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Abstract

Recently proposed path integral approach to Hamiltonian mechan-
ics arised naturally to a fundamental supersymmetry lying behind dy-
namical properties of the Hamiltonian systems. 2n-ghost sector is
proved to be the only sector providing non-trivial physically relevant
BRS and anti-BRS invariant state, which is the Gibbs state. By apply-
ing the path integral formalism, we study supersymmetric properties
of the Birkhoffian generalization of the Hamiltonian mechanics which
is characterized by allowing a fundamental 2-form to be dependent on
phase space coordinates. It has been shown, in the Birkhoffian me-
chanics, that among the even-ghost sectors only the 2n-ghost sector
yields relevant invariant state.

*Permanent address.



1 Introduction and summary

Path integral technique is known to be a practical tool for evaluating corre-
lation functions as functional derivatives of the associated generating func-
tional.

Path integral approach in treating stochastic Langevin equations has been
developed by Parisi and Sourlas[1, 2]. This formalism naturally arises to in-
volving anticommuting variables so that the associated action appeares to
be invariant under a set of supersymmetric transformations. The supersym-
metric invariance of the stochastic action is found to have a close relation to
the wellknown Onsager principle of microreversibility[3]. Gaussian noise, a
sourse of the stochasticity, can be integrated away in the action so that the
associated Lagrangian presents, in fact, the effect of the noise, in a ”dynam-
ical” way.

Zinn-Justin[4] found that it is no matter has the noise just a Gaussian
form or not, - the action is still invariant under a set of supersymmetric
BRS-like transformations. This BRS invariance of the general (Gaussian or
non-Gaussian) stochastic systems corresponds in effect to the invariance of
the stochastic equations under transformations related to a shift in the noise.
It should be noted that the latter transformations are essentially nonlinear
while the corresponding BRS transformations are linear ones[4] .

Recently, Gozzi[5] proposed a path integral approach to Hamiltonian me-
chanics based on the formalism by Parisi and Sourlas|2] and Zinn-Justin[4].
Gozzi noticed that due to the fact that the stochastic systems reveal the
supersymmetric BRS invariance whatever might have been the weight of the
noise one can take even a delta function distribution for the noise. This means
that there is no noise in this case so that one deals with a non-stochastic, de-
terministic dynamical system, which inherits the supersymmetric properties.
Then, one can apply the functional integral formalism to classical mechanics,
dynamics equations of which contain no noise sourse.

In a series of papers, Gozzi, Reuter and Thacker[6, 7, 8, 9, 10] developed
the application of path integral technique to Hamiltonian systems. They
found[6] that Hamiltonian systems indeed reveal an universal supersymme-
try, with the supersymmetric charges forming the algebra of inhomogeneous
symplectic 1Sp(2) group. They established the correspondence of all these
conserved supersymmetric charges with the symplectic geometry of phase



spacel6, 7].

Associated supersymmetric invariant Hamilton function appeared to be
a sum of the conventional Liouvillian and a term containing anticommuting
variables. So, in the "even” part the formalism meets exactly the Liouvil-
lian (operatorial) formulation of Hamiltonian mechanics constructed earlier
by Koopman[11] and von Neumann[12]. This is similar to the case of quan-
tum mechanics where the weight lying behind the Schrodinger operator is
exp(iSy), in Feynman’s path integral. The states, on which the Hamilton
function acts, are defined on the extended phase space, which includes anti-
commuting variables - ghosts - in addition to the ordinary coordinates of the
phase space Ms,,.

There are also conserved supersymmetric charges of a dynamical origin,
that is forming, together with the Hamilton function, a supersymmetric al-
gebra.

This N = 1 supersymmetry of the Hamilton function has a close relation
with the problem of ergodicity. Indeed, as it is wellknown[13] ergodic dynam-
ical systems have the only analytic constant of motion - the energy - so that
the Liouvillian must have only one eigenstate, for density function, with zero
eigenvalue, at fixed energy. It has been shown[7] that such a non-degenerate
eigenstate for 2n-ghost density is just a Gibbs state, i.e. the state depend-
ing only on the energy. Thus, when the N = 1 supersymmetry is exact the
system described by 2n-ghost density is in ergodic phase (unordered motion
or deterministic chaos) while when the system is in regular motion phase the
supersymmetry is always broken|7, 8, 14]. This gives a new criterion to detect
transitions between ordered and unordered motion regimes in Hamiltonian
systems[15]. In this regard, it would be interesting to study transient chaos
phenomenon exhibited by many dynamical systems which is characterized by
signals looking chaotic for a certain time before reaching stationarity, which
can be chaos or regular motion alike. Another interesting aspect of this por-
blem is to find links between the supersymmetric properties of Hamiltonian
mechanics and Kolmogorov-Sinai entropy, which is known to be sensative to
transitions between regular motion and chaos, in dynamical systems. It has
been shown recently[16] that the Lyapunov exponents turn out to be related
to the partition functions of the Hamilton function restricted to the spaces
of fixed ghost number.

