction of the phase
space and celebrated theorem of non-commutative integrability (KAM theory)
are specific examples of such an approach. Also, notice that Dirac bracket
formalism is used to restore Poisson brackets from known symplectic shelves
defined by integrals of motion.

In general, this leads to consideration of nonlinear and/or degenerate Poisson
brackets, which are in fact most worth to study since many systems reveals such
a Poisson structure (after or even without reduction of their phase space); for
example, oscillator, pendulum, Euler rotations of rigid body, spin dynamics
of B-phase of superfluid 3He, and systems described by classical Yang-Baxter
equation. Also, we note that due to (iib) of Sec. 3.5, in the degenerate case, even
small deformations of Poisson bracket may cause global changes in topology of
symplectic shelves (bifurcations).

The second reason of importance to develop functional approach to dynamics
on Poisson manifold is that just Poisson bracket is a subject for usual and
deformational quantization.

(iii) We note that there is a tempting possibility to start with a nontrivial
topologically invariant underlying action Iy, if it exist, instead of the trivial one.
The problem is to construct an appropriate nontrivial topological underlying
Lagrangian Ly, if any, for which the action Iy will not be dependent on the
metric on M1, a positive definite function of time, einbein g = g(t), that is,
d0g = arbitrary, 61y = 0. Such an invariance of the total action would be a
kind of time reparametrization invariance, ¢ — exp[#(t)]¢, and, in fact, means
coupling of the model to one-dimensional gravity (see, for example, Ref.[56]).

We note in this regard that one may be led to localize the BRST symmetry
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(3). To do this, one can introduce gauge field 7 with ghost number -1, associated
ghost b with ghost number zero, and define local version of the BRST operator,
s;, with the closed BRST algebra being of the form s;a’ = bc?, s;ct =0, 5,6 =
bqi, siq; = 0, s;n = —0sb, s;b = 0. Then, replacing 0; in the gauge fermion
(8) by the BRST covariant operator, 9; — ns, one arrives at the locally BRST
invariant Lagrangian, £ = s;B. Simple calculations shows that the ghost b
appears as an overall factor and thus can be got rid of by rescaling B, with
the resulting Lagrangian being of the same form as (10) minus ignc’. The
superspace interpretation of the gauge field 7 is quite clear, namely, it is a mixed
component of the superspace metric, dz? = g2dt? + ndtdf; + df1dfs. So, when
requiring the metric independence of the total action, one may insist on the
independence on the gauge field n as well. It is highly remarkable to note that
the latter may impose nontrivial constraints on the form of Hamiltonian vector
field since it is the only auxiliary field in the theory outside of the supermultiplet.

(iv) Ultimately, of course, one would like go further in the analysis of the
d =1, N = 2 supersymmetric model. One of the interesting problems, which
escaped consideration in this paper, and is presumably of much importance is
geometry of supersymmetric ground states, forming a space on the coupling
parameters entering (47). The metric of the Ramond ground states, g,5, is used
to extract interesting information on the physics, and satisfies the topological-
antitopological (¢f) equations[40]. In many cases they reduce to a familiar equa-
tion of mathematical physics. It seems that valuable information can be ob-
tained when analyzing tf equations for the d = 1, N = 2 model under consid-
eration, for which we have shown that it admits Landau-Ginzburg description.
An example of the type of questions that we might want to understand in the
context of classical dynamical systems is, what is the model where the same
equations as the tf ones, for this case, appear naturally. The difference from the
known analysis of the ¢ equations, both in d = 1 and d = 2 cases[28], may arise
because not every symplectic manifold admits a Kahler structure.

(v) Further development can be made along the line of the phase space
formulation of ordinary quantum mechanics originated by Weyl, Wigner and
Moyal[58]. The key point one could exploit here is that it is treated as a smooth
h-deformation[60] of the classical mechanics (see also [59]-[61]). Indeed, there
is an attractive possibility to give an explicit geometrical BRST formulation of
the model describing quantum mechanics in phase space, following the lines of
the present paper. The resulting theory could be thought of as a topological
phase of quantum mechanics in phase space. The crucial part of the work has
been done[60] in the path integral formulation, where the associated extended
phase space and quantum h-deformed exterior differential calculus in quantum
mechanics has been proposed. The core of this formulation is in the deforming
of the Poisson bracket algebra of classical observables.