Also, algebraic characterization of the Gibbs form condition of the equi-



librium states known as classical KMS condition[17] can be obtained as a
consequence of the supersymmetric invariance of the density function.

Conventionally, in Hamiltonian mechanics one deals with a constant fun-
damental symplectic 2-form w. However, in general w can be any closed and
non-degenerate 2-form. Then, one can allow the 2-form to be dependent on
phase space coordinates provided that the symplectic manifold can be always
covered by local charts with constant 2-forms due to Darboux theorem.

It has been shown|[18] that supersymmetry is still survived in this case,
and the action is invariant under linear as well as nonlinear canonical trans-
formations. However, anti-BRS charge has to be slightly modified by the
term proportional to derivative of the 2-form on phase space coordinates, to
preserve the algebra of I5p(2)[18].

On the other hand, generalization of Hamiltonian mechanics based on
generalized 2-form depending on phase space coordinates has been proposed
earlier by Santilli[19] and developed in detail in his monograph[20]. This
generalization is reffered to as Birkhoffian mechanics. Birkhoffian mechanics
presents in fact a new mechanics generalizing each and every aspect of the
conventional Hamiltonian mechanics.

Consistency of the Birkhoffian mechanics is provided by Lie-isotopic construction[20]
assuming derivability of dynamics equations from a variational principle, Lie
character of the underlying brackets, and existence of a generalized Hamilton-
Jacobi theory.

The Lie-isotopic construction provides in fact both conventional local-
differential approach to classical mechanics and non-local (integral) one.
Hamiltonian mechanics as well as Birkhoffian one are classified as local-
differential formulations with the ordinary symplectic geometry exploited
while the Hamilton-Santilli and Birkhoff-Santilli mechanics[23] present non-
local (integral) formulations of classical mechanics. The latters are based on
symplectic-isotopic structure generalizing the usual symplectic geometry, and
defined over isotopically lifted field of reals (isoreals). Also, two dual fields,
namely, dual field of reals and dual field of isoreals enables one to construct
additional formalisms for (non-local) classical mechanics[23].

In this paper, we show that in the path integral approach to Hamilto-
nian mechanics only 2n-ghost sector provides non-trivial physically relevant
solution for BRS and anti-BRS invariant state, which is characterized by the
Gibbs form, kexp(—FH), while the other sectors imply either trivial solution
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or solution characterized by exp(+08H). Gozzi et al.[14] rised the question
what might be an analogue of the Gibbs state obtained in 2n-ghost sector
in the other ghost sectors. The answer is that the other ghost sectors yield
only trivial or physically irrelevant solutions (see also[28]). Also, we analyse
the BRS and anti-BRS invariance equations in the case of Birkhoffian gener-
alization. We found that among the even-ghost sectors only 2n-ghost sector
leads to non-trivial physically relevant solution, which is again the Gibbs
state. Explicit calculations in two-dimensional (n = 1) case indicate that all
odd-ghost sectors yield only trivial solution.

The paper is organized as follows. In Sec 2, we review the path inte-
gral approach to Hamiltonian mechanics[6]. We start with presenting a brief
sketch of the main results of the path integral approach to stochastic pro-
cesses from which the approach to Hamiltonian mechanics arised (Sec 2.1).
Conserved supersymmetric charges forming the algebra of 15p(2) (Sec 2.2)
reflect symplectic geometry of the phase space (Sec 2.3). There are also su-
percharges of a dynamical origin forming a genuine N = 1 supersymmetry of
the Hamiltonian mechanics (Sec 2.4). One of the most interesting implica-
tions of the approach is that the supersymmetry is connected to ergodicity
of the classical systems. We prove that 2n-ghost sector is the only sector
providing non-trivial physically relevant BRS and anti-BRS invariant state,
which is the Gibbs state (Sec 2.5).

In Sec 3, we outline basic elements of the Birkhoffian mechanics[20] in-
cluding the Lie-isotopic construction (Sec 3.1) and Birkhoff’s equations (Sec
3.2).

In Sec 4, we review the path integral analysis on the generalized phase
space[18] which is in fact the path integral approach to Birkhoffian mechanics.
The supersymmetric Birkhoff function as well as the Hamilton function of
Sec 2 find their geometrical meaning according to the Liouvillian formulation
(Sec 4.1). In Birkhoffian mechanics, the anti-BRS charge has to be modified
to preserve the structure of the algebra of ISp(2) (Sec 4.2). The equation
for anti-BRS invariant state is also modified. Analysis shows that among the
even-ghost sectors only 2n-ghost sector provides non-trivial physically satis-
factory solution for the BRS and anti-BRS invariant state, which appears to
have again the Gibbs form. The KMS condition remaines unchanged (Sec
4.3).



2 Path Integral Approach to Hamiltonian Me-
chanics

Path integral approach to Hamiltonian mechanics arised from the path in-
tegral approach to stochastic systems. We start with a brief sketch of basic
results of the functional integral formulation of the stochastic equations.

Zinn-Justin[4] proved that for a general distribution of the noise 7
dp(n) = exp(—o(n))dn (1)
the associated generating functional
Zp(J) = | DyDa d[F(a) — nldetM exp(~o(n)eapl [ dediai@)]  (2)

for a general stochastic diffusion equation, Fj(a(x)) = n;(z), where a is a
field and M;;(z,y) = dFi(a(x))/da;(y), can be rewritten, by exponentiating
the d-function and determinant, as

Zp(J) = /DaDEDch exp[—S(a,c,¢,q) +/dei(x)ai(x)] (3)
Here, the associated action S is
S =-W(a)+ [ dv ai(2)Fila) — [ dudy ei(e)Mis(z. p)esw)  (4)

and ¢ and ¢ are auxiliary anticommuting (Grassmannian) fields - ghosts -
appeared due to the exponentiation of the determinant. This action is found
to be invariant under the following transformations that resemble the BRS
ones of gauge theory:

da;(x) = eci(x)

dci(x) =0
0¢i(x) = €qi(x) (5)
0gi(x) =0

It is remarkable that the associated anti-BRS transformations & leave the
action S invariant too only if the following potential conditions hold:
OF;  OF)
5aj N (56Li

(6)
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The origin of these conditions is known to be Onsager principle of microre-
versibility so that the supersymmetry of the stochastic systems is gained
owing to Onsager principle.

Correlation functions can be obtained from the generating functional (2)
in a usual way

o Zp(J)
0Ji(0) - -+ 0Jk(tm)|7=0

(ai(0)a;(tr) - - ax(tm)) = (7)

2.1 Path integral for Hamiltonian mechanics

Gozzi[3] proposed this formalism to use in a classical mechanical system
putting the weight of the noise to be the delta function,

dp(n) = 8(n)dn (8)

Indeed, it is reasonable to find analogue of the supersymmetric BRS sym-
metry (5) in classical mechanics provided that the stochastic action (4) is
supersymmetric invariant for general noise distribution, a particular case of
which is the delta function, or "no noise”, distribution (8).

Due to Hamiltonian formulation of classical machanics, Hamilton’s equa-
tions read

a'(t) = w"0;H (a(t)) (9)
where a' = (¢*,...,¢",p1,...,Pn), %, 7,... = 1,...,2n, are coordinates on the
phase space My,. H is a Hamiltonian and w” = —w’® is a symplectic tensor

=% 5) (10)

Fundamental Poisson brackets have the form {a*, @’} = w¥.

In the operatorial approach to classical mechanics[11, 12], one has a prob-
ability density function p(a,t) on phase space the time evolution of which is

given by
0
57 = ~tp H} = —Lp(a,1) (11)

where the Liouville operator

L=—0;Huw" 0, (12)
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It is wellknown in quantum field theory that if one has an operatorial formula-
tion one can also construct a corresponding path integral formulation. Thus,
having the Liouvillian (operatorial) approach to classical mechanics together
with path integral approach for general stochastic (and non-stochastic) dy-
namical systems, one can try to formulate a path integral approach to Hamil-
tonian mechanics.

Gozzi, Reuter and Thacker[6] suggested to write down the generating
functional for Hamiltonian mechanics in the following simple form:

cl

Z:/Da §(a* —aly) (13)

where a’; are solutions of the Hamilton’s equations (9). Thus, the measure is
related to a space of classical solutions. The delta function forces the system
to be the classical one, and can be rewritten, due to (9), as

d(a’ — aly) = bla’ — w0, H]det (8,07 — w0 H) (14)

Then, exponentiating the delta function and the determinant using auxiliary
commuting variables ¢; and anticommuting variables ¢; and ¢;, respectively,
we have for the generating functional (13)

7z = / DaDqDeDé expli / dtL] (15)
where the Lagrangian

Associated Hamilton function can be then immediately derived from the
Lagrangian (16) B ' '

H = qiw”ﬁjH + iéiwlkﬁkﬁchj (17)
By the use of H, ordinary way to calculate the equal-time (anti-)commutators
between the fields then yields

[0’ a5] = (¢, ;] = [¢',¢] =[G, 5] = 0

We see that the commutator between canonical variables a’ vanish identically.
This means obviously that we are within a classical theory.
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2.2 Supersymmetric charges