The central point we would like to use here is that the extended phase space
can be naturally treated as the cotangent superbundle M***" over M?" en-
dowed with the second symplectic structure 2 and graded Poisson brackets (21).
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Besides clarifying the meaning of the ISp(2) algebra, appeared as a symmetry
of the field theoretic model, it allows one, particularly, to combine symplectic
geometry and techniques of fiber bundles. The underlying reason of our interest
in elaborating the fiber bundle construction is that one can settle down Moyal’s
hi-deformation in a consistent way by using both of the Poisson brackets, {, }.,
and {, }o. Namely, the two symplectic structures and Hamiltonian vector fields
coexisting in the single fiber bundle are related to each other[62]. Note that this
relation is not direct since {a’, a’ },, = w* while for the projection of coordinates
in the fundamental Poisson bracket {\*, \’}q = Q% to the base M?" we have
{a*,a’}q = 0. Also, Zo symmetry (15) of the undeformed Lagrangian (13) can
be used as a further important requirement for the deformed extension. Naively,
the problem is to construct i-deformed BRST exact Lagrangian, identify BRST
invariant observables, and study BRST cohomology equation and corresponding
correlation functions. Also, having the conclusion that the d = 1, N = 2 super-
symmetry plays so remarkable role in the classical case it would be interesting
to investigate its role in the quantum mechanical case.

In this way, one might formulate, particularly, quantum analogues of the
Lyapunov exponents (91) in terms of correlation functions rather than to invoke
to nearby trajectories, which make no sense in quantum mechanical case. The
case of compact classical phase space corresponds to a finite number of quantum
states. Also, we note that for chaotic systems expansion on the periodic orbits
constitutes the only semiclassical quantization scheme known. Perhaps, this is
a most interesting problem, in view of the recent studies of quantum chaos.

However, we should emphasize here that the geometrical BRST analogy with
the classical case is not straightforward, as it may seem at first glance, since
one deals with non-commutative geometry[63] of the phase space in quantum
mechanical case (see Ref.[61] and references therein). Particularly, quantum
mechanical observables of interest are supposed to be analogues of the closed
p-forms on M?", with noncommuting coefficients arising to nonabelian coho-
mology.
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A APPENDIX

In Appendix[43], we obtain explicitly general solutions of the supersymmetric
ground state equations, in the case of two-dimensional phase space, n = 1, to
illustrate emerging of the Gibbs distribution.

In the phase space with Darboux coordinates a' = p and a? = = the non-

vanishing coefficients of the symplectic tensor are given by w!'? = —w?! = 1.

The general expansion of the ghost dependent distribution reads
pla,c) = po(a) + pi(a)c! + pa(a)e® + pra(a)cte?. (97)

In general, each ghost sector in p(a, ¢) can be used to define some ordinary type
of distribution. The ground state equations (38) then read

(01 — Bha)po =0, (D2 — Bha)po = O, (
(01 + Bhi)pr2 =0, *(do + Bha)pr2 =0, (99
cte? [(81 — Bhi1)ps — (02 — ﬁhg)pl)] =0, (100
(01 + Bh1)pz — (D2 + Bha)pr = 0. (101

Here, 9; = 0/0a’ and h; = 0H(a',a?)/0a’ (i = 1,2). For the ghost-free sector
(98) and the two-ghost sector (99) we have immediately

po = Koexp[+BH], pi2 = kexp[—BH], (102)

where kg and k are constants. These ghost sectors define scalar and pseudoscalar
distributions, ps = pg and p,s = p1ada' A da?, respectively.
The equations (100) and (101) can be rewritten as

O1p2 — O2p1 =0,  2B(hips — hap1) =0, (103)
or, taking 3 > 0,

ha

—p1- 1
hy P1 (104)

h2 h2
h 101 2P1 P1 1h1, P2

To solve the nonhomogeneous first-order partial differential equation (104) for
p1, we write down, by a standard technique, its characteristic equations,

da* h da? d h
:727 7:_17 ﬂz_p181ﬁ7

—_ 1
dr hy dr dr (105)

where 7 is a parameter, from which the first and the second integrals follow,

U, = /(hld(ll + ]’Lgda2), Us = —p1. (106)
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The general solution is then of the form ®(Uy,Us) = 0, where ® is a function,
that is, we can write

p1= %f(Ul)a (107)
2

and hence py = f(Uy), where f is an arbitrary function. Symmetrically, one
can arrive at the solutions in the form p; = f(Uy) and pa = (ho/h1) f(Uy). Ge-
ometrically, the odd-ghost sectors p; and ps constitute the vector distribution,
pv = pla)da.

To clarify the possible meaning of such a distribution we make some com-
ments. It is clear that this distribution is not of a Gibbs form, does not depend
on the parameter § > 0, and singular at the critical points of the gradient
vector field h = (h1,h2). The latter implies that p, is not in general nor-
malizable. However, in the region that does not include critical points of h
the distribution p, is well defined. When, additionally, we specify the inte-
grating in U; to be over a closed path 0D we have U; = 0 identically since
Ur= [yp hdi = [, vothdd = [, rotgradH d& = 0. Hence, the solution (107)
reduces to p; = hy/hs and ps = const.
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