Due to the BRS invariance of the action (4), it is not surprise that the classical
mechanical Hamilton function (17) is invariant under some BRS transforma-
tions like (5). Indeed, it is easy to check that the Hamilton function H is
invariant under the following set of BRS transformations:

da' =ec’, 6c' =0, 06 =-e€q, 0¢=0 (19)

where € is a Grassmannian parameter. Note that the BRS transformations
have the property 62 = 0. This supersymmetry (19) is generated by the
following five supersymmetric conserved charges:

Q = icig; (20)
Q = ’iéiwiij (21)
C = c'¢ (22)
1 .
K= iwijCZC] (23)
_ 1 ..
K = 590”52‘@‘ (24)

Here, @ and ) are nilpotent BRS and anti-BRS operators respectively,
Q*=0, Q*=0 (25)
The generators (20)-(24) form the algebra of 1.5p(2) group

[Q.Q]=1Q.,Q] =[Q,Q] =0

[C,Q =@

[C.Ql=-Q

[K.Q)=[K,Q] =0
[K,Q]=Q (26)

[K.Ql=Q

[K,K]=C

[C,K]=2K, [C,K]=-2K



2.3 Geometrical interpretation of supersymmetric charges

The algebra (26) can be realized in a usual differential operator form. It is
straightforward to verify that with[6, 7]

0 .0
“oc BT g
for canonical conjugates the (anti-)commutation relations (18) are satisfied.

So, one has the following differential operator representations for the charges
(20)-(24)

C;

(27)

Q =cC aa/i (28>
_ .0 0
— i
@=w oct da’ (29)
C=c 5ei (30)
K = ;wijcicj (31)
1 .9 8
— Z
K 2“9 dci (32)

Ghost variables ¢’ play in fact the role of usual 1-forms da’ because their
equation stemmed from L is just the equation for Jacobi fields, the first
variations da’. It is then easy to interpret these charges in symplectic ge-
ometrical terms. The nilpotent BRS charge @) and anti-BRS charge @ act
as an exterior derivative and exterior co-derivative on phase space, respec-
tively. The ghost number charge C' counts 1-form and vector number (41
for 1-form ¢ and -1 for tangent vector ¢;). It has integer eigenvalues running
from 0 to 2n, for ghost-dependent states. K and K are symplectic 2-form
and simplectic bivector, respectively, and their conservation corresponds to
the Liuoville theorem of classical mechanics. In general, one may state that
I1Sp(2) reflects geometry of the phase space.

2.4 Dynamical supersymmetric charges

In addition to the five charges (20)-(24), there are also two conserved charges,
for conserved Hamiltonian H,

Qu = Qe =Q — BN (33)
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Qu =e¢""Qe™ =Q + N (34)
where

N =w’0;H (36)

and [ is a real parameter. They are dynamical supersymmetric quantities.
Indeed, their anticommutator yields the Hamilton function H|[8, 9]

[Qu,Qu] = 2ipH (37)
(Qu.Qul = [Qu,Qu] =0

They are nilpotent operators due to the property (25),
Qu =0, Q=0 (38)

The supersymmetry (37) is a genuine, dynamical N = 1 supersymmetry of
Hamiltonian mechanics including one (anti-)supercharge and the Hamilton
function H as its generators.

2.5 Gibbs state and KMS condition

Inserting differential operators (27) into the Hamilton function (17) one

obtaines[14]
0

dci
Thus, in the case the density p = p(a,c) does not contain ghost variables ¢,
i.e. for scalar density p(a), we reproduce the Liouvillian (12)

H = —iw’0;HO; + iw™ 0,0, Hc (39)

Hjeeo = —iw”0;HI; = —iL (40)

It is wellknown that the system is ergodic if the Liouvillian has a non-
degenerate eigenstate py with zero eigenvalue,

Lpo =10 (41)

for a given energy E, py = po(F).
Due to the dynamical supersymmetry (37) it is important to find BRS
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and anti-BRS invariant state, i.e. the state p(a,c) annihilated by both Qy
and Qpg,

Qupla,c) =0 (42)
Qupla,c) =0 (43)
General representation of the density p(a, ¢) has the following form:

2n

pla.c) =3 pi s (a)c - (44)

k=0

Here, p;, ;. (a) are totally antisymmetric functions. For the mean value of
the observable A(a, c)

2n
= Z A'lek (a)cil o 'Cik (45>
k=0
where A;, 4, (a) are totally antisymmetric functions, we have
(A) = /dQ”adQ”c A(a, c)p(a,c) = Qn!/dQ”aZAl s(@)pss1..on(a)  (46)

With the use of the definitions (33) and (34) for the charges and the expansion
(44), the equations (42) and (43) take the form !

Qup(a,c) Z e Dy piy. i (a) = 0 (47)
2n 2n ) )
Qupl(a,c) Z Z Zp DY piy gy (a) =0 (48)
p=0 k=0

Here, we have denoted
Dy =0; — po;H (49)

and a(p) = +1 (—1) for odd (even) p. Consistency of these two equations
requires that to get mon-trivial solutions one of the above equations should

ISee Appendix A
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be satisfied identically 2.

Let us consider the even-ghost sector (even k) and the odd-ghost sec-
tor (odd k) separately. This can be done always due to the fact that the
Grassmannian algebra can be presented as a direct sum of the even and odd
subalgebras.

(a) Even-ghost sector (k is an even number, k = 0,...,2n). There are
only two possibilities to satisfy one of the equations (47)-(48) identically: (i)
For k = 0 the equation (48) is satisfied identically so that the solution of
the first equation (47) is p(a,c) = kexp(+FH). This solution is evidently
not physically reasonable (/3 is assumed to be a positive parameter). (ii) For
k = 2n the equation (47) is satisfied identically so that the solution of the
second equation (48) is

pla,c) = ke PHcL ... (51)

This solution has a Gibbs state form (cf.[6, 14]).

In the even-ghost sector, it appears to be instructive to present the density
p(a,c) in the following form:

p=pm(@K™ m=0,...,n (52)

where K is the generator (23) and, particularly,

K" = n!(det[wij(a)])%cl e (53)

Note that the functions p,,(a) are commuting functions for any m.

It is straightforward to verify that K™ is invariant under Hamiltonian
flow that is

HK™ =0, m=0,...,n (54)
The equations (42) and (43) now read
QuK"pm(a) =0 (56)

2See Appendix B
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With the aid of some algebra it is straightforward to calculate the commu-
tators

[K,N]=N, [K,N]=0
[K™,Qu] =0 (57)
(K™, Qu] = mK™ (Q+ N)
so that the system (42)-(43) takes the form

K™(Q = BN)pm(a)
MK (Q + BN) pyu(a)

0 (58)
0

where we have used Qupmn(a) = 0. Again, consistency of these equations
requires that one of the equations should be satisfied identically to get a non-
trivial solution of the system (58)-(59): (i) For m = 0 (ghost-free sector), the
equation (59) is satisfied identically so that solution has the form p(a,c) =
rexp(+FH), which is evidently non-physical solution. (ii) For m = n (2n-
ghost sector), K™ contains maximal number of ghosts so that K@ = 0, and
hence the equation (58) is satisfied identically. Therefore, the solution is of
the Gibbs state form

pla,c) = ke PHK" (60)

Thus, in the even-ghost sector the only non-trivial physical solution has
the Gibbs form (51) provided by 2n-ghost sector.

(b) Odd-ghost sector. (k is an odd number, k = 1,...,2n — 1). There is
no any possibility to satisfy identically one of the equations (47)-(48) in this
case. Therefore, we are leaved only with trivial solution p(a,c) = 0.

As the result of the analysis of the equations (42)-(43), we may conclude
that only 2n-ghost sector yields non-trivial physically reasonable solution for
BRS and anti-BRS invariant state which appears to be the Gibbs state (51).
The other sectors imply only trivial or physically unsatisfactory solutions.

Thus, for exact supersymmetry (37) there are no any other analytic con-
stants of motion besides the energy, and therefore the system is in ergodic
phase (unordered motion). Futhermore, it has been proven that if the system
is in ordered motion phase, i.e. there are more constants of motion, the su-
persymmetry (37) is broken. This gives a new criterion to detect transitions
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of the system between ordered and unordered motion phases[15].
It is remarkable that the classical KMS condition[17]

(A1(0)As(t)), = ;<{A1(0)>Az(t)}>p (61)

which is known as the origin lying behind the Gibbs state can be derived
directly from the supersymmetry (37) without any reference to the explicit
form of the ground state[14].

3 Elements of Birkhoffian mechanics

Generalization of Hamiltonian mechanics based on a general 2-form w de-
pending on phase space coordinates a’ has been developed by Santilli[19, 20].
This generalization is reffered to as Birkhoffian mechanics. Birkhoffian me-
chanics presents in fact a new mechanics generalizing each and every aspect
of the conventional Hamiltonian mechanics.

Consistency of the Birkhoffian mechanics is provided by Lie-isotopic construction[20,
21] assuming derivability of dynamics equations from a variational pronci-
ple, Lie character of the underlying brackets, and existence of a generalized
Hamilton-Jacobi theory.

3.1 Lie-isotopy

Algebraically, Lie-isotopy is defined as a lifting of an algebra A with the
product ab, a,b,... € A, into an algebra A which is the same linear space as
A equipped with a generalized product a % b, which preserves the structure
of the original algebra A.

For example, a commutator algebra [A] may be Lie-isotopically lifted into

~

a commutator algebra [A] by the rule

(A — [A]
la,b] , =ab—ba —[a,b] j =axb—bxa=aTb—bTa (62)

where T € A. It is straightforward to check that the last brackets are
antisymmetric and Jacobi identity is satisfied in [A].
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3.2 Lie-isotopic lifting of Hamiltonian mechanics

With Pfaffian variational principle[20]
38 =6 / dt[Ri(a)i’ — H(a,)] =0 (63)

we have the following generalization of Hamilton’s equations (9) named
Birkhoff’s equations[22]:

@' (t) = w?(a)0; H(a(t)) (64)

where the generalized fundamental 2-form

1

(wij (a)) = (@R] — 8]'RZ')_ (65)
is not the constant (10) and depends on phase space coordinates. It should
be noted that the symplectic manifold can be always covered by local charts
with constant w(a) due to Darboux theorem.

Generalized Poisson brackets then read
0A .. 0B

) _
e G

and they verify the Lie algebra axioms of antisymmetricity and Jacobi iden-
tity. So, fundamental Poisson brackets have the form {a’,a’} = w"”(a). Thus,
the Birkhoffian mechanics is a Lie-isotopic lifting of Hamiltonian mechanics
due to (cf. (62))

{AB} = (66)

{A, B} = 0;Aw9,B — {A,B} = 0;Aw" (a)0; B (67)

In the case w'(a) = w¥ = const or, equivalently, R;(a) = (0, p), Birkhoffian
mechanics covers the conventional Hamiltonian one.

One of the particular cases of the Birkhoffian mechanics is provided by
choosing R;(a) = (0,p.1%(a)), where T is a symmetric non-degenerate ma-
trix, e, f,... =1,...,n. This form of R;(a) obviously provides an off-diagonal
form of the symplectic tensor w®(a) so that the action does not depend on the
momenta, as it is in the proper Hamiltonian mechanics. Birkhoft’s equations
(64) are reduced in this case to Hamilton-Santilli equa- tions[23]

@ (t) = ' I*(a)0 H(a(t)) (68)
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where w% is defined by (10) and
I(a) = diag(Ip, I7), Ip = (T.; + p,0TY/Ops)~! (69)

This example appeares to be a nearest Birkhoffian generalization of the
Hamiltonian mechanics which preserves the structure of the latter. How-
ever, due to the dependence of the I matrix on phase space coordinates the
generalization permits one to incorporate, for instance, nonlocal effects leav-
ing the Hamiltonian H to be responsible for the usual potential local forces.

We may conclude that Birkhoffian mechanics is a realization in classical
mechanics of the Lie-isotopic algebra. Birkhoffian mechanics is directly uni-
versal in the sense of being able to represent much wider class of dynamical
systems than the conventional Hamiltonian mechanics does.

It should be noted that the function H entering the Birkhoff’s equations
(64) does not represent in general the total energy of the system. To avoid
confusion Santilli introduced the name Birkhoffian for H. We will use the
same notation H for Birkhoffian in the next section.

For precise and complete development and numerious physical applica-
tions of Birkhoffian mechanics we refer the reader to[20] and references cited
therein; see also[26, 27] for a review of Santilli’s Lie-isotopic theory.

It should be noted that the representation (65) defines canonical sym-
plectic structure while the symplectic-isotopic structure, on which Hamilton-
Santilli and Birkhoff-Santilli mechanics are based, is defined by
w(a);T7(t,a,a,...), where T7% is a Lie-isotopic element[23]. All possible
integral terms, which are responsible for non-local effects, are embedded into
the element 77

Also, it seems to be interesting to suppose that Lie-isotopic element may
include (pseudo)differential operators so that the underlying algebra A be-
comes non-commutative. This follows the line of reasoning by Gozzi and
Reuter[29] who proposed quantum-deformed exterior differential calculus on
the phase space to construct an analogue of the conventional exterior cal-
culus, for quantum mechanics. Formally, starting point of their studies is
very similar to the one of Lie-isotopic generalization, with the generalized
product being of special type, namely, Moyal star-product[30], a x b = aT'b,
T = explihd,wd;/2). The Poisson bracket generalization is due to (62),
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with the additional factor 1/ih. Here, pseudodifferential operator T' pro-
vides nonlocal properties peculiar to quantum mechanics. According to this
approach[29], quantum mechanics may be treated as a smooth deformation
of the classical one.

4 Path integral approach to Birkhoffian me-
chanics

To construct path integral approach to Birkhoffian mechanics one need to
rerun the procedure made in Sec 2 but starting with Birkhoff’s equations
(64) instead of Hamiltonian ones. The difference arises due to including the
dependence of the 2-form w(a) on phase space coordinates[18].

Generating functional Z for Birkhoffian mechanics has the same form as
(13) but @, are now solutions of Birkhoff’s equations (64). The delta function
in (13) then can be rewritten according to (64) as

3(a’ — aly) = 6[a — w(a)d; Hdet(0,0; — Op(w™(a)0; H)) (70)
So, associated Lagrangian £ in the generating functional (15) takes the form
L = qi(a’ — w(a)0;H) + ie;(0,0; — (o™ (a)0; H) ) (71)

It has been proven|[18] that the generalized Lagrangian £ is invariant under
linear as well as nonlinear canonical transformations. One can easily read off

Birkhoff function H from (71)

which evidently coincides with the Hamilton function (17) of Hamiltonian
mechanics in the case w(a) = w.

4.1 Liouvillian formulation of Birkhoffian mechanics

In terms of Hamiltonian vector field[24, 25]

h' = w"(a)0;H (73)
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and differential operator realization (27) the Birkhoff function (72) can be
rewritten simply as

H = —ily (74)
where /}, is a Lie-isotopic derivative along a vector field h
i ik 0

This gives a geometrical meaning of the Birkhoff function H, namely, the
latter is (—i) times the Lie derivative along the Hamiltonian vector field.
Particularly, the fact that the BRS charge ) commute with the Birkhoff
function ‘H is a reflection of the wellknown differential geometrical prop-
erty that the exterior derivative d always commutes with a Lie derivative,
[d, (] = 0.

Liouville equation (11) for general density p(a, ¢, t) then takes the follow-
ing generalized form:

Op = —{pH} = —Lpp (76)

This equation coincides with the original Liouville equation (11) when p does
not depend on ghost variables ¢!, and w(a) = w, with the identification of
the Liouvillian, L = /¢},.

4.2 Modified anti-BRS charge

One can observe that the anti-BRS charge ) defined by (21), unlike the BRS
charges @, is no longer nilpotent and does not commute with the Birkhoff
function (72). To regain the supersymmetry for the Birkhoffian generaliza-
tion, one should try to keep the algebra (26) of 1Sp(2) group unchanged by
appropriate modifying of the expression (21) for the anti-BRS charge. This
can be done by direct use of the commutator [K, Q] = Q of the algebra (26).
The result is straightforward and reads[18]

Q= iéiwij(a)qj — ;(8kwij(a))ckcicj (77)

This new definition of the anti-BRS charge provides all the algebraic and
transformational properties of the previous scheme of Sec 2. Particularly,
cohomology of the anti-BRS charge is isomorphic to the conventional de
Rham cohomology[18].
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Dynamical supercharge Qg due to (77) and the definition (34) now reads

Qu = iéiwij(a)qj — ;((‘%wij(a))ckcz-cj + ﬁéiwij(a)(‘?jH (78)

This charge can be casted into the following form:
QH = élDi — *fklmcmékél (79)

f9* = W™ w* — WM, w™ (80)
and the operators D', are given by the definition (50). In the field theoretical
BRS technique, the operators placed similarly as D’ in (79) play the role of

the generators of some Lie group characterizing symmetry of the theory. It
is easy to check that the operators D’ satisfy the commution rule

(DY, D}] = fU*Dy; (81)

and, owing to the identity w?™d,,w’* +w*"0,,w"” +w™o,,w* = 0, the function
fiF satisfies the identity

so that the operators D’ constitute a Lie algebra. Note that the algebra
defined by (81) is specific for Birkhoffian mechanics since f¥* = 0 in the
Hamiltonian case.

4.3 Anti-BRS invariant state

With the modified anti-BRS charge (78) we have a new form of the equation
for anti-BRS invariant state while the equation for BRS invariant state re-
maines the same.

These equations mean, in general, that to describe the ergodic phase the
density p must be BRS and anti-BRS invariant. However, it should be noted
that there are classes of the solutions of the equations (42) and (43) that
are characterized by different ghost numbers. Indeed, trivial solutions of the
equation (42) characterized by ghost number m have due to the nilpotency
of Qg the form p = Qgx, where y should have the ghost number m — 1.
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We will assume that two solutions p and p’ of the same ghost number m are
equivalent if

p—p =Qux (83)

so that they belong to the same class of BRS cohomology. There are 2n coho-
mology classes of solutions. Similarly, for the anti-BRS invariance equation
(43) we have the anti-BRS cohomology classes of the solutions. It has been
shown that the cohomology of the modified anti-BRS operator is isomorphic
to de Rham cohomology|[18].

The most interesting to identify are 0, 1, and 2n-ghost states:

(i) 0-ghost state. 0-ghost (ghost-free) state is anti-BRS invariant because
the anti-ghosts entering the anti-BRS operator (78) annihilate any ghost-
free state.

(ii) 2n-ghost state. 2n-ghost state is BRS invariant since the BRS operator
(33) adds an extra ghost to the 2n-ghost state, and therefore annihilates it.

(iii) 1-ghost state. Anti-BRS invariance property of the 1-ghost state appears
to be related to the operator Di. Indeed, the pair of anti-ghosts in the last
term of the anti-BRS operator definition (78) annihilates any 1-ghost state
while one anti-ghost entering the first term of the operator never can do it.
Therefore, the condition Qgp = 0 is equivalent to

Dip=0 (84)

This means that 1-ghost state is anti-BRS invariant if and only if it is D’ -
invariant. However, it should be stressed that since it may occur that p =
Qux (x has the ghost number two) there is no one-to-one corespondence
between the space of D', -invariant 1-ghost states and the space of cohomology
class of 1-ghost states.

In addition, the ergodicity condition
Hp =20 (85)

is provided according to (37) by the pair of the equations (42) and (43),
and hence the density p is time independent due to the generalized Liouville
equation (76).

With the use of the definitions (33) and (78) for the charges and the
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expansion (44) for the density, the equations (42) and (43) take the form?

Qupla,c) =
2n
Z At c"’“Dj_pil_,,ik (a) =0 (86)
k=0 B
Qupla,c) =
2n 2n ) . ) )
> ap)e -5 DLy, i (a)
p=0 k=0
1 2n 2n ) . . X .
5 Y alalg)e -0 5w p () =0 (8)
p#q k=0

Again, as in Sec 2.5, we are leaved in effect to satisfy identically the first equa-
tion (86) because it implies itself physically irrelevant solution characterized
by exp(+/H). This can be done only with the choice k = 2n. Analogue of
the full analysis of the system (42)-(43) made in Sec 2.5 for Hamiltonian me-
chanics is complicated for the Birkhoffian generalization due to the presence
of the additional derivative term in (87).

(a) Even-ghost sector. Nevertheless, one may analyse the whole even-ghost
sector by means of the representation (52). Indeed, tedious calculations show
that all the commutators (57) are still valid in the Birkhoffian case so that
in the even ghost sector we have the only meaningful solution, the Gibbs
state (60). Furthermore, since K™, being proportional to the phase space
volume form w", is still invariant under Hamiltonian flow the solution (60)
with w;; = w;j(a) is defined only by the factor exp(—FH (a)) so that it is
indeed a Gibbs state (cf.[18]).

(b) Two-dimensional case. Calculations in the case of two-dimensional phase
space (n = 1) show * that the general system (86)-(87) has a non-trivial phys-
ically meaningful solution only for 2n-ghost sector of the density p(a,c). So,
the 2n-ghost sector seems to be the only ghost sector which is responsible
for ”stable” BRS and anti-BRS invariant state.

It is remarkable that the KMS condition (61) remains untouched[18] in
Birkhoffian mechanics despite the fact that there is the additional derivative
term in Qg due to the modified definition (78).

3See Appendix A
4See Appendix C
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Appendices
A

Using the anticommutator

we find )
n N . . .
chil . cik — Z @(p)cil e 5;7’ e Clk + CZI Ce . Clkéj
p=0
and
Eiéjcll N Z a(p)oé(q)c“ e (Sz,p e 5;‘1 oLk
P#q
2n . - . 2n . N .
+> alp)dt 0+ > ap)t 6 A
p=0 p=0

i ik =
+ct -0t ec

where a(p) = +1 (—1) for odd (even) p. The terms in the r.h.s. of the last
two equations containing ¢; annihilate p;, ;, (a) identically since it does not
depend on ghosts.

B

The system (47)-(48) for arbitrary non-zero ghost-dependent parts reduces
to

D;pil...ik(a) =0
Dipil---ik <a> =0
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that is due to the definitions (49) and (50)
(0; = BO;H)p(a) = 0
wjk(ak + ﬁ@kH)p(a) =0

Then, looking for solutions in the form p(a) = kexp(yH), where x and v are
constants, we find that x = 0, i.e. there is only trivial solution, p(a) = 0.

C

Let us consider a two-dimensional phase space, n = 1. It is characterized by
the symplectic tensor w'?(a) = —w?!(a). The general expansion (44) then
reads

p(a, C) = po + plcl + p202 + ,012CIC2

The general system of equations (47)-(48) reduces to

&' D; pla,c) =0 (C1)
|
(DY — kal’mcméka)p(a, c)=0 (C2)
which in turn implies
c'Dypo=0
CzDgpg =0

c'*(Dypa — Dy p1) =0
for the equation (C1) and

w?(DFpr = Dfps) =0

cHw?Df + w12’1)p12 =0

02(w12D;— + w1272),012 =0

for the equation (C2). This series of equations for the functions pg, p1, p2
and pio implies
Po = ,{)€+/J‘ "

p1=p2=0
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o 7ﬁHflnw12
P12 = K€

We see that 0-ghost sector and all odd-ghost sectors of the two-dimensional
case of Birkhoffian mechanics are not relevant while the 2-ghost sector yields
good solution.

This properties might go beyond two dimensions so that it may occur
that in general the BRS and anti-BRS invariant solutions are non-trivial and
physically acceptable only in 2n-ghost sector, as it does in the Hamiltonian
mechanics.
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